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On Sliced Spaces: Global Hyperbolicity Revisited
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Abstract: We give a topological condition for a generic sliced space to be globally hyperbolic without
any hypothesis on lapse function, shift function, and spatial metric.
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1. Preliminaries

The definition of a sliced space, which one can read in Reference [1], is a continuation of a study
in References [2] and [3] on systems of Einstein equations.

Let V = M× I, where M is an n-dimensional smooth manifold, and I is an interval of the real
line, R. We equip V with a n + 1-dimensional Lorentz metric g, which splits in the following way:

g = −N2(θ0)2 + gijθ
iθ j,

where θ0 = dt, θi = dxi + βidt, N = N(t, xi) is the lapse function, βi(t, xj) is the shift function and
Mt = M × {t}, spatial slices of V, are spacelike submanifolds equipped with the time-dependent
spatial metric gt = gijdxidxj. Such product space V is called a sliced space.

Throughout the paper, we consider I = R.
The author in Reference [1] considered sliced spaces with uniformly bounded lapse, shift, and

spatial metric; by this hypothesis, it is ensured that parameter t measures up to a positive factor
bounded (below and above) the time along the normals to spacelike slices Mt, the gt norm of the shift
vector β is uniformly bounded by a number, and the time-dependent metric gijdxidxj is uniformly
bounded (below and above) for all t ∈ I(= R), respectively.

Given the above hypothesis, in the same article, the following theorem was proved.

Theorem 1 (Cotsakis). Let (V, g) be a sliced space with uniformly bounded lapse N, shift β and spatial
metric gt. Then, the following are equivalent:

1. (M0, γ) a complete Riemannian manifold.
2. Spacetime (V, g) is globally hyperbolic.

In this article, we review global hyperbolicity of sliced spaces in terms of the product topology
defined on space M×R for some finite dimensional smooth manifold M.

2. Strong Causality of Sliced Spaces

Let (V = M × R, g) be a sliced space. Consider product topology TP on V. Since M is
finite-dimensional, a base for TP consists of all sets of form A × B, where A ∈ TM and B ∈ TR.
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Here, TM denotes the natural topology of manifold M where, for an appropriate Riemann metric h,
it has a base consisting of open balls Bh

ε (x), and TR is the usual topology on the real line, with a base
consisting of open intervals (a, b). For trivial topological reasons, we can restrict our discussion on TP
to basic-open sets Bh

ε (x)× (a, b), which can intuitively be called “open cylinders” in V.
We remind that the Alexandrov topology TA (see Reference [4]) has a base consisting of open sets

of the form < x, y >= I+(x) ∩ I−(y), where I+(x) = {z ∈ V : x � z} and I−(y) = {z ∈ V : z� y},
where� is the chronological order defined as x � y iff there exists a future-oriented timelike curve
joining x with y. By J+(x), one denotes the topological closure of I+(x), and by J−(y) that one of
I−(y).

We use the definition of global hyperbolicity from Reference [4], where one can read about global
causality conditions in more detail, as well as characterizations for strong causality. In particular,
a spacetime is strongly causal iff it possesses no closed timelike curves, and global hyperbolicity is an
important causal condition in a spacetime related to major problems such as spacetime singularities
and cosmic cencorship.

Definition 1. A spacetime is globally hyperbolic iff it is strongly causal and the “causal diamonds”
J+(x) ∩ J−(y) are compact.

We prove the following theorem:

Theorem 2. Let (V, g) be a Hausdorff sliced space. Then, the following are equivalent.

1. V is strongly causal.
2. TA ≡ TP.
3. TA is Hausdorff.

Proof. Here, 2. implies 3. is obvious and that 3. implies 1. can be found in Reference [4].
For 1. implies 2., we consider two events X, Y ∈ V, such that X 6= Y; we note that each X ∈ V

has two coordinates, say (x1, x2), where x1 ∈ M and x2 ∈ R. Obviously, X ∈ Mx = M× {x} and
Y ∈ My = M× {y}. Then, < X, Y >= I+(X) ∩ I−(Y) ∈ TA. Let also A ∈ Ma = M× {a}, where
a < x (< is the natural order on R) and B ∈ Mb = M × {b}, where y < b. Consider some ε > 0,
such that Bh

ε (A) ∈ M. Obviously, Bh
ε (A) × (a, b) ∈ TP and, for ε > 0 sufficiently large enough,

< X, Y >⊂ Bh
ε (A)× (a, b). Thus, < X, Y >∈ TP.

For 2. implies 1., we consider ε > 0, such that Bh
ε (A) ∈ TM, so that Bh

ε (A)× (a, b) = B ∈ TP.
We let strong causality hold at an event P and consider P ∈ B ∈ TP. We show that there exists
< X, Y >∈ TA, such that P ∈< X, Y >⊂ B. Now, consider a simple region R in < X, Y > which
contains P and P ∈ Q, where Q is a causally convex-open subset of R. Thus, we have U, V ∈ Q, such
that P ∈< U, V >⊂ Q. Finally, P ∈< U, V >⊂ Q ⊂ B, and this completes the proof.

3. Global Hyperbolicity of Sliced Spaces, Revisited

For the following theorem, we use Nash’s result that refers to finite-dimensional manifolds (see
Reference [5]).

Theorem 3. Let (V, g) be a Hausdorff sliced space, where V = M× R, M is an n-dimensional manifold and
g the n + 1 Lorentz metric in V. Then, (V, g) is globally hyperbolic iff TP = TA, in V.

Proof. Given the proof of Theorem 2, strong causality in V holds iff TP = TA and, given Nash’s
theorem, the closure of Bh

ε (x)× (a, b) is compact.

We note that neither in Theorem 2 nor in Theorem 3 did we make any hypothesis on the lapse
function, shift function, or spatial metric.
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