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Abstract: The work shows that the evolution of the field of the free Klein–Gordon equation (KGE),
in the hydrodynamic representation, can be represented by the motion of a mass density ∝ |ψ|2
subject to the Bohm-type quantum potential, whose equation can be derived by a minimum action
principle. Once the quantum hydrodynamic motion equations have been covariantly extended to the
curved space-time, the gravity equation (GE), determining the geometry of the space-time, is obtained
by minimizing the overall action comprehending the gravitational field. The derived Einstein-like
gravity for the KGE field shows an energy-impulse tensor density (EITD) that is a function of the
field with the spontaneous emergence of the “cosmological” pressure tensor density (CPTD) that in
the classical limit leads to the cosmological constant (CC). The energy-impulse tensor of the theory
shows analogies with the modified Brans–Dick gravity with an effective gravity constant G divided
by the field squared. Even if the classical cosmological constant is set to zero, the model shows the
emergence of a theory-derived quantum CPTD that, in principle, allows to have a stable quantum
vacuum (out of the collapsed branched polymer phase) without postulating a non-zero classical
CC. In the classical macroscopic limit, the gravity equation of the KGE field leads to the Einstein
equation. Moreover, if the boson field of the photon is considered, the EITD correctly leads to its
electromagnetic energy-impulse tensor density. The work shows that the cosmological constant can
be considered as a second order correction to the Newtonian gravity. The outputs of the theory show
that the expectation value of the CPTD is independent by the zero-point vacuum energy density
and that it takes contribution only from the space where the mass is localized (and the space-time
is curvilinear) while tending to zero as the space-time approaches to the flat vacuum, leading to an
overall cosmological effect on the motion of the galaxies that may possibly be compatible with the
astronomical observations.

Keywords: non-Minkowskian hydrodynamic representation of quantum equations; Einstein gravity
of classical fields; energy-impulse tensor of classical Klein–Gordon field; cosmological constant

1. Introduction

One of the serious problems of gravity physics nowadays [1] refers to the connection between
the quantum fields theory (QFT) and the gravity equation (GE). The problem has come to a partial
solution in the semi-classical approximation where the energy-impulse tensor density is substituted by
its expectation value [2–6].

Even if unable to give answers in a fully quantum regime, the semiclassical approximation has
brought successful results such as the explanation of the Hawking radiation and black hole (BH)
evaporation [7].

The difficulties about the integration of QFT and the GE become really evident in the so called
cosmological constant problem, a term that Einstein added to its equation to give stability to the
solution of universe evolution that in general relativity would lead to its final collapse. The introduction,
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by hand, of the cosmological constant was then refused by Einstein himself who defined it as “the
biggest mistake of my life” [8]. Actually, the CC has been introduced [1] to explain the astronomical
observations about the motion of galaxies [9] and to give stability to the quantum vacuum bringing it
out from the unphysical collapsed branched polymer phase [10], being the physical vacuum of the
strong gravity phase related to a positive, not null, CC [11]. Moreover, the energy-impulse tensor
density (EITD) for classical bodies in the GE owns a point-dependence by the mass density (i.e., ∝ |ψ|2),
without any analytically complete connection with the field of matter ψ = |ψ|exp i

}S. As discussed by
Thiemann [12], this connection cannot be build up by simply replacing the EITD by its Minkowskian
vacuum expectation value. If we do so, we end up with a non-Minkowskian metric tensor solution
that has to feed back into the vacuum expectation value and so on with the iteration that does not
converge in general.

As a consequence of this fault, modifications to the Einstein equation have been proposed both
from the theoretical point of view, such as the Brans-Dicke modified gravity [13], and by using a
semi-empirical approach such as the covariant running G or the slip function QFT [14]; However,
the cosmological constant itself in the quantum pure gravity can be considered a modification of the
general relativity for defining a GE compatible with the needs of a quantum theory.

Due to the undefined connection between the GE and the particle fields, the integration between
the QFT and the GE is still an open question that is the object of intense theoretical investigation.
Generally speaking, the link between the matter fields and the GE can be obtained by:

1. Defining an adequate GE for matter fields (as, for instance, happens for the photon field);
2. Defining the link between the GE and the QFT by quantizing the action of the new GE.

At glance with the first point, the paper shows that it is possible to obtain the GE with analytical
connection with the KGE field:

ψ = |ψ|exp
i
}S (1)

To this end, the hydrodynamic representation of the field equation as a function of the variables:

|ψ| and ∂µS = −pµ (2)

that leads to the classical-like description of a mass density |ψ|2 owing the hydrodynamic impulse pµ

subject to the non-local quantum potential interaction) is utilized. Then, by using the minimum action
principle applied to the hydrodynamic model, the gravity generated by the KGE field ψ is derived.

The paper is organized as follows: in Section 2 the Lagrangean version of the hydrodynamic KGE
is developed; in Section 3 the gravity equation is derived by the minimum action principle; in Section 4,
the perturbative approach to the GE–KGE system of evolutionary equations is derived; in Section 5,
the expectation value of the cosmological constant of the quantum KGE massive field is calculated;
in Section 6, some features of the GE as well as the check of the theory are discussed.

2. The Hydrodynamic Representation of the Klein–Gordon Equation (KGE)

In this section we derive the hydrodynamic representation of the Klein–Gordon equation (KGE)
in the form of Lagrangean equations that allow to define the minimum action principle for the
hydrodynamic formalism.

Following the method firstly proposed by Madelung [15] and then generalized by other
authors [16–18], the hydrodynamic form of the KGE:

∂µ∂µψ = −m2c2

}2 ψ (3)
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in the Minkowskian space, is given by the system of two differential Equations [19]: The Hamilton–Jacobi
type one:

∂µS ∂µS− }2 ∂µ∂µ|ψ|
|ψ| −m2c2 = 0 (4)

coupled to the current conservation equation:

∂

∂qµ

(
|ψ|2 ∂S

∂qµ

)
= m

∂Jµ

∂qµ
= 0 (5)

where,

S =
}
2i

ln[
ψ

ψ∗
] (6)

and where the 4-current reads,

Jµ = (cρ,−Ji) =
i}
2m

(ψ∗
∂ψ

∂qµ − ψ
∂ψ∗

∂qµ ) (7)

Moreover, being the 4-impulse in the hydrodynamic analogy:

pµ = (
E
c

,−pi) = −
∂S
∂qµ (8)

it follows that,
Jµ = (cρ,−Ji) = −|ψ|2

pµ

m
(9)

where,

ρ =
J0

c
=
|ψ|2
mc2

∂S
∂t

(10)

Moreover, by using (8), Equation (4) reads:

∂S
∂qµ

∂S
∂qµ

= pµ pµ =

(
E2

c2 − p2
)
= m2c2

(
1−

Vqu

mc2

)
(11)

(where p2 = pi pi is the modulus squared of the hydrodynamic spatial momentum (italic indexes run
from 1 to 3)) that, for k-th eigenstate ψk = |ψk|exp i

}S(k), leads to:

E(k)
2

c2 − p(k)2 = m2γ2 .
qµ

.
qµ
(

1− Vqu(k)
mc2

)
= m2γ2 c2

(
1− Vqu(k)

mc2

)
−m2γ2 .

q2
(

1− Vqu(k)
mc2

) (12)

where,

γ =
1√

1−
.
q2

c2

=
1√

gµν
.
qν .

qµ

c2

(13)

Moreover, by denoting the negative-energy state by the minus subscript, so that E(k)± = ±E(k),
from (12) it follows that:

E(k) = mγc2

√
1−

Vqu(k)

mc2 (14)

and more generally, by defining p(k)µ±
= ±p(k)µ

, the hydrodynamic impulse [19] reads:

p(k)µ
= mγ(k)

.
q(k)µ

√
1−

Vqu(k)

mc2 =
E(k)

c2
.
q(k)µ

(15)
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where Vqu(k) = Vqu(ψk)
is the quantum potential that reads:

Vqu(ψ) = −
}2

m
∂µ∂µ|ψ|
|ψ| (16)

2.1. The Lagrangean Form of the KGE

Equation (4) in the low velocity limit leads to the Madelung quantum hydrodynamic analogy
of Schrodinger equation [19] that in the classical limit (i.e., } = 0) leads to the classical Lagrangean
equation of motion [20]. For the purpose of this work, we generalize the Lagrangean formulation to
the hydrodynamic KGEs (4–5).

