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Abstract: Elastoplastic analysis of a composite cylinder, consisting of an isotropic elastic inclusion
surrounded by orthotropic matrix, is conducted via numerical parametric studies for examining
its residual stress under thermal cycles. The matrix is assumed to be elastically and plastically
orthotropic, and all of its material properties are temperature-dependent (TD). The Hill’s anisotropic
plasticity material model is adopted. The interface between the inclusion and matrix is perfectly
bonded, and the outer boundary of the cylinder is fully constrained. A quasi-static, uniform
temperature field is applied to the cylinder, which is analyzed under the plane-strain assumption.
The mechanical responses of the composite cylinder are strongly affected by the material symmetry
and temperature-dependent material properties. When the temperature-independent material
properties are assumed, larger internal stresses at the loading phase are predicted. Furthermore,
considering only yield stress being temperature dependent may be insufficient since other TD
material parameters may also affect the stress distributions. In addition, plastic orthotropy inducing
preferential yielding along certain directions leads to complex residual stress distributions when
material properties are temperature-dependent.

Keywords: orthotropic plasticity; residual stress; temperature-dependent material properties;
composite cylinder; finite element analysis

1. Introduction

Temperature effects on the plastic deformation have significant industrial and academic
interests [1,2]. However, many studies in the literature make assumptions that the material properties
are isotropic and temperature-independent (TI). For example, aluminum composite discs under
thermal loading have been studied without using temperature-dependent (TD) material properties [3,4].
Considerations of elastic and plastic anisotropy are important when the deformation of textured
metals or single crystals under thermal loading are in question [5]. Orthotropic plasticity material
models have been extensively developed by Hill [6–8]. Anisotropic plasticity theory have been
applied in many studies to understand directional dependent yielding phenomena. For example,
Yoon10 et al. conducted research on the calibration of parameters used in anisotropic yield criterion
from experimental tests in strongly textured aluminum sheets [9]. Numerical studies on predicting
earing phenomena in anisotropic aluminum have been performed [10]. In addition, orthotropic plastic
deformation in fiber-reinforced composite disc under spinning has been analyzed [11].

Symmetry 2019, 11, 320; doi:10.3390/sym11030320 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-5458-8362
https://orcid.org/0000-0003-4031-9828
http://www.mdpi.com/2073-8994/11/3/320?type=check_update&version=1
http://dx.doi.org/10.3390/sym11030320
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 320 2 of 11

The importance of using temperature-dependent material properties in thermal loading analysis
has been emphasized by Noda [12]. Thermomechanical responses of solid and hollow cylinders with
the consideration of temperature-dependent material properties have been reported [13]. Realistic
temperature functions to describe material properties at elevated temperatures for structural steels
can be found in [14]. Elastoplastic stress analysis of thin discs with temperature-dependent material
properties have been studied with analytical methods [15,16]. In addition, effects of thickness variations
on the elastoplastic behavior of annular discs have been studied [17]. Although these studies consider
the temperature-dependent material properties, they only deal with a system containing single
material. Composite systems introduce additional complexity into the plasticity problem. Zarandi et al.
examined the plastic responses of a composite disc, in two and three dimensions, under monotonic
temperature loading with consideration of temperature dependent material properties [18]. In addition,
the plasticity problem of a particular type of composite materials, termed functionally graded materials,
under bending have recently been investigated [19]. The derived analytical solutions provide an
efficient way in designing such materials.

In this work, we assume that the matrix material has orthogonal symmetry both in its elastic and
plastic properties, such as a single crystal, metal with texture, or or fiber-reinforced composite materials.
The matrix material is fully constrained on its outer rim, and its inner rim is in perfect bonding with an
isotropic, purely elastic inclusion. The finite element method is adopted to conduct parametric studies
on elastoplastic behavior and residual stress of the composite cylinder, analyzed under the plane-strain
assumption, subjected to uniform, quasi-static thermal loading and unloading. Numerical schemes
for solving elastoplasticity problems have been well established [20,21]. In this study, we conduct
parametric studies to analyze residual stresses with software package [22]. Both temperature dependent
and temperature independent material properties are considered. Effects of hardening and plane
stress/strain are analyzed. Our numerical results may serve as reference data for experimental
verifications or future analytical solutions to such a problem.

