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Abstract: The purpose of this paper is to represent sums of finite products of Legendre and Laguerre
polynomials in terms of several orthogonal polynomials. Indeed, by explicit computations we express
each of them as linear combinations of Hermite, generalized Laguerre, Legendre, Gegenbauer and
Jacobi polynomials, some of which involve terminating hypergeometric functions 1F1 and 2F1.
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1. Preliminaries

Here, after fixing some notations that will be needed throughout this paper, we will review briefly
some basic facts about orthogonal polynomials relevant to our discussion. As general references on
orthogonal polynomials, we recommend the reader to refer to [1,2].

As is well known, the falling factorial sequence (x)n and the rising factorial sequence 〈x〉n are
respectively defined by

(x)n = x(x− 1) . . . (x− n + 1), (n ≥ 1), (x)0 = 1, (1)

〈x〉n = x(x + 1) . . . (x + n− 1), (n ≥ 1), 〈x〉0 = 1. (2)

The two factorial sequences are related by

(−1)n(x)n = 〈−x〉n , (−1)n 〈x〉n = (−x)n. (3)

(2n− 2s)!
(n− s)!

=
22n−2s(−1)s

〈
1
2

〉
n〈

1
2 − n

〉
s

, (n ≥ s ≥ 0). (4)

(2n + 2s)!
(n + s)!

= 22n+2s
〈

1
2

〉
n

〈
n +

1
2

〉
s

, (n, s ≥ 0). (5)

Γ(n +
1
2
) =

(2n)!
√

π

22nn!
, (n ≥ 0), (6)

Γ(x + 1)
Γ(x + 1− n)

= (x)n,
Γ(x + n)

Γ(x)
= 〈x〉n , (n ≥ 0), (7)
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B(x, y) =
∫ 1

0
tx−1(1− t)y−1dt =

Γ(x)Γ(y)
Γ(x + y)

, (Re x, Re y > 0), (8)

where Γ(x) and B(x, y) denote respectively the gamma and beta functions.
The hypergeometric function is defined by

pFq = (a1, . . . , ap; b1, . . . , bq; x) =
∞

∑
n=0

〈a1〉n . . .
〈

ap
〉

n
〈b1〉n . . .

〈
bq
〉

n

xn

n!
. (9)

Now, we are ready to recall some relevant facts about Legendre polynomials Pn(x), Laguerre
polynomials Ln(x), Hermite polynomials Hn(x), generalized (extended) Laguerre polynomials Lα

n(x),
Gegenbauer polynomials C(λ)

n (x), and Jacobi polynomials P(α,β)
n (x). All the facts stated here can also

be found in [3–8].Interested readers may refer to [1,2,9–13] for full accounts of orthogonal polynomials
and also to [14,15] for papers discussing relevant orthogonal polynomials.

The above-mentioned orthogonal polynomials are given, in terms of generating functions, by

F(t, x) = (1− 2xt + t2)−
1
2 =

∞

∑
n=0

Pn(x)tn, (10)

G(t, x) = (1− t)−1exp
(
− xt

1− t

)
=

∞

∑
n=0

Ln(x)tn, (11)

e2xt−t2
=

∞

∑
n=0

Hn(x)
tn

n!
, (12)

(1− t)−α−1exp
(
− xt

1− t

)
=

∞

∑
n=0

Lα
n(x)tn, (13)

1
(1− 2xt + t2)λ

=
∞

∑
n=0

C(λ)
n (x)tn, (λ > −1

2
, λ 6= 0, |t| < 1, |x| ≤ 1), (14)

α + β

R(1− t ++R)α(1 + t + R)β
=

∞

∑
n=0

P(α,β)
n (x)tn,

(R =
√

1− 2xt + t2, α, β > −1).