Since in curved space-time under the gravitational field we may have discrete energy values,

in the following we use the discrete formalism (i.e.,
s d3k

(2π)3 → 1√
V

∞
∑

k=−∞
) that is also useful in the

numerical approach.
For the generic superposition of eigenstates

ψ =
k=kmax

∑
k=kmin

bk|ψk|exp[
iS(k)

} ] = |ψ|exp[
iS
} ] (17)

where

S =
}
2i

ln[
ψ

ψ∗
] =

}
2i


ln[

k=kmax
∑

k=kmin

bk|ψk|exp(
iS(k)
} )]

−ln[
k=kmax

∑
k=kmin

b∗k|ψk|exp(− iS(k)
} )]

 (18)

by using (6)–(8), it follows that the hydrodynamic momentum pµ, and the Lagrangean function,
respectively, reads:

pµ = −∂µS = − 1
2

k=kmax
∑

k=kmin
bk |ψk |exp[

iS(k)
} ]

(
}
i ∂µln|ψk |−p(k)µ

)
∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

k=kmax
∑

k=kmin
b∗k |ψk |exp[

−iS(k)
} ]

(
}
i ∂µln|ψk |+p(k)µ

)
∑
k

b∗k |ψk |exp[
−iS(k)

} ]
= Tr

(
pµ

) (19)

where the matrix pµ reads:

pµ ≡
(

pµ

)
jk
=


− 1

2

bk |ψk |exp[
iS(k)
} ]

(
}
i ∂µln|ψk |−p(k)µ

)
∑
j

bj |ψj |exp[
iS(j)
} ]

+ 1
2

b∗k |ψk |exp[
−iS(k)

} ]
(
}
i ∂µln|ψk |+p(k)µ

)
∑
j

b∗ j |ψj |exp[
−iS(j)

} ]

δjk = p̃
(k)µδjk (20)
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and where j, k run from kmin and kmax;

L = dS
dt = ∂S

∂t +
∂S
∂qi

.
qi = −Tr

(
pµ

.
qµ
)
= Tr(L)

= 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]

(
}
i

.
qµ
(k) ∂µln|ψk |+L(k)

)
∑
k

bk |ψk |exp[
iS(k)
} ]

− 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]
(
}
i

.
qµ
(k)∂µln|ψk |−L(k)

)
∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(21)

where,
L = −pµ

.
qµ

= − p̃
(h)µ

.
qµ

(k)δhk = L̃(k)δhk (22)

where,

L̃(k) =
1
2


bk |ψk |exp[

iS(k)
} ]

(
}
i

.
qµ
(k) ∂µln|ψk |+L(k)

)
∑
k

bk |ψk |exp[
iS(k)
} ]

−
b∗k |ψk |exp[

−iS(k)
} ]

(
}
i

.
qµ
(k)∂µln|ψk |−L(k)

)
∑
k

b∗k |ψk |exp[
−iS(k)

} ]

 (23)

.
qµ

=
.
qµ

(k)δjk (24)

Thence, by using the identities L(k) = −p(k)µ

.
qµ

(k) and
(

∂
∂

.
qµ

)
jh
=

(
∂

∂
.
qµ
(j)

)
δjh it follows that,

pµ =
(

pµ

)
jk
= −

(
∂

∂
.
qµ

)
jh

(L)hk = −

 ∂

∂
.
qµ

(j)

L̃(k)δjk = −
∂L
∂

.
qµ (25)

p̃(k)µ = − 1
2

bk |ψk |exp[
iS(k)
} ]

(
}
i ∂µln|ψk |+

∂L(k)
∂

.
qµ

)
∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

b∗k |ψk |exp[
−iS(k)

} ]

(
}
i ∂µln|ψk |−

∂L(k)
∂

.
qµ

)
∑
k

b∗k |ψk |exp[
−iS(k)

} ]

= − ∂L̃(k)

∂
.
qµ
(k)

(26)

Moreover, given that, for stationary states of time-independent systems (i.e., eigenstates) [19] the
hydrodynamic Lagrangean function (21) does not explicitly depend on time, it holds that,

L̃(k) = L(k) (27)

p̃(k)µ = p(k)µ (28)

−
∂L(k)

∂qµ = − ∂

∂qµ

dS(k)

dt
= −

(
0,− ∂

∂qi

dS(k)

dt

)
= −

(
0,− d

dt
∂S(k)

∂qi

)
=

d
dt

(
−

∂S(k)

∂qµ

)
=

.
p(k)µ

(29)

so that, for the eigenstates, the system of Lagrangean hydrodynamic motion equations read

p(k)µ
= −

∂L(k)

∂
.
qµ

(k)

(30)

.
p(k)µ

= −
∂L(k)

∂qµ (31)
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where, by using (29), it follows that,

L(k) = −
mc2

γ(k)

√
1−

Vqu(k)

mc2 = L(k)Class

√
1−

Vqu(k)

mc2 = L(k)Class + L(k)Q
(32)

where,

L(k)Class = −
mc2

γ(k)
(33)

where,

L(k)Q
= −α(Vqu(k))

L(k)Class
= −

1−

√
1−

Vqu(k)

mc2

L(k)Class
(34)

where,

α(Vqu(k))
=

1−

√
1−

Vqu(k)

mc2

 (35)

and that,

d
dt

−∂L(k)

∂
.
qµ

(k)

 = −
∂L(k)

∂qµ (36)

For sake of accuracy, it must be observed that the solutions of (36) have to be submitted to
quantization (given by the irrotational property [17,19]) and to the current conservation condition (5).
As shown in [19] the stationary states of (36) obey to the current conservation (5) and are irrotational
solutions (i.e., the eigenstates) for the field of the KGE.

Equation (36) is the same both for positive and negative energy states since the Lagrangean
function L(k)−

for negative energy states reads L(k)−
= −p(k)µ−

.
qµ

(k) = p(k)µ

.
qµ

(k) = −L(k)

It is useful to observe that the hydrodynamic equation of motion (36) depends by q,
•
q and by the

mass distribution |ψ|2 (and its derivatives) contained in Vqu.
For }→ 0 (i.e., Vqu → 0) the classical motion of the mass distribution for the so-called dust

matter [17] are obtained just as a function of q,
•
q.

Moreover, generally speaking, given the integrability of L̃(k), the motion equation of the generic
superposition of state (17) reads:

−
∂L̃(k)

∂qµ =
d
dt

−∂L̃(k)

∂
.
qµ

(k)

+ p̃
(k)ν

∂
.
q
(k)ν

∂qµ =
.
p̃(k)µ

+ p̃
(k)ν

∂
.
q
(k)ν

∂qµ (37)

that making the summation over k leads to:

Tr(
.
p

µ
) = −∂Tr(L)

∂qµ − Tr
(

p
ν
∂µ

.
q

ν

)
(38)

and to,
.
p

µ
= − ∂L

∂qµ −∑
k

p̃
(k)ν

∂q
(k)ν

∂qµ (39)

where,
Tr(L) = L = LClass + LQ + Lmix (40)



Symmetry 2019, 11, 322 7 of 26

where,

LClass = 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]L(k)Class

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]L(k)Class

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(41)

where,

LQ = 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]α(Vqu(k))

L(k)Class

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]α(Vqu(k))
L(k)Class

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(42)

and where,

Lmix = }
2i

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]L(k)mix

∑
k

bk |ψk |exp[
iS(k)
} ]

− }
2i

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]L(k)mix

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(43)

where,

L(k)mix
=

.
qµ

(k)
∂µln|ψk| (44)

2.2. The Hydrodynamic Energy-Impulse Tensor

By using the hydrodynamic energy-impulse tensor (EIT) Tµ
ν

T(k)µ
ν = −

( .
qν ∂L(k)

∂
.
qµ − L(k)δµ

ν
)
=
( .

qν
(k)p(k)µ −

.
qα
(k)p(k)αδµ

ν
)

= mc2

γ(k)

√
1− Vqu

mc2

(
u(k)µu(k)

ν − u(k)
αu(k)αδµ

ν
) (45)

where uµ = γ
c

.
qµ, with the help of (32), the quantum hydrodynamic motion equation (36) reads:

mc

√
1−

Vqu(k)

mc2
duµ

dt
= −mcu(k)µ

d
dt

√1−
Vqu(k)

mc2

+
mc2

γ(k)

∂

∂qµ

√1−
Vqu(k)

mc2

 (46)

leading to the equation of motion of the eigenstates:

mc

√
1−

Vqu(k)

mc2

du(k)µ

dt
=

∂T(k)µ
ν

∂qν
= T(k)µ

ν
;ν (47)

where we pose,
T(k)µ

ν = T(k)Classµ
ν + L(k)Classδµ

ν + T(k)Qµ
ν (48)

where,

T(k)Classµ
ν =

mc2

γ(k)
uµuν (49)

and where,
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T(k)Qµ
ν = −α(Vqu(k))

mc2

γ(k)

(
u(k)µu(k)