2. Theoretical and Numerical Considerations

As shown in Figure 1a, the composite cylinder consists of an isotropic, purely elastic inclusion
and elastoplastic matrix with the orthotropic symmetry both in its elastic and plastic behavior.
The inclusion-matrix interface is assumed to be perfectly bonded. The outer boundary of the composite
cylinder is fully clamped, and a uniform temperature field is quasi-statically applied to the composite
cylinder. Figure 1b shows representative thermal loading cycles. The thermal loading parameter serves
as loading steps in our analysis. In the figure, ∆T at Points B, D and F is in ratio of 1:1.25:1.5.
The temperature differences at the three points are 700, 875 and 1050 ◦C, respectively. During
the thermal loading or unloading cycles, residual stress fields may be developed at Points C, E
and G. The physical properties of the isotropic elastic inclusion (Young’s modulus Ei = 411 GPa,
Poisson’s ratio νi = 0.28, linear thermal expansion coefficient αi = 5.0× 10−6 K−1) are assumed to be
temperature independent, but those of the elastoplastic matrix are temperature dependent. Physically
it is envisioned that the inclusion is made of a ceramic material (0 < r < a), surrounded by metallic
material (a < r < b), where r is the radial component of the polar coordinate system to describe the
points in the domain. The elastoplastic problems are numerically analyzed via the finite element
method in two dimensions.
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(a) (b)

Figure 1. (a) Schematic of the composite cylinder, with a = 0.3 m and b = 1 m, confined on the outer
rim, r = 1 m, and (b) representative quasi-static temperature loading profile.

In the elastic region, the orthotropic constitutive relationship for the matrix is as follows.

εij = Sijklσkl or εm = Smnσn (1)

where, at the reference temperature, E11 = 190, E22 = 200, E33 = 210, ν12 = 0.25, ν23 = 0.3, ν13 = 0.35,
G12 = 75, G12 = 80, G12 = 85. Moduli are in units of GPa. Thermal expansion coefficient is assumed
to have negligible orientational dependence, hence αm = 11.7× 10−6 in units of 1/K.

In the orthotropic symmetry, the Cartesian coordinates, (x1, x2, x3) or (x, y, z), are the rolling
direction, the transverse direction and the normal direction, respectively. The Hill’s orthogonal yield
function is defined as

F (σij) = F (σ22 − σ33)
2 + G (σ33 − σ11)

2 + H (σ11 − σ22)
2 + 2Lσ2

23 + 2Mσ2
13 + 2Nσ2

12 (2)

It is assumed that at the reference temperature yield stresses are σ11 = 310, σ22 = 410, σ33 = 510,
σ23 = 200, σ13 = 300, σ12 = 400 in units of MPa. The associate flow rule is as follows.

ε̇
p
ij = λ

∂F
∂σij

(3)

Since the trance of the plastic strain tensor is zero due to the incompressibility assumption during
plastic flow,

ε̇
p
11 = 2λ [−G (σ33 − σ11) + H (σ11 − σ22)] (4)

ε̇
p
22 = 2λ [F (σ22 − σ33)− H (σ11 − σ22)] (5)

ε̇
p
33 = 2λ [−F (σ22 − σ33) + G (σ33 − σ11)] (6)

The consequence if the incompressibility assumption leads to,

ε
p
11 + ε

p
22 + ε

p
33 = 0 (7)

The inter-relationships among Hill’s parameters and directional yield stresses are as follows.