(15)

In terms of explicit expressions, those orthogonal polynomials are given explicitly as follows:

Pn(x) = 2F1

(
−n, n + 1; 1;

1− x
2

)

=
1
2n

[ n
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n− 2l

n

)
xn−2l ,

(16)

Ln(x) = 1F1(−n; 1; x)

=
n

∑
l=0

(−1)n−l
(

n
l

)
1

(n− l)!
xn−l ,

(17)

Hn(x) = n!
[ n

2 ]

∑
l=0

(−1)l

l!(n− 2l)!
(2x)n−2l , (18)

Lα
n(x) =

〈α + 1〉n
n! 1F1(−n; α + 1; x)

=
n

∑
l=0

(−1)l(n+α
n−l )

l!
xl ,

(19)
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Cλ
n (x) =

(
n + 2λ− 1

n

)
2F1

(
−n, n + 2λ; λ +

1
2

;
1− x

2

)

=
[ n

2 ]

∑
k=0

(−1)k Γ(n− k + λ)

Γ(λ)k!(n− 2k)!
(2x)n−2k,

(20)

P(α,β)
n (x) =

〈α + 1〉n
n! 2F1

(
−n, 1 + α + β + n; α + 1;

1− x
2

)
=

n

∑
k=0

(
n + α

n− k

)(
n + β

k

)(
x− 1

2

)k ( x + 1
2

)n−k
.

(21)

For Legendre, Gegenbauer and Jacobi polynomials, we have Rodrigues’ formulas, and for Hermite
and generalized Laguerre polynomials, we have Rodrigues-type formulas.

Hn(x) = (−1)nex2 dn

dxn e−x2
, (22)

Lα
n(x) =

1
n!

x−αex dn

dxn (e
−xxn+α), (23)

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n, (24)

(1− x2)λ− 1
2 C(λ)

n (x) =
(−2)n

n!
〈λ〉n

〈n + 2λ〉n
dn

dxn (1− x2)n+λ− 1
2 , (25)

(1− x)α(1 + x)βP(α,β)
n (x) =

(−1)n

2nn!
dn

dxn (1− x)n+α(1 + x)n+β. (26)

The orthogonal polynomials in Equations (22)–(26) satisfy the following orthogonality relations
with respect to various weight functions.∫ ∞

−∞
e−x2

Hn(x)Hm(x)dx = 2nn!
√

πδm,n, (27)

∫ ∞

0
xαe−xLα

n(x)Lα
m(x)dx =

1
n!

Γ(α + n + 1)δm,n, (28)

∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δm,n, (29)

∫ 1

−1
(1− x2)λ− 1

2 C(λ)
n (x)C(λ)

m (x)dx =
π21−2λΓ(n + 2λ)

n!(n + λ)Γ(λ)2 δm,n, (30)

∫ 1

−1
(1− x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x)dx =

2α+β+1Γ(n + α + 1)Γ(n + β + 1)
(2n + α + β + 1)Γ(n + α + β + 1)Γ(n + 1)

δm,n. (31)

2. Introduction

In this paper, we will consider two sums of finite products

γn,r(x) = ∑
i1+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x), (n, r ≥ 0), (32)

in terms of Legendre polynomials and

εn,r(x) = ∑
i1+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
, (n, r ≥ 0), (33)
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in terms of Laguerre polynomials. We represent each of them as linear combinations of Hermite,
extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials (see Theorems 1 and 2). It is
amusing to note here that, for some of these expressions, the coefficients involve certain terminating
hypergeometric functions 2F1 and 1F1. These representations are obtained by carrying out explicit
computations with the help of Propositions 1 and 2. We observe here that the formulas in Proposition 1
can be derived from the orthogonalities in Equation (27)–(31), Rodrigues’ and Rodrigues-type formulas
in Equation (22)–(26), and integration by parts.

Our study of such representation problems can be justified by the following. Firstly, the present
research can be viewed as a generalization of the classical connection problems. Indeed, the classical
connection problems are concerned with determining the coefficients in the expansion of a product of
two polynomials in terms of any given sequence of polynomials (see [1,2]).