ν − u(k)
αu(k)αδµ

ν
)

(50)

For the generic quantum state (17), the energy-impulse tensor reads:

Tµ
ν = −

( .
qν ∂L

∂
.
qµ − Lδµ

ν
)
= − .

qν pµ + Lδµ
ν

= − 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]

(
}
i

( .
qν
(k)∂µ |ψk |+

.
qα
(k)∂α |ψk |δµ

ν
)
−T(k)µ

ν
)

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]
(
}
i

( .
qν
(k)∂µ |ψk |+

.
qα
(k)∂α |ψk |δµ

ν
)
+T(k)µ

ν
)

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(51)

and it can be recast as:
Tµ

ν = TClassµ
ν + LClassδµ

ν + TQµ
ν + Tmixµ

ν (52)

where,

TClassµ
ν = 1

2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]T(k)Classµ

ν

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]T(k)Classµ
ν

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(53)

where,

TQµ
ν = 1

2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]TQ(k)µ

ν

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]TQ(k)µ
ν

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(54)

and

Tmixµ
ν = − }

2i

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]

( .
qν
(k)∂µ |ψk |+

.
qα
(k)∂α |ψk |δµ

ν
)

∑
k

bk |ψk |exp[
iS(k)
} ]

+ }
2i

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]
( .

qν
(k)∂µ |ψk |+

.
qα
(k)∂α |ψk |δµ

ν
)

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(55)

So far, since we want to covariantly generalize the theory in curvilinear space-time, we have
not introduced in the formulas above the explicit form of the Minkowskian KGE field (i.e., ψk(qi ,t) =

Aexp
(
ikµqµ

)
= Aexp[−i(kiqi −ωt)]) with the consequential conditions ∂ν|ψk| = 0, kmin = −∞ and

kmax = ∞. Nevertheless, it is useful to derive such Minkowskian expressions that, by posing:

ηνµ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (56)
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reads,

limgµν→ηµν L = L0 = 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]L(k)

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]L(k)

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(57)

limgµν→ηµν Lmix = 0 (58)

limgµν→ηµν Tµ
ν = T0µ

ν = 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]T0(k)µ

ν

∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]T0(k)µ
ν

∑
k

b∗k |ψk |exp[
−iS(k)

} ]

(59)

where limgµν→ηµν T(k)µ
ν = T0(k)µ

ν, and

limgµν→ηµν Tmixµ
ν = 0 (60)

In the quantum case, due to the force generated by the quantum potential (e.g., responsible of the
ballistic expansion of an isolated Gaussian packet) for the gradient of the EITD, it follows that:

Tµ
ν

;ν =
(
|ψk|2Tµ

ν
)

;ν
6= 0 (61)

Finally, it is worth noting that, since in the classical limit (whose resolution length is much
bigger than the De Broglie length) due to the quantum decoherence [21] (produced by fluctuations)
the superposition of states (17) undergo collapse to an eigenstate, the classical macroscopic limit is
obtained by the limiting procedure:

limmacro ≡ limdeclim}→0 = lim}→0limdec (62)

where the subscript “dec” stands for decoherence and where

limdecψ = limdec
k=kmax

∑
k=kmin

bk|ψk|exp[
iS(k)
} ]

= bk̃|ψk̃|exp[
iS(

k̃
)

} ]

(63)

where kmin ≤ k̃ ≤ kmax. The exchange of the order of the two limits it is possible since, by (36),
the lim}→0 applied to the eigenstates motion equation leads to the classical limit.

Since the detailed stochastic hydrodynamic derivation of (62) shows that the quantum non-local
interactions can extend themselves beyond the De Broglie length in the case of strong coupling [21],
here we assume that (62) generally holds in a curved space-time taking into account the possibility
that the macroscopic scale may go very much beyond the De Broglie length.

Finally, it is useful to note that in the Minkowskian case, by using (35), (50) and (60), the identity
(52) reads:

limmacroT0µ
ν

;ν = lim}→0limdec

(
T0Classµ

ν
;ν +

(
L0Classδµ

ν
)

;ν + T0Qµ
ν

;ν + T0mixµ
ν

;ν

)
= lim}→0

(
T(k)0Classµ

ν
;ν +

(
L(k)0Classδµ

ν
)

;ν
+ T0(k)Qµ

ν
;ν

)
= T(k)0Classµ

ν
;ν +

(
L(k)0Classδµ

ν
)

;ν
= 0

(64)
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2.3. The Minimum Action in the Hydrodynamic Formalism

Since the hydrodynamic Lagrangean depends also by the quantum potential and hence by
|ψ| = f1(|ψk|) and ∂µ|ψ| = f2(|ψk|, ∂µ|ψk|), the problem of defining the equation of motion can be
generally carried out by using the set of variables: x(k)µ = (qµ,

.
qµ(k), |ψk|, ∂µ|ψk|). Thence, the variation

of the hydrodynamic action S =
∫ t

LdVdt (between the fixed starting and end points, qµ a qµ b,
respectively) where L =

∣∣ψ∣∣2L , reads [19]:

δS =
∫ t

|ψ|2
(

∑
k

∂L̃(k)
∂x(k)µ

)
δx(k)µdVdt

=
∫ t

|ψ|2∑
k

(
∂L̃(k)
∂qµ δqµ +

∂L̃(k)

∂qµ
(k)

δqµ

(k) +
∂L̃(k)
∂|ψk |

δ|ψk|+
∂L̃(k)

∂∂µ |ψk |
δ∂µ|ψk|

)
dVdt

= 1
c
∫ t

|ψ|2∑
k

((
∂L̃(k)
∂qµ − d

dt
∂L̃(k)

∂qµ
(k)

)
δqµ +

(
∂L̃(k)
∂|ψk |
− ∂µ ∂L̃(k)

∂∂µ |ψk |

)
δ|ψk|

)
dΩ

(65)

Given that the quantum motion equations for eigenstates (30–31) satisfy the condition:∂L̃(k)

∂qµ −
d
dt

∂L̃(k)

∂
.
qµ

(k)

 =

∂L(k)

∂qµ −
d
dt

∂L(k)

∂
.
qµ

(k)

 = 0 (66)

(that explicitly defines ψ(q,t)) the variation of the action δS for the k-th eigenstates reads:

δS = δ
(

∆SQ(k)

)
=

1
c

∫ y
|ψk|2

(
∂L(k)

∂|ψk|
− ∂µ

∂L(k)

∂∂µ|ψk|

)
δ|ψk|dΩ (67)

that is not null since it takes contribution from the quantum potential contained into the hydrodynamic
Lagrangean L(k).

Thence, for the quantum hydrodynamic evolution it follows that:

δS − δ
(

∆SQ(k)

)
= 0 (68)

that, since in the classical limit, for }→ 0 , Vqu → 0 , it holds that:

∂
(

lim}→0L(k)

)
∂|ψk|

= 0 (69)

∂
(

lim}→0L(k)

)
∂µ|ψk|

= 0 (70)

the classical extremal principle,

lim}→0δS = lim}→0δ
(

∆SQ(k)

)
= 0 (71)

is recovered.
Moreover, generally speaking, by using (37), for the general superposition of state (17) the

variation of the action reads:

δS = − 1
c
∫ t

|ψ|2∑
k

((
p̃(k)

∂q
(k)ν

∂qµ

)
δqµ −

(
∂L̃(k)
∂|ψk |
− ∂µ ∂L̃(k)

∂∂µ |ψk |

)
δ|ψk|

)
dΩ

= δ
(
∆SQmix + ∆SQ

)
= δ(∆S)

(72)
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where

∆SQ =
1
c

∫ y
|ψ|2∑

k

(
∂L̃(k)

∂|ψk|
− ∂µ

∂L̃(k)

∂∂µ|ψk|

)
δ|ψk|dΩ (73)

and where

δ
(
∆SQmix

)
= −1

c

∫ y
|ψ|2∑

k
p̃(k)

∂q
(k)ν

∂qµ δ|ψk|dΩ (74)

is due to the quantum mixing of superposition of states.
Thence, the condition (72) can be generalized to:

δS − δ(∆S) = 0 (75)

that, being:
limmacroδ

(
∆SQmix

)
= lim}→0limdecδ

(
∆SQmix

)
= 0 (76)

in the classical limit leads to:

limmacroδS = limmacroδ(∆S) = lim}→0limdecδ
(
∆SQ + ∆SQmix

)
= lim}→0δ

(
∆SQ(k)

)
= 0

(77)

2.4. The Hydrodynamic KGE in Curvilinear Space-Time

As far as the motion Equations (30), (31) and (37) are concerned, there is no way to univocally
define them in the non-Minkowskian space-time without a postulate that fixes the criterion
of generalization.