σy23 =

√
1

2L
, σy31 =

√
1

2M
, σy12 =

√
1

2N
(8)
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and

F =
1
2

(
1

σ2
y22

+
1

σ2
y33
− 1

σ2
y11

)
(9)

G =
1
2

(
1

σ2
y33

+
1

σ2
y11
− 1

σ2
y22

)
(10)

H =
1
2

(
1

σ2
y11

+
1

σ2
y22
− 1

σ2
y33

)
(11)

In this work, we specify the six yield stresses, instead the Hill’s parameters. One may further define
equivalent initial yield stress

σy0 =

√
3

2(F + G + H)
(12)

hence the Hill’s effective stress

σ2
Hill = σ2

y0

[
F (σ22 − σ33)

2 + G (σ33 − σ11)
2 + H (σ11 − σ22)

2 + 2Lσ2
23 + 2Mσ2

13 + 2Nσ2
12

]
(13)

The plastic potential used in the isotropic hardening

Fh = σHill − σy (14)

where

σy = σy0 + σh(εep) (15)

The hardening function σh depends on effective plastic strains εep. In the present analysis,

σh(εep) = Eisoεep (16)

where

1
Eiso

=
1

ETiso
− 1

E
(17)

and ETiso is the isotropic tangent modulus and E the effective Young’s modulus if the material is
elastically anisotropic. In this work, we set ETiso = 20 MPa if linear hardening is considered. The local
effective plastic strain is defined as follows.

ε̇ep =

√
2
3

ε̇
p
ij ε̇

p
ij (18)

The von Mises effective stress is defined as follows in terms of deviatoric stress tensor sij, or its second
invariant J2 [5].

σmises =
√

3J2(sij) =

√
3
2

sijsij and sij = σij −
1
3

σkkδij (19)



Symmetry 2019, 11, 320 5 of 11

here δij is the Kronecker delta function, and the Einstein summation rule for the indices is applied. The
temperature functions, shown in Equations (20)–(23), are used in this study. They are similar to those
in Argeso and Eraslan ([13]), but slightly modified.

fσ(T) = σy(T)/σ0 = 1 + T/[600× ln(T/1630)] (20)

fE(T) = E(T)/E0 = 1 + T/[2000× ln(T/1800)] (21)

fν(T) = ν(T)/ν0 = 1 + 2.5× 10−4T − 2.5× 10−7T2 (22)

fα(T) = α(T)/α0 = 1 + 2.56× 10−4T − 2.14× 10−7T2 (23)

where the applied temperature difference T is in units of ◦C and reference temperature is 22 ◦C.
A graphical representation of the temperature functions is shown in Figure 2. For the case that the
material is elastically and plastically isotropic, at the reference temperature, the Young’s modulus, yield
stress, Poisson’s ratio and linear thermal expansion coefficient of the matrix material are assumed to be
E0 = 200 GPa, σ0 = 410 MPa, ν0 = 0.3, and α0 = 11.7× 10−6 per ◦C, respectively. When the material
is orthotropic, the above-mentioned temperature functions are applied to the material parameters
at the reference temperature, listed after Equation (1). In other words, temperature-dependent yield
stress σ(T) = σ0 fσ(T), Young’s modulus E(T) = E0 fE(T), Poisson’s ratio ν(T) = ν0 fν(T) and linear
thermal expansion coefficient α(T) = α0 fα(T). This choice of material parameters is representative for
studying the temperature dependent elastoplastic materials in general. The deformation process is
assumed to be quasi-static throughout this work.

(a) (b)

Figure 2. (a) Temperature functions for the material properties and (b) representative finite element
mesh used in this study.

A representative finite element mesh is shown in Figure 2b with the inclusion radius a = 0.3 m
and the radius to the outer boundary of the cylinder is b = 1 m. The number of two-dimensional
quadratic serendipity elements used in the analysis was about 6000, and the number of degrees of
freedom (d.o.f.) was about 170,000, including the internal d.o.f. for plasticity. We adopted COMSOL
([22]) software for the finite element calculations.

3. Results and Discussion

3.1. Residual Stress Analysis Under Elastic-Perfectly Plastic Assumption

When the plane-plane composite cylinder, with elastic-perfectly plastic model, under temperature
cyclic loading, Figure 3 shows the residual stress at r = 0.35 m, near the inclusion-matrix boundary, in
the TD case under the maximum applied temperature differences ∆T = 270, 337.5, 405 ◦C. All material
parameters are assumed to be temperature dependent. The maximum applied temperature differences
are labeled as the letters ’B’, ’D’ and ’F’ in the Figure 1, as schematics. Since the chosen loading
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magnitudes are large, reversed plasticity occurs during unloading. The stress magnitudes at the polar
angle θ = 45◦ direction are larger than those at θ = 0◦ due to the chosen plasticity parameters in the
Hill’s model having larger yield stress when θ = 45◦.