Secondly, studying such kinds of sums of finite products of special polynomials can be well
justified also by the following example. Let us put

αm(x) =
m−1

∑
k=1

1
k(m− k)

Bk(x)Bm−k(x), (m ≥ 2),

where Bn(x) are the Bernoulli polynomials. Then we can express αm(x) as linear combinations of
Bernoulli polynomials, for example from the Fourier series expansion of the function closely related to
that. Indeed, we can show that

m−1

∑
k=1

1
2k (2m− 2k)

B2k (x) B2m−2k (x) +
2

2m− 1
B1 (x) B2m−1 (x) (34)

=
1
m

m

∑
k=1

1
2k

(
2m
2k

)
B2kB2m−2k (x) +

1
m

H2m−1B2m (x) +
2

2m− 1
B2m−1B1 (x) ,

where Hm = ∑m
j=1

1
j are the harmonic numbers.

Further, some simple modification of this gives us the famous Faber-Pandharipande-Zagier
identity and a slightly different variant of the Miki’s identity by letting respectively x = 1

2 and
x = 0 in (34). We note here that all the other known derivations of F-P-Z and Miki’s identity are
quite involved, while our proof of Miki’s and Faber-Pandharipande-Zagier identities follow from the
polynomial identity (34), which in turn follows immediately the Fourier series expansion of αm(x).
Indeed, Miki makes use of a formula for the Fermat quotient ap−a

p modulo p2, Shiratani-Yokoyama
employs p-adic analysis, Gessel’s proof is based on two different expressions for Stirling numbers
of the second kind S2 (n, k), and Dunne-Schubert exploits the asymptotic expansion of some special
polynomials coming from the quantum field theory computations. For some details on these, we let
the reader refer to the introduction in [16] and the papers therein.

The next two theorems are the main results of this paper.

Theorem 1. For any nonnegative integers n and r, we have the following representation.

∑
i1+i2+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x)

=
2r(n + r− 1

2 )n+r

(2r− 1)!!

[ n
2 ]

∑
j=0

1F1(−j; 1
2 − n− r;−1)

j!(n− 2j)!
Hn−2j(x)

(35)

=
1

(2r− 1)!!2n+r

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)!Γ(n− 2l + α + 1)
l!(n + r− l)!(n− k− 2l)!

Lα
k (x)

(36)
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=
2r−1(n + r− 1

2 )n+r

(2r− 1)!!

×
[ n

2 ]

∑
j=0

(2n + 1− 4j)2F1(−j, j− n− 1
2 ; 1

2 − n− r; 1)

j!(n− j + 1
2 )n−j+1

Pn−2j(x)
(37)

=
2rΓ(λ)(n + r− 1

2 )n+r

(2r− 1)!!

×
[ n

2 ]

∑
j=0

(n + λ− 2j)2F1(−j, j− n− r; 1
2 − n− r; 1)

Γ(n + λ− j + 1)j!
C(λ)

n−2j(x)
(38)

=
(−1)n

(2r− 1)!!2n+r

n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)!
l!(n + r− l)!(n− k− 2l)!

× 2F1(2l + k− n, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

(39)

Here (2r− 1)!! is the double factorial given by

(2r− 1)!! = (2r− 1)(2r− 3) . . . 1, (r ≥ 1), (−1)!! = 1. (40)

Remark 1. An alternative expression for (36) is given by

γn,r(x) =
1

Γ(α + 1)(2r− 1)!!2n+r

×
[ n

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)!Γ(n− 2l + α + 1)
l!(n + r− l)!(n− 2l)!

n−2l

∑
k=0

〈2l − n〉k
〈α + 1〉k

Lα
k (x).

(41)

Theorem 2. For any nonnegative integers n and r, we have the following representation.

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)

= (n + r)!
n

∑
k=0

(− 1
2 )

k

k!

[ n−k
2 ]

∑
j=0

( 1
4 )

j

j!(n− k− 2j)!(r + k + 2j)!
Hk(x) (42)

= (n + r)!
n

∑
k=0

2F1(k− n, k + α + 1; r + k + 1; 1)
(n− k)!(r + k)!