In the classical general relativity this criterion is given by the equivalence of inertial and
gravitational mass that, in fact, is equivalent to postulate that the classical equation of motion is
covariant in general relativity [19].

Analogously, assuming the covariance of the KGE [19] that reads:

ψ
;µ
;µ = (gµν∂νψ);µ =

1√−g
∂µ

√
−g(gµν∂νψ) = −m2c2

}2 ψ (78)

also the hydrodynamic motion Equations (4) and (5) own the covariant form [19]:

gµν∂νS ∂µS− }2 1
|ψ|√−g

∂µ

√
−g(gµν∂ν|ψ|)−m2c2 = 0 (79)

1√−g
∂

∂qµ

√
−g
(

gµν|ψ|2 ∂S
∂qν

)
= 0 (80)

where the quantum potential reads:

Vqu = −}2

m
1

|ψ|√−g
∂µ

√
−g(gµν∂ν|ψ|) (81)

where gνµ is the metric tensor and where g = |gνµ|−1.
Moreover, given the covariance of (79) and (80) also the motion equation (36) or (37) as well as

T(k)µν and L(k), that read respectively:

T(k)µν =
( .

qν

∂L(k)

∂
.
qµ − L(k)δµ

ν
)

= mc2

√
gκλ

.
qλ

(k)

.
qκ

(k)
c2

√
1− Vqu(k)

mc2

(
u

µ
u

ν
− gβαuαuβgµν

) (82)
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where,

L(k) = −mc2

γ(k)

√
1− Vqu(k)

mc2 = −mc2

√
gµν

.
qν

(k)

.
qµ

(k)
c2

√
1− Vqu(k)

mc2

= −gµα
.
qα

(k)
pµ

(k) = −gµαc2
(

∂tS(k)

)−1
pα
(k)pµ

(k)

(83)

are covariant.
Once the quantum equations are defined in non-Minkowskian space-time, their meaning is fully

determined when the metric of the space-time is determined by the GE based on additional condition
(e.g., on the hydrodynamic action covariantly generalized).

Moreover, it is useful to note that, due to the biunique relation between the quantum
hydrodynamic Equations (79) and (80), subject to the irrotational conditions, and the KGE (78) [17],
the system of Equations (79) and (80) coupled to the GE, are equivalent to the KGE–GE system.
Furthermore, since Equation (79) can be expressed in the Lagrangean form (36) or (37), by using the
relations (14), (15) and (45), both the energy-impulse tensor (EIT) (51) and the Lagrangean (21) can be
expressed as a function of the field ψ with the help of the following relations

L(k) = −c2
(

∂tS(k)

)−1
gµα pα

(k)pµ

(k) = −c2
(

∂tS(k)

)−1
gµα∂αS(k)∂

µS(k)

= −c2 i}
2

(
∂ln[

ψk
ψk
∗ ]

∂t

)−1

gµα

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qν

(84)

T(k)µν = c2
(

∂S(k)
∂t

)−1( ∂S(k)
∂qµ

∂S(k)
∂qν − gαβ

∂S(k)
∂qβ

∂S(k)
∂qα

gµν

)
= −m2c4

(
}
2i ∂ln[

ψk
ψk
∗ ]

∂t

)−1((
}

2mc

)2 ∂ln[
ψk

ψk
∗ ]

∂qµ

∂ln[
ψk

ψk
∗ ]

∂qν +
(

1− Vqu(k)
mc2

)
gµν

) (85)

and
.
q(k)µ

= c2
p(k)µ

E
= −c2 ∂µS(k)

∂tS(k)
= −c2

∂µln[ ψk
ψk
∗ ]

∂tln[
ψk
ψk
∗ ]

(86)

where the last identity has been obtained by inverting (15).
It is worth mentioning that the KGE-GE system of evolutionary equations has the advantage of

containing only the irrotational states that satisfy the current conservation condition.

3. The Minimum Action in Curved Space-Time and the Gravity Equation for the
Hydrodynamic KGE

In order to follow an analytical procedure we derive the gravity equation, by applying the
minimum action principle to the quantum hydrodynamic matter evolution associated to the field ψ.

Given that the quantum hydrodynamic equations in Minkowskian space-time [19] satisfies the
minimum action principle (75), when we consider the covariant formulation in the curved space-time,
such variation takes a contribution from the variability of the metric tensor. When we consider the
gravity and we assume that the geometry of space-time is that one which makes null the overall
variation of the action (75), we define the condition that leads to the definition of the GE.

By considering the variation of the action due to the curvilinear coordinates [22] and the functional
dependence by ψ, it follows that:

δS =
1
c

∫ y
|ψ|2∑

k


(

1√−g

(
∂
√−gL̃(k)

∂gµν − ∂
∂qλ

∂
√−gL̃(k)

∂
∂gµν

∂qλ

− ∂
∂|ψ|

∂
√−gL̃(k)

∂
∂gµν

∂|ψk |

))
δgµν

+ p̃(k)ν
qν
(k) ;µδqµ +

(
∂L̃(k)
∂|ψk |
− ∂µ ∂L̃(k)

∂∂µ |ψk |

)
δ|ψk|

√−gdΩ (87)
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and,

δS − δ(∆S) = 1
c

∫ y
|ψ|2∑

k

∂
√−gL̃(k)

∂gµν − ∂

∂qλ

∂
√−gL̃(k)

∂
∂gµν

∂qλ

− ∂

∂|ψk|
∂
√−gL̃(k)

∂
∂gµν

∂|ψk |

δgµνdΩ (88)

If we postulate that the variation of action of the gravitational field,

δSg =
c3

16πG

∫ y (
Ruv −

1
2

Rguv

)
δguv√−gdΩ (89)

offsets that one produced by the KGE field so that:

δS − δ(∆S) + δSg =
∫ y (

Ruv −
1
2

Rguv −
8πG

c4

∣∣∣∣ψ∣∣∣∣2τuv

)
δguv√−gdΩ = 0 (90)

we obtain the gravitational equation,

Rµν −
1
2

Rgµν =
8πG

c4 |ψ|
2τµν (91)

where,

τµν = 1
2

∑
k=−∞

bk |ψk |exp[
iS(k)
} ]

(
τ(k)µνclass+τ(k)µνQ+τ(k)µνmix

)
∑
k

bk |ψk |exp[
iS(k)
} ]

+ 1
2

∑
k=−∞

b∗k |ψk |exp[
−iS(k)

} ]
(

τ(k)µνclass+τ(k)µνQ−τ(k)µνmix

)
∑
k

b∗k |ψk |exp[
−iS(k)

} ]

+τµνcurv

= τµνclass + τµνQ + τµνmix + τµνcurv

(92)

where,

τ(k)µνclass = 2
1√−g

 ∂

∂gµν −
∂

∂qλ

∂

∂
∂gµν

∂qλ

− ∂

∂|ψk|
∂

∂
∂gµν

∂|ψk |

√−gL(k)class (93)

τ(k)µνQ = 2
1√−g

 ∂

∂gµν −
∂

∂qλ

∂

∂
∂gµν

∂qλ

− ∂

∂|ψk|
∂

∂
∂gµν

∂|ψk |

√−gL(k)Q (94)

τ(k)µνmix = 2
1√−g

 ∂

∂gµν −
∂

∂qλ

∂

∂
∂gµν

∂qλ

− ∂

∂|ψk|
∂

∂
∂gµν

∂|ψk |

√−gL(k)mix (95)



Symmetry 2019, 11, 322 14 of 26

τ±iµνcurv = 1
2 ∑

k=−∞

 L(k)µνclass

+L(k)µνQ

+L(k)µνmix






∂

∂gµν − ∂
∂qλ

∂

∂
∂gµν

∂qλ

− ∂
∂|ψ±i(k) |

∂

∂
∂gµν

∂|ψ±i(k) |

Ξ(k)

−


∂Ξ(k)
∂qλ

∂ln(L(k)class)
∂gµν

∂qλ

+
∂ln(L(k)class)

∂qλ

∂Ξ(k)
∂gµν

∂qλ

∂Ξ(k)
∂|ψk |

∂ln(L(k)class)
∂gµν

∂|ψk |
+

∂ln(L(k)class)
∂|ψk |

∂Ξ(k)
∂gµν

∂|ψk |





+ 1
2 ∑

k=−∞

 L(k)µνclass

+L(k)µνQ

−L(k)µνmix






∂

∂gµν − ∂
∂qλ

∂

∂
∂gµν

∂qλ

− ∂
∂|ψ±i(k) |

∂

∂
∂gµν

∂|ψ±i(k) |

Ξ∗(k)

−


∂Ξ∗(k)