Under the TI assumption, Figure 4 shows the residual stress in the orthotropic cylinder under
maximum temperature differences ∆T = 270, 337.5, 405 ◦C, which are the same as those used in the
TD case. Since the loading magnitudes are kept the same in Figures 3 and 4, direct comparisons to
exhibit the the differences between TD and TI assumptions can be accomplished. In general, since TI
does not reduce yield stress at high temperature, it predicts higher stresses. Furthermore, it can be
seen that the residual stresses, at the loading parameters about 2.5, 4.5 and 7, are mildly developed
during reversed plasticity in the TI case since at high temperatures yield stress is not deduced. These
loading parameters respectively correspond to the letters ’C’, ’E’ and ’G’, shown in the schematics in
Figure 1b. However, in the TD case, yield stress is largely reduced at high temperatures as shown in
Figure 2a. This large reduction in yield stress causes strong reversed plasticity in the unloading phases.
Hence, the TD residual stresses in Figure 3, at the loading parameters about 2.5, 4.5 and 7, are much
larger than those in the TI case.

(a) (b)

Figure 3. Von Mises residual stress at r = 0.35 m in the temperature-dependent (TD) case with the
polar angle (a) θ = 0◦ and (b) θ = 45◦. Dashed lines indicate the applied temperature difference.

(a) (b)

Figure 4. Von Mises residual stress at r = 0.35 m in the temperature-independent (TI) case with the
polar angle (a) θ = 0◦ and (b) θ = 45◦. Dashed lines indicate the applied temperature difference.

3.2. Effects of Selective Temperature Dependent Material Properties on Residual Stress

In the previous section, the results are obtained with all material properties being temperature
dependent. In this section, we examine the effects of selective TD material properties on residual stress.
Linear hardening with ET = 20 MPa is assumed and its temperature dependence is assumed to be
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fE(T). Figure 5a shows the residual stress in the orthotropic cylinder after the maximum temperature
difference ∆T = 400 ◦C loading with all material parameters being temperature dependent, i.e., the
four temperature functions listed in Equations (20)–(23) are used in the analysis. When only yield stress
is considered to be temperature dependent, the corresponding residual stress is shown in Figure 5b. As
can be seen their von Mises residual stress distributions are similar, but their magnitudes are distinct.
Furthermore, the range for the residual stress ’plateau’ is shorter when all material properties are
temperature dependent. The ’plateau’ is slightly inclined due to the small linear hardening ET . As for
comparisons, the residual stress distribution for the TI case is shown in Figure 5c. Due to no reduction
in yield stress in the TI case as temperature increases, sharp residual stress distribution is developed
near the inclusion-matrix interface. It is remarked that residual stresses are self-equilibrated inside the
material. However, the von Mises residual stresses do not show this trend since they have averaged
according to Equation (19).

(a) (b) (c)

Figure 5. Residual stress distribution for (a) all material parameters being temperature dependent,
(b) only yield stress being temperature dependent and (c) all material parameters being temperature
independent.

3.3. Residual Stress Analysis with Linear Hardening

When the plane-strain composite cylinder under maximum temperature differences ∆T = 400,
500, 600 ◦C, the residual stresses, at r = 0.35 m, in each loading cycle are shown in Figure 6. Both
plastic anisotropy and isotropy are compared. Linear hardening is assumed, as in previous section.
For the TD case, all material properties are assumed to be temperature dependent in this section. It can
be seen that the TI case predicts large residual stress due to reversed plasticity in the unloading phase.
Due to orthotropic elastic constants, the numerical values between the isotropic and orthotropic case
can only be compared qualitatively.