Lα
k (x) (43)

=(n + r)!
n

∑
k=0

2k+1(2k + 1)

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j!(n− k− 2j)!(r + k + 2j)!(2k + 2j + 2)!

Pk(x)

(44)

=(n + r)!Γ(λ)
n

∑
k=0

(
−1

2

)k
(k + λ)

×
[ n−k

2 ]

∑
j=0

( 1
4 )

j

j!(n− k− 2j)!(r + k + 2j)!Γ(k + j + λ + 1)
C(λ)

k (x)

(45)
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=(n + r)!
n

∑
k=0

Γ(k + α + β + 1)(−2)k

Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k− n + l, k + β + 1; 2k + α + β + 2; 2)
l!(n + r− l)!(n− k− l)!

P(α,β)
k (x).

(46)

Remark 2. An alternative expression for (42) is as follows:

εn,r(x) = (n + r)!
[ n

2 ]

∑
j=0

( 1
4 )

j

j!(n− 2j)!(r + 2j)!

n−2j

∑
k=0

( 1
2 )

k 〈2j− n〉k
k! 〈r + 2j + 1〉k

Hk(x). (47)

Before we move on to the next section, we would like to mention some of the related previous
works. In [16–18], sums of finite products of Bernoulli, Euler and Genocchi polynomials were
represented as linear combinations of Bernoulli polynomials. These were derived from the Fourier
series expansions for the functions closely related to those sums of finite products. In addition, in [9]
the same had been done for sums of finite products of Chebyshev polynomials of the second kind
and of Fibonacci polynomials.

On the other hand, in terms of all kinds of Chebyshev polynomials, sums of finite products of
Chebyshev polynomials of the second, third and fourth kinds and of Fibonacci, Legendre and Laguerre
polynomials were expressed in [11,12,19]. Further, by the orthogonal polynomials in Equations (16),
and (18)–(21), sums of finite products of Chebyshev polynomials of the second kind and Fibonacci
polynomials were represented in [13].

Finally, the reader may want to see [20,21] for some other aspects of Legendre and
Laguerre polynomials.

3. Proof of Theorem 1

We will first state Propositions 1 and 2 that will be needed in showing Theorems 1 and 2.
The results in the next proposition can be derived from the orthogonalities in (27)–(31), Rodrigues’

and Rodrigues-type formulas in (22)–(26), and integration by parts, as we mentioned earlier. The facts
(a), (b), (c), (d) and (e) in Proposition 1 are respectively from (3.7) of [5], (2.3) of [7] (see also (2.4) of [3]),
(2.3) of [6], (2.3) of [4] and (2.7) of [8].

Proposition 1. For any polynomial q(x) ∈ R[x] of degree n, the following hold.

(a)

q(x) =
n

∑
k=0

Ck,1Hk(x), where Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
q(x)

dk

dxk e−x2
dx,

(b)

q(x) =
n

∑
k=0

Ck,2Lα
k (x), where Ck,2 =

1
Γ(α + k + 1)

∫ ∞

0
q(x)

dk

dxk (e
−xxk+α)dx,

(c)

q(x) =
n

∑
k=0

Ck,3Pk(x), where Ck,3 =
2k + 1
2k+1k!

∫ 1

−1
q(x)

dk

dxk (x2 − 1)kdx,

(d)

q(x) =
n

∑
k=0

Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ(λ)

(−2)k
√

πΓ(k + λ + 1
2 )

∫ 1

−1
q(x)

dk

dxk (1− x2)k+λ− 1
2 dx,
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(e)

q(x) =
n

∑
k=0

Ck,5P(α,β)
k (x), where

Ck,5 =
(−1)k(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
q(x)

dk

dxk (1− x)k+α(1 + x)k+βdx.

Proposition 2. The following proposition was stated in [16].
For any nonnegative integers m and k, the following identities hold.