∂qλ

∂ln(L(k)class)
∂gµν

∂qλ

+
∂ln(L(k)class)

∂qλ

∂Ξ∗(k)
∂gµν

∂qλ

∂Ξ∗(k)
∂|ψk |

∂ln(L(k)class)
∂gµν

∂|ψk |
+

∂ln(L(k)class)
∂|ψk |

∂Ξ∗(k)
∂gµν

∂|ψk |





(96)

where,

Ξ(k) =
bk|ψk|exp[

iS(k)
} ]

∑
j

bj|ψj|exp[
iS(k)
} ]

.
Moreover, given that [22],

1
2c

∫ y
τµνδgµν

√
−gdΩ = −1

c

∫ y
τν

µ;ν ξµ
√
−gdΩ (97)

where,
δgµν = ξµ;ν + ξν;µ (98)

for the infinitesimal transformation of coordinates,

q′µ = qµ + ξµ (99)

around the Minkowskian case (97) leads to,

δS − δ(∆S) = −1
c

∫ y (
|ψ|2τν

µ

)
;ν

ξµ
√
−gdΩ = 0 (100)

and, in the classical limit, to,.

limdecoherencelim}→0 − 1
c
∫ t (

|ψ|2τν
µ

)
;ν

ξµ√−gdΩ =

− 1
c
∫ t

(
limdecoherencelim}→0

(
|ψ|2τν

µ

)
;ν

)
ξµ√−gdΩ = 0

(101)

and thence, for the arbitrariness of ξµ, to,

limdeclim}→0

(
|ψ|2τν

µ

)
;ν
= 0 (102)

Furthermore, given that from (35), (50), (52)–(55) in the classical (Minkowskian) limit it holds that:

limdeclim}→0

(
|ψ|2Tν

µ

)
;ν
=
(

limdeclim}→0|ψ|2Tν
µ

)
;ν

=
(

limdec|ψ|2
(

Tν
µclass

+ Lclassδν
µ + Tmix

ν
µ

))
;ν
= |ψk|2T(k)

ν
µ;νclass

+ |ψk|2
(

L(k)classδν
µ

)
;ν
= 0

(103)
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from (92) it follows that:

limdeclim}→0|ψ|2τµ
ν = |ψk|2τ(k)µ

ν
class

= |ψk|2T(k)µ
ν

class
+ |ψk|2L(k)classδν

µ + |ψk|2C(
.
qµ)

δµ
ν (104)

and, that:

limdeclim}→0

(
Rµν −

1
2

Rgµν

)
= −8πG

c4

(
T(k)µνclass + |ψ|

2L(k)class gµν + |ψ|2Cgµν

)
(105)

where,
T(k)µνclass = |ψk|2T(k)µνclass (106)

Moreover, by posing:
Λclass = −L(k)class( .

qµ)
− C

(
.
qµ)

(107)

the Einstein equation (where the k variable is needless),

limdecoherencelim}→0

(
Rµν −

1
2

Rgµν

)
= Rmacro

µν
− 1

2
Rmacrogµν =

8πG
c4

(
T(k)µνclass −Λgµν

)
(108)

where,
Λ = |ψk|2Λclass (109)

is recovered in the classical limit.

3.1. The Gravity Equation (GE) for the KGE Eigenstates

Moreover, by using the identity,

τ(k)µ
ν

class
= T(k)µ

ν
class
−Λclassδµ

ν (110)

obtained from (104) and (107), and by using (35) and (94) it follows that:

τ(k)µνQ = −α(Vqu)

(
τ(k)µνclass

+ L(k)class∆µν(k)

)
= −α(Vqu)

(
T(k)µνclass

−Λclassgµν + L(k)class∆µν(k)

) (111)

where,

∆µν(k) =
2

α(Vqu(k))



(
∂

∂gµν − ∂
∂qλ

∂
∂gµν

∂qλ

− ∂
∂|ψk |

∂
∂gµν

∂|ψk |

)
α(Vqu(k))

−


∂α(Vqu(k))

∂qλ

∂ln(L(k)class)
∂gµν

∂qλ

+
∂ln(L(k)class)

∂qλ

∂α(Vqu(k))

∂gµν

∂qλ

∂α(Vqu(k))

∂|ψk |
∂ln(L(k)class)

∂gµν

∂|ψk |
+

∂ln(L(k)class)
∂|ψk |

∂α(Vqu(k))

∂gµν

∂|ψk |




(112)

and, being both τµνcurv = 0 and τµνmix = 0, that:

Rµν −
1
2

Rgµν +
8πG

c4 Λgµν =
8πG

c4

 T(k)µνclass

(
1− α(Vqu(k))

)
+α(Vqu(k))

(
Λgµν − |ψk|2L(k)class∆µν(k)

)  (113)

Finally, by separating ∆µν in the isotropic and stress part ∆sµν as follows:
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∆µν = ∆λλ
4 gµν + ∆sµν, the GE, for eigenstates, reads:

Rµν −
1
2

Rgµν +
8πG

c4 Λgµν =
8πG

c4


T(k)µνclass

(
1− α(Vqu(k))

)
+α(Vqu(k))

( (
Λ− |ψk|2L(k)class

∆λλ
4

)
gµν

−|ψk|2L(k)class∆sµν(k)

)  (114)

3.2. The GE of the General KGE Field

Finally, by using (92)–(96) the GE as a function of the general KGE field (17) reads:

Rµν −
1
2

Rgµν +
8πG

c4 Λgµν =
8πG

c4 |ψ|
2Tr
(

τµνclass −ΛQ gµν + ∆τµνstress

)
(115)

where,
τµνclass = ς(k)

(
1− α(Vqu(k))

)
T(k)µνclass δhk (116)

where,

ς(k) =


1
2

bk |ψk |exp[
iS(k)
} ]

∑
j

bj |ψj |exp[
iS(j)
} ]

+ 1
2

b∗k |ψk |exp[
−iS(k)

} ]

∑
j

b∗ j |ψj |exp[
−iS(j)

} ]

 (117)

ΛQ = −





1
2

bk |ψk |exp[
iS(k)
} ]

 α(Vqu(k))

(
Λclass − L(k)class

∆κκ(k)
4

)
+

τ(k)κκ mix
4


∑
j

bj |ψj |exp[
iS(j)
} ]

+ 1
2

b∗k |ψk |exp[
−iS(k)

} ]

 α(Vqu(k))

(
Λclass − L(k)class

∆κκ(k)
4

)
− τ(k)κκ mix

4


∑
j

b∗ j |ψj |exp[
−iS(j)

} ]


+

τλλcurv

4


δhk (118)

and,

∆τµνstress =





1
2

bk |ψk |exp[
iS(k)
} ]


(

α(Vqu(k))
L(k)class∆sµν(k)

)
−τs(k)µνmix


∑
j

bj |ψj |exp[
iS(j)
} ]

+ 1
2

b∗k |ψk |exp[
−iS(k)

} ]


(

α(Vqu(k))
L(k)class∆sµν(k)

)
+τs(k)µνmix


∑
j

b∗ j |ψj |exp[
−iS(j)

} ]


+ τsµνcurv


δhk (119)

where both τ(k)µνmix and τµνcurv have been split into the isotropic and stress parts as in the following:

τ(k)µνmix =
τ(k)λλ mix

4
gµν + τs(k)µνmix

(120)

τµνcurv =
τ

λλ curv

4
gµν + τsµνcurv (121)

Equations (113)–(115) can be expressed as a function of the KGE field by using the relations (48),
(84)–(86). Actually, the hydrodynamic approach has been used as a “Trojan horse” to find the GE
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where the non-physical states are implicitly excluded by writing it as a function of the KGE field (i.e.,
we do not need to impose the irrotational condition).

The main difference with the Einstein equation is given by the terms α(Vqu), ∆τµνstress ,τµνmix and
τµνcurv whose quantum-mechanical origin can be noticed by passing to the macroscopic classical scale
being lim}→0α(Vqu) = 0, limmacro∆τµνstress = 0, limmacroτµνcurv = 0 and limmacroτµνmix = 0.

Finally, it must be noted that Equation (114) represents the decoherent limit of (115).