(a) (b)

Figure 6. Residual stress near the inclusion-matrix interface at r = 0.35 for the (a) TD and (b) TI case.
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To observe the orientational dependence of residual stress in the cylinder, Figure 7 shows the stress
contour in the cylinder after unloading from maximum temperature difference ∆T =400 ◦C. Color
bars indicate the von Mises residual stress in units of MPa. The TI case shows weaker developments
in residual stress due to yield stress not being reduced at elevated temperature. Due to the matrix
being both elastically and plastically orthotropic, the isotropic inclusion also shows Under the same
loading/unloading conditions, Figure 8 shows the residual stress developed in the isotropic composite
cylinder. As expected, no orientational dependence is observed in the residual stress distribution.

(a) (b)

Figure 7. Von Mises residual stress in the orthotropic composite cylinder with the (a) TD and (b) TI
material properties.

(a) (b)

Figure 8. Von Mises residual stress in the isotropic composite cylinder with the (a) TD and (b) TI
material properties.

In order to better observe the directional dependence of the residual stress, shown in Figure 7,
we plot the residual stress at r = 0.35 m, near the inclusion-matrix interface indicated by a black circle
in the figure, around the circumferential direction, as shown in Figure 9. The circumferential direction
is indicated by the polar angle whose zero value is at the x-axis. It is remarked that for isotropic
plasticity such a plot would show horizontal lines only; no orientational dependence. As can be seen in
Figure 9, there are significant differences in the von Mises residual stress between the TD and TI case.
In the TD case, due to significant reduction in yield stress, the reversed plasticity during unloading
phase induces complex residual stress distribution.
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(a) (b)

Figure 9. Von Mises residual stress at r = 0.35 m around the polar angle in the orthotropic cylinder for
the (a) TD and (b) TI case.

Although many practical problems need to be analyzed in three space dimensions, long cylinders
can be analyzed in two dimensions under the plane strain assumption. Through the basic research
on the parametric analysis, it is demonstrated that the purpose of this study is to examine the
residual stress in the orthotropic cylinder under thermal loading with the consideration of temperature
dependent material properties. If materials have strong temperature dependence, one needs to be
aware significant differences between the TD and TI case. In the future, considerations of temperature
rates are required in order to realistically model the material responses.

Possible real-world applications of the present analysis are machine parts with anisotropic
characteristics under repeated temperature loading/unloading cycles or textured alloys during metal
forming processes. In addition, fiber-reinforced composite materials with fibers being arranged as
concentric rings may require the consideration of both elastic and plastic orthotropy, as studied in
the present work. This type of composite materials may be used in machinery, civil engineering or
biomedical engineering.

The development of residual stresses in materials depend on a variety of variables [23]. If the
residual stresses are to be minimized for certain applications, suitable selection of materials and
boundary conditions, as well as the methodology of analyzing the residual stresses under given
conditions, need to be considered. From the present study, to avoid complex residual stress
developments in the TD case under thermal loading, one may consider to choose a material with
less anisotropy and temperature sensitivity. For the TI case, one may either choose more isotropic
material or use multiple layers near the interface to reduce the orientational dependence in residual
stress. The multiple layers with suitable design and material selections may reduce the stress in the
matrix, hence reduce yielding and consequent the developments of residual stresses after unloading.
The multiple layer method may also work for the TD case. Further analysis is required.

4. Conclusions

Our parametric studies demonstrate that material symmetry plays an important role in the
residual stress distribution in the composite cylinder under thermal excitation. The combination of
material symmetry and temperature dependence in material properties may lead to complex residual
stress patterns. In designing cylinders as components for engineering applications, plastic anisotropic
effects cannot be ignored since they cause the orientational dependence in stress distribution along the
circumferential coordinate. In addition, considerations of all material properties to be temperature
dependent are important to reflect the physical processes in materials at high temperature. Residual
stresses calculated from only considering yield stress to be temperature dependent are different from
those with all TD material parameters. The assumptions of TI material properties do not reduce yield
stress at high temperatures, hence larger internal stresses under loading are obtained when compared
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to the TD case. It is found that the TD case may give rise to complex residual stress distribution,
as opposed to the TI case. Our numerical results and analysis procedure presented here may serve as
a methodology generating numerical data for benchmark tests to compare with future analytical or
experimental solutions.
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