(a) ∫ ∞

−∞
xme−x2

dx =

0, if m ≡ 1 (mod 2),
m!
√

π

(m
2 )!2m , if m ≡ 0 (mod 2),

(b) ∫ 1

−1
xm(1− x2)kdx =

0, if m ≡ 1 (mod 2),
22k+2k!m!(k+ m

2 +1)!
(m

2 )!(2k+m+2)!
, if m ≡ 0 (mod 2),

= 22k+1k!
m

∑
s=0

(
m
s

)
2s(−1)m−s (k + s)!

(2k + s + 1)!
,

(c) ∫ 1

−1
xm(1− x2)k+λ− 1

2 dx =

0, if m ≡ 1 (mod 2),
Γ(k+λ+ 1

2 )Γ(
m
2 +

1
2 )

Γ(k+λ+ m
2 +1) , if m ≡ 0 (mod 2),

(d) ∫ 1

−1
xm(1− x)k+α(1 + x)k+βdx =22k+α+β+1

m

∑
s=0

(
m
s

)
(−1)m−s2s

× Γ(k + α + 1)Γ(k + β + s + 1)
Γ(2k + α + β + s + 2)

.

Differentiation of (10) gives us the following lemma.

Lemma 1. For any nonnegative integers n and r, we have the following identity.

∑
i1+i2+...i2r+1=n

Pi1(x), Pi2(x), . . . , Pi2r+1(x) =
1

(2r− 1)!!
P(r)

n+r(x), (48)

where the sum is over all nonnegative integers i1, i2, . . . , i2r+1, with i1 + i2 + . . . i2r+1 = n.
By taking rth derivative of (16), we have

P(r)
n (x) =

1
2n

[ n−r
2 ]

∑
l=0

(−1)l
(

n
l

)(
2n− 2l

n

)
(n− 2l)r xn−2l−r. (49)

Actually, we need the following particular case of (49).

P(r+k)
n+r (x) =

1
2n+r

[ n−k
2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r− 2l

n + r

)
× (n + r− 2l)r+k xn−2l−k.

(50)

Here we are going to show (35), (36) and (38), leaving the other two (37) and (39) as exercises.
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With γn,r(x) as in (32), let us put

γn,r(x) =
n

∑
k=0

Ck,1Hk(x). (51)

Then, from (a) of Proposition 1, (48), (50), and by integrating by parts k times, we have

Ck,1 =
(−1)k

2kk!
√

π

∫ ∞

−∞
γn,r(x)

dk

dxk e−x2
dx

=
(−1)k

2kk!
√

π(2r− 1)!!

∫ ∞

−∞
P(r)

n+r(x)
dk

dxk e−x2
dx

=
1

2kk!
√

π(2r− 1)!!

∫ ∞

−∞
P(r+k)

n+r (x)e−x2
dx

=
1

2k+n+rk!
√

π(2r− 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r− 2l

n + r

)
(n + r− 2l)r+k

×
∫ ∞

−∞
xn−2l−ke−x2

dx.

(52)

From (52) and making use of (a) of Proposition 2, we obtain

Ck,1 =
1

2k+n+rk!
√

π(2r− 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r− 2l

n + r

)
(n + r− 2l)r+k

×

0, if k 6≡ n (mod 2),
(n−k−2l)!

√
π

2n−k−2l( n−k
2 −l)!

, if k ≡ n (mod 2).

(53)

Now, from (51) and (53) and after some simplifications,

γn,r(x) =
1

22n+r(2r− 1)!! ∑
0≤k≤n

k≡n (mod 2)

1
k!

×
[ n−k

2 ]

∑
l=0

(−4)l(2n + 2r− 2l)!
l!(n + r− l)!( n−k

2 − l)!
Hk(x)

=
1

22n+r(2r− 1)!!

[ n
2 ]

∑
j=0

1
j!(n− 2j)!

Hn−2j(x)

×
j

∑
l=0

(−4)l(j)l(2n + 2r− 2l)!
l!(n + r− l)!