4. Perturbative Approach to the GE–KGE System

For particles very far from the Planckian mass density mp
lp3 = c5

}G2 , it is possible to solve the system

of the equation:

Rµν −
1
2

Rgµν +
8πG

c4 Λgµν =
8πG

c4 |ψ|
2Tr
(

τµνclass(ψ)
−ΛQ gµν(ψ) + ∆τµνstress(ψ)

)
(122)

(gµν∂νψ);µ = −m2c2

}2 ψ (123)

by a perturbative iteration,

Rµν(εµν)
∼= R(0)

µν(εµν)
+ R(1)

µν(εµν)
+ R(2)

µν(εµν)
+ . . . . (124)

ψ = ψ0 + ψ′ + ψ′′ + . . . . . (125)

gνµ = ηνµ + εµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

+ h(1)
µν

+ h(2)
µν

+ . . . (126)

(εµνεµν = |ε|2 << 1) where ηνµ satisfies the static solution R(0)
µν (ηνµ )

= 0,R(0)
(ηνµ )

= 0, of the zero
order GE

R(0)
µν
− 1

2
R(0) = 0 (127)

ψ0 is the solution of the zero order KGE,

∂µ∂µψ0 = −m2c2

}2 ψ0 (128)

ψ′ the solution of the first order KGE,

∂µ∂µψ′ +
m2c2

}2 ψ′ = −∂µh(1)µν∂νψ ∼= −∂µh(1)µν∂νψ0 (129)

(at first order εµν = h(1)
µν

) and h(1)µν is the solution of the first order GE,

R(1)
µν (h(1)µν)

− 1
2

R(1)
µν (h(1)µν)

gµν +
8πG

c4 Λgµν =
8πG

c4 |ψ|
2Tr
(

τ(0)
µνclass

−Λ(0)
Q

gµν + ∆τ(0)
µνstress

)
(130)

where the Christoffel symbol reads [22]:

Γα
νµ =

1
2

ηαβ
(
∂µεβν + ∂νεβµ − ∂βενµ

)
(131)

leading to [22]:
Rµν(hµν)

=
(

∂lΓ
l
µν − ∂νΓl

µl + Γl
µνΓm

lm − Γm
µlΓ

l
νm

)
(132)
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Moreover, by using the zero-order relations Vqu0(k) = 0, α(Vqu0(k)
) = 0, τ(0)

(k)µνmix
= 0,

the components τ(0)
µνclass

, ∆τ(0)
µνstress

and Λ(0)
Q

gµν respectively read:

τ(0)
µνclass

= ς0(k)
mc2

γ gµαuαuνδhk

= ς0(k)c2 i}
2 gµα

∂ln[
ψ0k

ψ0k
∗ ]

∂qα

∂ln[
ψ0k

ψ0k
∗ ]

∂qν√
1−

Vqu0(k)
mc2

∂ln[
ψ0k

ψ0k
∗ ]

∂t

δhk

= ς0(k)c2gµα
kαkν

ω δhk

(133)

where,
ς0(k) = ς(k)(ψ0k)

(134)

and, being τµνcurv (ψ0(k))
= 0,

∆τ(0)
µνstress

= −





1
2

bk |ψ0k |exp[
iS(k)
} ]


(

α(Vqu0(k)
)L(k)class∆sµν(k)

)
+τ(0)

s(k)µνmix


∑
j

bj |ψj |exp[
iS(j)
} ]

+ 1
2

b∗k |ψ0k |exp[
−iS(k)

} ]


(

α(Vqu0(k)
)L(k)class∆sµν(k)

)
−τ(0)

s(k)µνmix


∑
j

b∗ j |ψj |exp[
−iS(j)

} ]


+ τsµνcurv


δhk = 0 (135)

Λ(0)
Q

= −





bk |ψ0k |e
[

iS(k)
} ]

2∑
j

bj |ψj |e
[

iS(k)
} ]


α(Vqu0(k)

)


Λclass −

∆κκ(k)
4 c2 i}

2 gαβ

∂ln[
ψ0k

ψ0k
∗ ]

∂qα

∂ln[
ψ0k

ψ0k
∗ ]

∂qβ√
1−

Vqu0(k)
mc2

∂ln[
ψ0k

ψ0k
∗ ]

∂t


+

τ(0)(k)κκ mix
4



+ b∗k |ψ0k |e
[−

iS(k)
} ]

2∑
j

b∗ j |ψj |e
[−

iS(k)
} ]


α(Vqu0(k)

)


Λclass −

∆κκ(k)
4 c2 i}

2 gαβ

∂ln[
ψ0k

ψ0k
∗ ]

∂qα

∂ln[
ψ0k

ψ0k
∗ ]

∂qβ√
1−

Vqu0(k)
mc2

∂ln[
ψ0k

ψ0k
∗ ]

∂t


− τ(0)(k)κκ mix

4





+
τλλcurv

4



δhk = 0 (136)

leading to the first-order GE:

Rµν(h(1)µν )
− 1

2
R
(h(1)µν )

gµν +
8πG

c4 Λgµν =
8πG

c4 Tr
(

τ(0)
µνclass

)
(137)

By making the macroscopic limit of (137) (with Λ = 0) we obtain:

limmacro

(
Rµν(h(1)µν )

− 1
2 R

(h(1)µν )
gµν

)
= lim}→0

8πG
c4 |ψk̃|

2 mc2

γ gµαuαuν

Rmacro
µν (h(1)µν )

− 1
2 Rmacro

(h(1)µν )
gµν = 8πG

c4 |ψ|2 mc2

γ gµαuα
classuν

class

(138)

from which we can readily see that the weak gravity limit, on macroscopic scale at the first-order,
leads to the Newtonian potential of gravity. The first contribution to the cosmological constant comes
from the second order of approximation:

R(2)
µν (εµν) −

1
2

R(2)
(εµν)gµν =

8πG
c4 |ψ|

2Tr
(

τ(1)
µνclass

−Λ(1)
Q

gµν + ∆τ(1)
µνstress

)
(139)
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where εµν = h(1)
µν

+ h(2)
µν

and the EITD is calculated by using ψ′ obtained by (129), where,

Λ(1)
Q

= −





bk |ψk |e
[

iS(k)
} ]

2∑
j

bj |ψj |e
[

iS(k)
} ]


α(Vqu(k))


Λ− ∆λλ(k)

4 c2 i}
2 gαβ

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qβ√
1−

Vqu(k)
mc2

∂ln[
ψk

ψk
∗ ]

∂t


+

τ(k)λλ mix
4



+ b∗k |ψk |e
[−

iS(k)
} ]

2∑
j

b∗ j |ψj |e
[−

iS(k)
} ]


α(Vqu(k))


Λ− ∆λλ(k)

4 c2 i}
2 gαβ

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qβ√
1−

Vqu(k)
mc2

∂ln[
ψk

ψk
∗ ]

∂t


−

τ(k)λλ mix
4





+
τλλcurv

4



δhk (140)

where ψk = ψ0k + ψ′k.
Moreover, being limdecoherenceτµνcurv = 0, the decoherent (macroscopic) limit (with Λ = 0) of the

GE at the second order reads

R(2)dec
µν(εµν)

− 1
2

R(2)dec
(εµν)

gµν =
8πG

c4 |ψk̃|
2
((

1− α
(1)
(k̃)

)
mc2

γ
gµαuαuν + Λ(1)dec

(k̃)
Q

gµν + ∆τ(1)dec
µνstress

)
(141)

where,

mc2

γ
uαuν = c2 i}

2

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qν√
1− Vqu(k)

mc2

∂ln[
ψk

ψk
∗ ]

∂t

=
mc2

γ
(uα

classuν
class + ∆uα∆uν) (142)

where,

mc2

γ
uα

classuν
class = c2 i}

2

∂ln[
ψ0k

ψ0k
∗ ]

∂qα

∂ln[
ψ0k

ψ0k
∗ ]

∂qν√
1−

Vqu0(k)

mc2

∂ln[
ψ0k

ψ0k
∗ ]

∂t

= c2 kαkν

ωk
(143)

where, at first order,

mc2

γ ∆uα∆uν ∼= c2 kαkν

ωk
2

(
−∂t

(
ψ′k
ψ0k
− ψ′k∗

ψ0k
∗

)
+

ωkV(1)
qu(ψ′k)

2mc2

)
+c2 i}

2ωk

(
kα∂ν

(
ψ′k
ψ0k
− ψ′k∗

ψ0k
∗

)
+ ∂α

(
ψ′k
ψ0k
− ψ′k∗

ψ0k
∗

)
kν
) (144)

and where,

Λ(1)dec
(k) Q = −α

(1)
(Vqu1(k)

)∆
(1)
κκ(k)

gαβc2 i}
8

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qβ√
1−

Vqu(k)
mc2

∂ln[
ψk

ψk
∗ ]

∂t

= −α
(1)
(Vqu1(k)

)

∆(1)
κκ(k)
4 gαβ

mc2

γ uαuβ

= −α
(1)
(Vqu1(k)

)

∆(1)
κκ(k)
4 gαβ

mc2

γ

(
uα

classuβ
class + ∆uα∆uβ

)
∼= −α

(1)
(Vqu1(k)

)

∆(1)
κκ(k)
4 gαβ

mc2

γ uα
classuβ

class

∼= −α
(1)
(Vqu1(k)

)∆
(1)
κκ(k)

gαβc2 kαkβ

ωk

(145)
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and

∆τ(1)dec
µνstress

= −α
(1)
(Vqu1(k)

)∆
(1)
sµν(k)

gαβc2 i}
2

∂ln[
ψk

ψk
∗ ]

∂qα

∂ln[
ψk

ψk
∗ ]

∂qβ√
1−

Vqu(k)
mc2

∂ln[
ψk

ψk
∗ ]

∂t

= −α
(1)
(Vqu1(k)

)∆
(1)
sµν(k)

gαβ
mc2

γ uαuβ

= −α
(1)
(Vqu1(k)

)∆
(1)
sµν(k)

gαβ
mc2

γ

(
uα

classuβ
class + ∆uα∆uβ

)
∼= −α

(1)
(Vqu1(k)

)∆
(1)
sµν(k)

gαβ
mc2

γ uα
classuβ

class

∼= −α
(1)
(Vqu1(k)

)∆
(1)
sµν(k)

gαβc2 kαkβ

ωk

(146)

If the macroscopic GE (138) and the Einstein equation of the general relativity coincide themselves
at first order and the Newtonian gravity is purely classic, the second order GE (141) contains
contributions (among those the cosmological isotropic pressure Λ(1)

(k) Q ) that go to zero if } is set to zero

so that Λ(1)
(k) Q actually is the macroscopic quantum-mechanical contribution to the Newtonian gravity.

It is worth mentioning that the macroscopic GE shows the additional contribution ∆τ(1)dec
µνstress

to the

cosmological isotropic pressure. The dependence of such term by both α
(1)
(Vqu1(k)

) and ∆(1)
sµν(k)

, that become

relevant in very high-curvature space-time, suggests that this term gives detectable effects near the big
black holes at the center of the galaxies.

It is noteworthy that the EIT stress component ∆τ
µνstress

, that leads to a non-zero slip function [23,24],

is specific of the (microscopic) quantum-coherent curved space-time but it decays to ∆τ(1)dec
µνstress

for the
decoherence at the macroscopic scale.

5. The ‘Cosmological’ Pressure Tensor Density (CPTD) Expectation-Value of the Quantum
KGE Field

Generally speaking, when the KGE field is quantized, the EITD on the right side of the GE becomes
a quantum operator, and thence also the Ricci’s tensor (as well as the metric tensor) of the GE, on the
left side, become quantum operators. As can be easily shown for pure gravity [25], the commutating
rules for the KGE field quantization fixes the commuting relations for the metric tensor.

At zero order, the GE equation leads to a Minkowskian KGE field and, hence, when the KGE field
is quantized, the standard QFT outputs are obtained.

If at zero order the GE is decoupled by the field of the massive KGE, at higher order it is not.
The quantization of the GE–KGE system of equations is not the goal of this work, nevertheless,

it is interesting to evaluate the “cosmological” pressure tensor density (CPTD) expectation value
of the vacuum in order to evaluate if it can lead to the lowering of the theoretical value of the CC
on cosmological scale and can help to solve the problem of the disagreement of the QFT with the
experimental observations.

In order to evaluate the macroscopic cosmological constant of the quantum KGE field (i.e., at the
zero order Minkowskian limit of the GE–KGE system of equations for the ordinary QFT) we need
to calculate the expectation value < 0k|limdecoherence ΛQ gµν|0k >=< 0k|Λ

(1)dec
(k)Q gµν|0k >. To this end,

we need to express the quantum potential as a function of the annihilation and creation operators a(k)
and a†

(k) of the Fourier decomposition of the free KGE quantum field:

ψ =
x d3k

(2π)3
1

2ωk

(
a(k)exp[ikαqα] + a†

(k)exp[−ikαqα]
)

(147)
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that, by using the discrete form of field Fourier decomposition (i.e.,
s d3k

(2π)3 → 1√
V ∑

k=0
) reads:

ψ =
1√
V

∞

∑
k=0

1
2ωk

(
a(k)exp[

ipαqα

} ] + a†
(k)exp[− ipαqα

} ]

)
(148)

where pµ

} = kµ, where the identities,
a(k) ≡ 2ωkb(k)|ψk| (149)

and,
a†(k) ≡ 2ωkb(−k)|ψ−k| (150)

can be established with notation in (17) (where for k < 0⇒ both a(k)→ a†(k) and a†(k)→ a(k) ) and
leads to:

Vqu0(k>0) = − }2

m
1

|ψk |
√−g ∂µ

√−ggµν∂ν|a(k)exp[ikαqα]|
= − }2

m
1
|ψk |

∂µ∂µ|a(k)exp[ikαqα]|
= − }2

m
1
|ψk |

∂µ∂µ
√

a(k)a†(k) = Vqu0(k<0)

(151)

where, now, a(k), a†(k) are quantum operators obeying to the commutation relations:

[a(k), a†(k′)] = δkk′ (152)

However, even if the squared root of operators in the quantum potential (151) can be defined
by making use of the Taylor expansion series, the higher order terms of such expansion possess the
ordering problem of the quantum operators. In order to remark this freedom in the definition of the
quantum potential operator, we name it as V̂Q−ord

qu and reads:

V̂Q−ord
qu = −}2

m
1

(|ψk|)Q−ord√−g
∂µ

√
−ggµν∂ν(|ψk|)Q−ord (153)

leading to the Minkowskian limit:

V̂Q−ord
qu0 = −}2

m
1(√

a(k)a†(k)
)Q−ord√−g

∂µ

√
−ggµν∂ν

(√
a(k)a†(k)

)Q−ord
(154)

Moreover, by using (11) and the identities pµ = −∂µS = (p0,−pi) and p2 = pi pi, it follows that:

ωk
2 =

c2 p2

}2 +
m2c4

}2

(
1−

V̂Q−ord
qu

mc2

)
(155)

and, by using (118), being limdecoherenceτµνmix = 0 and limdecoherenceτµνcurv = 0, the macroscopic
decoherent CPTD reads:

limdecoherenceΛ̃
Q
= Λ̃

(k)Q
= −α

(V̂Q−ord
qu0 )

−∆κκ(k)

4
c2gαβ

kαkβ

ωk

√
1−

V̂Q−ord
qu0
mc2

 (156)

whose expectation value reads:

< 0k|Λ̃(k)Q
|0k >=

1

(2π)2}c

ωkmax∫
Λ̃

(0)dec
(k)Q

√
}2ωk

2

c2 −m2c2dωk (157)
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where |0k > represents the k-indexed harmonic oscillators of the field in the fundamental state [19].

Moreover, being in the Minkowskian limit ∂µ
(√

a(k)a†(k)
)Q−ord

= 0, it follows that:

V̂Q−ord
qu0 = 0 (158)

α
(V̂Q−ord

qu0 )
= 0 (159)

To
∆κκ(k) = 0 (160)

To
Λ̃

(k)Q
= 0 (161)

To
< 0p|Λ̃(k)Q

|0p >= 0 (162)

and, finally, from (155), to,

ωk
2 =

c2 p2

}2 +
m2c4

}2 = c2k2 +
m2c4

}2 . (163)

From the last identity, the standard QFT outputs are warranted at the zero order of approximation.

6. Discussion

The hydrodynamic representation of the KGE field makes it equivalent to a mass distribution |ψ|2
submitted to the non-local quantum potential that leads to the GE (115).

The basic assumption of the presented theory is that such hydrodynamic representation of the KGE
field (restricted to irrotational states) owns a physical reality since, as shown by the Aharonov–Bohm
effect, the quantum potential can be detected experimentally. Therefore, for the basic principle
of general relativity, the (kinetic) energy of the quantum potential contributes to the curvature of
space-time. On the basis of this postulate, the quantum-mechanical non-local effects come into the
gravity leading to the theoretical appearance of the CPTD Λ

Q
in the GE.

In the classical treatment, the Einstein equation for massive particles is not coupled to any field,
but just to the energy impulse tensor of classical bodies and does not contain any information about
how fields couple with it.

The GE (115) is analytically coupled to the KGE field. The GE–KGE system can be
further quantized leading to a quantum gravity theory derived by an analytically field-defined
Einstein–Hilbert action.