=
2r(n + r− 1

2 )n+r

(2r− 1)!!

[ n
2 ]

∑
j=0

1
j!(n− 2j)!

Hn−2j(x)

×
j

∑
l=0

(−1)l 〈−j〉l
l!
〈

1
2 − n− r

〉
l

=
2r(n + r− 1

2 )n+r

(2r− 1)!!

[ n
2 ]

∑
j=0

1F1(−j; 1
2 − n− r;−1)

j!(n− 2j)!
Hn−2j(x).

(54)
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This shows (35) in Theorem 1.

Next, we put

γn,r(x) =
n

∑
k=0

Ck,2 Lα
k (x). (55)

Then, from (b) of Proposition 1, (48), (50) and integration by parts k times, we get

Ck,2 =
(−1)k

Γ(α + k + 1)(2r− 1)!!

∫ ∞

0
P(r+k)

n+r (x)e−xxk+αdx

=
(−1)k

Γ(α + k + 1)(2r− 1)!! 2n+r

[ n−k
2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r− 2l

n + r

)
× (n + r− 2l)r+k Γ(n− 2l + α + 1)

=
(−1)k

Γ(α + k + 1)(2r− 1)!! 2n+r

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)!Γ(n− 2l + α + 1)
l!(n + r− l)!(n− k− 2l)!

.

(56)

Combining (55) and (56), and changing order of summation, we immediately have

γn,r(x) =
1

(2r− 1)!! 2n+r

n

∑
k=0

(−1)k

Γ(α + k + 1)

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)! Γ(n− 2l + α + 1)
l!(n + r− l)!(n− k− 2l)!

Lα
k (x)

=
1

Γ(α + 1)(2r− 1)!! 2n+r

[ n
2 ]

∑
l=0

(−1)l(2n + 2r− 2l)!Γ(n− 2l + α + 1)
l!(n + r− l)!(n− 2l)!

×
n−2l

∑
k=0

〈2l − n〉k
〈α + 1〉k

Lα
k (x).

(57)

This yields (36) in Theorem 1.

Finally, we let

γn,r(x) =
n

∑
k=0

Ck,4C(λ)
k (x) (58)

Then, from (d) of Proposition 1, (48), (50), integration by parts k times and making use of (c) of Proposition 2,
we have

Ck,4 =
(k + λ) Γ(λ)(−1)k

(−2)k
√

π Γ(k + λ + 1
2 )(2r− 1)!!

×
∫ 1

−1
P(r+k)

n+r (x)(1− x2)k+λ− 1
2 dx

=
(k + λ)Γ(λ)

2k+n+r
√

π Γ(k + λ + 1
2 )(2r− 1)!!

×
[ n−k

2 ]

∑
l=0

(−1)l
(

n + r
l

)(
2n + 2r− 2l

n + r

)
(n + r− 2l)r+k

×

0, if k 6≡ n (mod 2),
Γ(k+λ+ 1

2 ) Γ( n−k+1
2 −l)

Γ( n+k
2 +λ−l+1)

, if k ≡ n (mod 2).

(59)
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From (58) and (59), exploiting (3), (4), (6) and (7), and after some simplifications, we finally derive

γn,r(x) =
Γ(λ)√

π(2r− 1)!!2n+r ∑
0≤k≤n

k≡n (mod 2)

(k + λ)

2k

×
[ n−k

2 ]

∑
l=0

(−1)l(2n + 2r− 2l)! Γ( n−k+1
2 − l)

l!(n + r− l)!(n− k− 2l)!Γ( k+n
2 + λ− l + 1)

C(λ)
k (x)

=
Γ(λ)√

π(2r− 1)!!2n+r

[ n
2 ]

∑
j=0

(n− 2j + λ)

2n−2j

×
j

∑
l=0

(−1)l(2n + 2r− 2l)! Γ(j− l + 1
2 )

l! (n + r− l)! (2j− 2l)! Γ(n + λ− j− l + 1)
C(λ)

n−2j(x)

=
Γ(λ)

(2r− 1)!! 22n+r

[ n
2 ]

∑
j=0

(n− 2j + λ)

Γ(n + λ− j + 1)

×
j

∑
l=0

(−4)l(2n + 2r− 2l)! (n + λ− j)l
l! (n + r− l)! (j− l)!