6.1. Analogy with Brans-Dicke Gravity

The output the work highlights an interesting analogy with Brans-Dicke [13] gravity that solves
the problem of the cosmological constant [26] as well as those of the inflaction [27] and dark energy [28].
If we look in detail to the EITD |ψ|2τµνclass of (115), the macroscopic limit,

limmacro|ψ|2τµνclass = T
(k̃)µνclass (164)

leads to:
8πG

c4 Tµνclass =
8πG

c4 |ψ|2c2
(

∂S
∂t

)−1(
gµβ ∂S

∂qβ
∂S
∂qν

)
= − 8πG

c4 |ψ|2 }2c2

4E

(
gµβ
(

∂βψ

ψ −
∂βψ∗

ψ∗

)(
∂νψ
ψ −

∂νψ∗

ψ∗

))
= − 8π

c4
G
ψ2 |ψ|2 }2c2

4E

(
gµβ∂βψ∂νψ + . . . . . . . .+

(
ψ
ψ∗

)2
gµβ∂βψ∗∂νψ∗

) (165)
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showing it to be composed by terms that are of the form of those contained in Brans-Dicke gravity [13]
in the absence of external potentials.

If is worth noting that the hydrodynamic gravity, gives theoretical support to the Brans-Dicke
effective gravitational constant Ge f f =

G
ψ2 .

6.2. The GE and Quantum Gravity

Even if the quantization of the KGE field in the curved space defined by the GE (115) is not treated
in this work, the inspection of some features of quantum gravity to the light of the GE (115) deserves
a mention.

Since the action of the GE (115) is basically given by the standard Einstein–Hilbert action plus
terms stemming from the energy of the non-local quantum potential of massive KGE, the outputs of
the quantum “pure gravity” practically remains almost valid.

As shown in [10], one interesting aspect of quantum pure gravity is that the vacuum does not
make a transition to the collapsed branched polymer phase, if an even small cosmological constant (i.e.,
Λclass 6= 0) is present. With respect to this fact, the presence of the term ΛQ in the GE (115), in principle,
allows to work with the assumption Λclass = Λ = 0 with the GE that reads:

Rµν −
1
2

Rgµν +
8πG

c4 Tr
(

Λ̃Q

)
gµν =

8πG
c4 Tr

(
τµνclass + ∆τµνstress

)
(166)

Moreover, since matter itself makes space-time curved and, hence, α(Vqu) 6= 0, ∆τ
µνstress

6= 0 and,

Λ̃
Q−ord

Q (k>0↗,k<0↘)
= − 1

2





e
[

iS(k)
} ]

ωk

↗ak
↘a†

k
∞
∑

k′=0

ak′
ωk′

e[
iS(k′)
} ]

+
a†

k′
ωk′

e[
iS(−k′)

} ]


α


−∆κκ(k)

4 c2gαβ
∂S(k)
∂qα

∂S(k)
∂qβ√

1−
Vqu(k)

mc2

∂S(k)
∂t


+

τ(k)κκ mix
4



+

e
[−

iS(k)
} ]

ωk

↗ak
↘a†

k
∞
∑

k′=0

a†
k′

ωk′
e[−

iS(k′)
} ]

+
ak′
ωk′

e[−
iS(−k′)

} ]


α


−∆κκ(k)

3 c2gαβ
∂S(k)
∂qα

∂S(k)
∂qβ√

1−
Vqu(k)

mc2

∂S(k)
∂t


− τ(k)κκ mix

4




+

τλλcurv
4



Q−ord

δhk (167)

it follows that matter itself stabilizes the vacuum in the physical strong gravity phase [10] as we
perceive it.

On the other hand, under this hypothesis, a perfect Minkowskian vacuum (i.e., without matter)
will make transition to the unphysical collapsed branched polymer phase with no sensible continuum
limit [10,11], leading to no-space and no-time as we experience.

6.3. Check of the Hydrodynamic GE

If in general relativity the energy-impulse tensor density for classical bodies [22] is defined only
with a point-dependence by the mass density, for the electromagnetic (EM) field, the EITD is defined
as a function of the EM field itself [22].

On this basis, since the photon is a boson (obeying the a KGE), we can make a direct check of the
theory by comparing the known EITD EM expression:

Tνµ em =
1

4π

(
−FµλFν

λ +
1
4

FλγFλγgµν

)
(168)

with the EITD (3.6) for a boson field given by the quantum hydrodynamic gravity.
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In fact, given the plane wave of the vector potential, in the Minkowskian case, for the photon (e.g.,
linearly polarized):

Ak = A0exp[−ikµqµ] = A0γexp[i
S(k)

} ] (169)

being |ψk|2 the number of particles (i.e., photons) per volume, the KGE field ψk reads:

ψk ∝
Ak
c

√
ω

}

[
l−

3
2

]
(170)

and, being Vqu(k) = 0, α(Vqu(k))
= 0, and L = −gµαkαkµ = 0, we obtain,

τµνclass = T
(k̃)µνclass (171)

ΛµνQ = −|ψk|2
2

(
τ(k)κκ mix

4
−

τ(k)κκ mix

4

)
gµνδhk = 0 (172)

∆τµνstress = −
|ψk|2

2

(
τs(k)µνmix

− τs(k)µνmix

)
δhk = 0 (173)

from which the EITD for the photon reads:

Tµν = T(k)µνclass
= |ψk|2T(k)µνclass

= |ψk |2c2
(

∂S(k)
∂t

)−1( ∂S(k)
∂qµ

∂S(k)
∂qν − gαβ

∂S(k)
∂qβ

∂S(k)
∂qα gµν

)
∝ |A|2kµkν

(174)

that, compared to the output of (168) for the photon [22],

Tνµ em =
|E|2
4π

c2

ω2 kµkν =
|A|2
4π

kµkν (175)

leads to:
Tµν ∝ 4πTνµ em (176)

6.4. Experimental Tests

The results (161) and (162) basically show that in Minkowskian space-time (i.e., a vacuum very
far from particles) the CPTD expectation value is null regardless its zero-point energy density.

The non-zero contribution to the CC will appear at second order in the GE deriving from the
first order ψ′ of the quantized KGE field. In a qualitative way, the CPTD macroscopic expectation
value is vanishing in the region of space-time with Newtonian gravity and it increases at higher
gravity as quantum-mechanical corrections. This fact agrees well [19] with the very small value of
the observed CC and leads to a scenario where the major contribution to the CC comes from black
holes (this is due to the high mass density of a black hole where the matter is so squeezed that the
quantum potential energy becomes comparable with the mass energy itself so that Vqu ≈ mc2 [29] and

α(Vqu(k))
≈ max

{
α(Vqu(k))

}
≈ 1, the decoherent quantum-mechanical corrections to Newtonian gravity

α
(1)
(k̃)

mc2

γ gµαuα
classuν

class, Λ(1)dec
(k̃)

Q
gµν and ∆τ(1)dec

µνstress
in (141) must be primarily detectable in the motion

of stars around the big black holes at the center of the galaxies., in the rotation of twin neutron stars
and in the inter-galactic interaction.

Finally, it is worth mentioning that the interferometric detection of the gravitational waves
represents an experimental technique whose angular and frequency-dependent response functions
can discriminate among the existing theories of gravity [30].
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7. Conclusions

The quantum hydrodynamic representation of the Klein–Gordon equation, describing the
evolution of mass density |ψ|2 owing to the hydrodynamic moment ∂µS = −pµ and subject to
the quantum potential, has been used to derive the correspondent gravity equation, defining the
geometry of space-time, by using the minimum action principle. The gravity equation associated to the
KGE field takes into account the gravitational effects of the energy of the non-local quantum potential.

The hydrodynamic approach has three main properties:

1. The energy-impulse tensor of the GE is written as a function of the KGE field;
2. In the classical limit, the GE leads to that of Einstein;
3. If we apply the EITD of the GE to the photon field (that is a boson described by the KGE) we

obtain the EITD of the EM theory.

The self-generation of the CPTD Tr
(

ΛQ

)
leads to the attractive hypothesis that the matter itself

generates the physical stable vacuum phase in which it is embedded.
The paper shows that the macroscopic CPTD Λ̃

(k)Q
is not null if, and only if, space-time is

curvilinear (due to the presence of localized mass) and it tends to zero in the very far flat vacuum
regardless the zero-point energy of the vacuum.

The depletion of the CPTD in the vacuum, far from material bodies, lowers its mean value on a
cosmological scale so that it can possibly agree with the astronomical observations on the motion of
the galaxies.

The GE of the classical KGE field shows that the CPTD Λ̃
(k)Q

and other out-diagonal components
of the EITD can be considered as “decoherent quantum-mechanical” gravitational effects generated in
highly curved space-time near dense matter such as black holes and neutron stars.

The hydrodynamic gravity model defines a coupling between the boson field of the free KGE and
the GE in a form that, to some degree, mimics Brans-Dicke gravity leading to an effective gravitational
constant inversely proportional to the field squared.
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