C(λ)
n−2j(x)

(60)

=
2r Γ(λ)(n + r− 1

2 )n+r

(2r− 1)!!

[ n
2 ]

∑
j=0

(n− 2j + λ)

Γ(n + λ− j + 1) j!

×
j

∑
l=0

〈−j〉l 〈j− n− r〉l
l!
〈

1
2 − n− r

〉
l

C(λ)
n−2j(x)

=
2r Γ(λ)(n + r− 1

2 )n+r

(2r− 1)!!

×
[ n

2 ]

∑
j=0

(n− 2j + λ) 2F1(−j, j− n− r; 1
2 − n− r; 1)

Γ(n + λ− j + 1) j!
C(λ)

n−2j(x).

This completes the proof for (38) in Theorem 1.

4. Proof of Theorem 2

The proofs for (42), (43) and (45) are left to the reader as an exercise and we will show only (44)
and (46) in Theorem 2.

The following lemma is important for our discussion in this section and can be derived by
differentiating (11).

Lemma 2. Let n, r be nonnegative integers. Then we have the following identity.

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
= (−1)rL(r)

n+r(x), (61)

where the sum runs over all nonnegative integers i1, i2, . . . , ir+1, with i1 + i2 + · · ·+ ir+1 = n.

From (17), it is immediate to see that the rth derivative of Ln(x) is given by

L(r)
n (x) =

n−r

∑
l=0

(−1)n−l
(

n
l

)
1

(n− l − r)!
xn−l−r. (62)
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In particular, we have

L(r+k)
n+r (x) =

n−k

∑
l=0

(−1)n+r−l
(

n + r
l

)
1

(n− k− l)!
xn−k−l . (63)

With εn,r(x) as in (33), let us set

εn,r(x) =
n

∑
k=0

Ck,3Pk(x). (64)

Then, from (c) of Proposition 1, (61), (63), by integration by parts k times and using (b) of Proposition 2,
we get

Ck,3 =
(2k + 1)(−1)r+k

2k+1k!

∫ 1

−1
L(r+k)

n+r (x)(x2 − 1)kdx

=
(−1)n+k(2k + 1)(n + r)!

2k+1 k!

n−k

∑
l=0

(−1)l

l! (n + r− l)! (n− k− l)!

×

0, if l 6≡ n− k (mod 2)
22k+2 k! (n−k−l)!( n+k−l

2 +1)!
( n−k−l

2 )!(n+k−l+2)!
, if l ≡ n− k (mod 2)

(65)

= (−1)n+k(2k + 1)2k+1(n + r)!

× ∑
0≤l≤n−k

l≡n−k (mod 2)

(−1)l ( n+k−l
2 + 1)!

l! (n + r− l)! ( n−k−l
2 )! (n + k− l + 2)!

= (n + r)! (2k + 1) 2k+1

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j! (n− k− 2j)! (r + k + 2j)! (2k + 2j + 2)!

.

By combining (64) and (65) we get the following result.

εn,r(x) = (n + r)!
n

∑
k=0

(2k + 1) 2k+1

×
[ n−k

2 ]

∑
j=0

(k + j + 1)!
j! (n− k− 2j)! (r + k + 2j)! (2k + 2j + 2)!

Pk(x).

(66)

This completes the proof for (44).
Finally, we put

εn,r(x) =
n

∑
k=0

Ck,5 P(α,β)
k (x). (67)

Then, from (e) of Proposition 1, (61), (63), integration by parts k times and exploiting (d) of Proposition 2,
we have
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Ck,5 =
(−1)r (2k + α + β + 1) Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
∫ 1

−1
L(r+k)

n+r (x)(1− x)k+α(1 + x)k+βdx

=
(−1)r(2k + α + β + 1)Γ(k + α + β + 1)

2α+β+k+1Γ(α + k + 1)Γ(β + k + 1)

×
n−k

∑
l=0

(−1)n+r−l
(

n + r
l

)
1

(n− k− l)!

×
∫ 1

−1
xn−k−l(1− x)k+α(1 + x)k+βdx

=
(n + r)! (−2)k(2k + α + β + 1)Γ(k + α + β + 1)

Γ(β + k + 1)

×
n−k

∑
l=0

1
l! (n + r− l)!

n−k−l

∑
s=0

(−2)s Γ(k + β + s + 1)
s! (n− k− l − s)! Γ(2k + α + β + s + 2)

=
(n + r)! (−2)kΓ(k + α + β + 1)

Γ(2k + α + β + 1)

×
n−k

∑
l=0

1
l! (n + r− l)! (n− k− l)!

n−k−l

∑
s=0

2s 〈k + l − n〉s 〈k + β + 1〉s
s! 〈2k + α + β + 2〉s

=
(n + r)! (−2)kΓ(k + α + β + 1)

Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k + l − n, k + β + 1; 2k + α + β + 2; 2)
l! (n + r− l)! (n− k− l)!

(68)

We now obtain

εn,r(x) = (n + r)!
n

∑
k=0

(−2)k Γ(k + α + β + 1)
Γ(2k + α + β + 1)

×
n−k

∑
l=0

2F1(k + l − n, k + β + 1; 2k + α + β + 2; 2)
l! (n + r− l)! (n− k− l)!

P(α,β)
k (x).

(69)

This verifies (46) in Theorem 2.

5. Conclusions

Let γm,r(x), εm,r(x), and αm(x) denote the following sums of finite products given by

γn,r(x) = ∑
i1+···+i2r+1=n

Pi1(x)Pi2(x) . . . Pi2r+1(x),

εn,r(x) = ∑
i1+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
. . . Lir+1

(
x

r + 1

)
,

αm(x) =
m−1

∑
k=1

1
k(m− k)

Bk(x)Bm−k(x), (m ≥ 2),

where Pn(x), Ln(x), Bn(x), (n ≥ 0) are respectively Legendre, Laguerre and Bernoulli polynomials.
In this paper, we studied sums of finite products of Legendre polynomials γm,r(x) and those of
Laguerre polynomials εm,r(x), and expressed them as linear combinations of the orthogonal
polynomials Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), and P(α,β)

n (x). These have been done by carrying out explicit
computations. In recent years, we have obtained similar results for many other special polynomials.
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For example, we considered sums of finite products of Bernoulli, Euler and Genocchi polynomials and
represented them in terms of Bernoulli polynomials. In addition, as for Chebyshev polynomials of the
second, third, and fourth kinds, and Fibonacci, Legendre and Laguerre polynomials, we expressed
them not only in terms of Bernoulli polynomials but also of Chebyshev polynomials of all kinds and
Hermite, generalized Laguerre, Legendre, Gegenbauer and Jacobi polynomials.

We gave twofold justification for studying such sums of finite products of special polynomials.
Firstly, it can be viewed as a generalization of the classical connection problem in which one wants to
determine the connection coefficients in the expansion of a product of two polynomials in terms of
any given sequence of polynomials. Secondly, from the representation of αm(x) in terms of Bernoulli
polynomials we can derive the famous Faber-Pandharipande-Zagier identity and a slightly different
variant of the Miki’s identity. We emphasized that these identities had been obtained by several
different methods which are quite involved and not elementary, while our previous method used only
elementary Fourier series expansions.

Along the same line of the present paper, we would like to continue to work on representing
sums of finite products of some special polynomials in terms of various kinds of special polynomials
and to find interesting applications of them in mathematics, science and engineering areas.
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