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Abstract: Rescheduling is often needed when trains stay in segments or stations longer than specified
in the timetable due to disturbances. Under crowded situations, it is more challenging to return
to normal with heavy passenger flow. Considering making a trade-off between passenger loss
and operating costs, we present a train regulation combined with a passenger control model by
analyzing the interactive relationship between passenger behaviors and train operation. In this paper,
we convert the problem into a Markov decision process and then propose the management strategy
of regulating the running time and controlling the number of boarding passengers. Owing to the high
dimensions of the large-scale problem, we applied the Approximate Dynamic Programming (ADP)
approach, which approximates the value function with state features to improve computational
efficiency. Finally, we designed three experimental scenarios to verify the effectiveness of our
proposed model and approach. The results show that both the proposed model and the approach
have a good performance in the cases with different passenger flows and different disturbances.

Keywords: approximate dynamic programming; Markov decision process; metro system; passenger
control; train operation adjustment

1. Introduction

When operation suffers a disturbance, prompt rescheduling measures must be taken to maintain
the robustness of the metro system. In the past few years, train rescheduling has caused great
concerns among many researchers, and many different approaches have been developed with different
model formulations.

In some studies, the train rescheduling problem is converted into the problem of mathematical
programming, aiming to make the operation return to normal as soon as possible by altering the
running time and dwelling time. Usually, it is most important to maintain service as much as
possible for the customers [1]. In early work, classical optimization methods were used for rail transit
train regulation to describe passenger perception of service quality [2]. In the study by D’riano [3],
train scheduling was viewed as a job shop scheduling problem with no-store constraints and was
modeled with the alternative graph formulation. The branch-and-bound algorithm was used in this
to obtain the optimization solution. A mixed integer programming model was established in Ref. [4]
to minimize the incidents’ impact with a heuristic algorithm. There have been some studies on train
regulation problems with high nonlinearity, heavy constraints, and stochastic characteristics, such as
Ref. [5]. Besides, some efficient train operation control algorithms were presented in Refs. [6,7] with
the highly increasing concerns about environmental protection.

In another type of research, the train rescheduling model has been established based on discrete
event dynamic systems theory. The discrete-time traffic system was described earlier in Ref. [8],
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and this study used state feedback control algorithms to optimize system performance and ensure
system stability. Then, a discrete event model was adopted to handle perturbations in the railway
network [9]. Recently, discrete methods have received more attention. In Ref. [10], the subway line
was characterized through the train positions’ state transition on the basis of discrete events. A timed
colored Petri network was adopted in Ref. [11] to describe the railway system with double-track lines.
The Markov decision framework was proposed to deal with the uncertain disturbances in real-time
train operation by Yin et al. [12].

Currently, the headway between trains has become smaller with the growing passenger demand,
which raises higher requirements for train rescheduling. To improve the computational efficiency,
many techniques have been tried. A general genetic algorithm was applied in Ref. [13] to get the train
optimization solutions. For the same problem, a heuristic greedy approach that performs a depth-first
search that branches according to a set of criteria was described by Krasemann [14]. The Problem
Space Search (PSS) meta-heuristic was used in Ref. [15] for large-scale problems to generate a revised
timetable quickly. In Ref. [6], approximate dynamic programming was proposed to solve the stochastic
programming and obtain a high-quality solution within a short time compared with the MIP solver.
Based on a standard event-based MILP formulation in Ref. [16], the solution was addressed by an
ad-hoc heuristic preprocessing on top of a general-purpose commercial solver.

With high-frequency operation and high traffic density, the metro system now is more sensitive to
disturbances and more unstable than the traditional system. During rush hour, passenger demand
is high, even exceeding the transportation capacity, so that the dwelling time is often extended by
squeezing in passengers, leading to a departure delay. Although the metro system is commonly
equipped with ATC (Automatic Train Control), enabling making an adjustment to improve the
punctuality by altering the travel speed profile, it has a limited responsiveness to the dynamics of
passenger flow and unloading the gathered passengers. Therefore, train operation combined with
demand management is needed in practice.

In this context, a joint optimal train regulation and passenger flow control model was first
developed by Li et al. [17] aiming to improve the headway regularity and commercial speed under
perturbations, based on the assumption that the dwelling time of each train is affected by boarding and
alighting passengers. The paper defined a state vector that consists of operation error and passenger
loading error to describe the linear time-varying system. In order to minimize the system error,
train regulation and the passenger control measure are adopted jointly to adjust the running time and
dwelling time. The simplified joint dynamic model described the evolution of the departure time and
the passenger loading in the form of a matrix. However, the formulation cannot reflect some feature
variables, such as the number of passengers left on the platform. It also ignored the total delay of
passengers, which is one of the important performances of the rescheduling problems. In addition,
the proposed model is only applicable to slight delays in a certain range.

Therefore, considering minimizing the total delay of passengers and service quality, as well
as adjustment costs under dynamic passenger flow, we propose train regulation combined with a
passenger control model under discrete the Markov decision process framework. Moreover, we take
the uncertainty in the dwelling process into account. Similarly, the running time and the number of
passengers’ control are selected as two variables in our study.

In principle, the Markov decision problem can be solved by using dynamic programming
algorithms, such as value iteration and policy iteration [18]. However, the rescheduling problem
is high-dimensional, involving a large number of variables, which render such an algorithm infeasible.
To address the problem, Approximate Dynamic Programming (ADP) is applied in our paper. ADP was
development by Powell to overcome the curse of dimensionality [19]. The method has been widely
applied in various sequential stochastic optimization problems, such as the network capacity control
problem in Ref. [20], supply risk management in Ref. [21], and transshipment policy optimization
in Ref. [22]. In our study and experiments, the dynamic operation of the metro system is described
explicitly through the Markov decision model, and the ADP method helps us lower the dimensions
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of the variables. With different scenario settings, the experiments’ results demonstrate the fast
convergence performance in the case of a large-scale problem.

The rest of this paper is organized into several parts. In Section 2, we first state the problem and
give the assumptions of the study. Then, in Section 3, we present our train adjustment model based on
the analysis of the interaction of train operation and dynamic passenger flow. In Section 4, we explain
the ADP algorithm’s superiority and the algorithm procedure. In Section 5, three experimental
scenarios are implemented to verify the validity of the proposed model and algorithm. Finally,
some improvements and future works are put forward in the Conclusion section.

2. Problem Description

This paper considers a singe-track metro with N stations and N − 1 running sections. As shown
in Figure 1, each train begins its journey from the first station and dwells at the station for a period,
waiting for passengers’ alighting and boarding in sequence, then arrives at the next station by running
in a section according to a given train timetable. To make the study easy to understand, we give the
variable notations of the train service process in Table 1.

Table 1. Notations.

Symbol Definition

i = 1, 2, ..., M indices of the trains on the line;
j = 1, 2, ..., N indices of the stations on the line;

Di,j the normal dwelling time of the ith train at the jth station;
Ui,j the normal section running time of the ith train from the jth station to the (j + 1)th station;

Umin
i,j the minimum running time of the ith train from the jth station to the (j + 1)th station;

Umax
i,j the maximum running time of the ith train from the jth station to the (j + 1)th station;
ti,j the actual arrival time of the ith train at the jth station;
si,j the actual dwelling time of the ith train at the jth station;

smax
i,j the maximum dwelling time of the ith train at the jth station;

smin
i,j the minimum dwelling time for opening and closing the doors;

Hmax the maximum headway of the two consecutive trains;
Hmin the minimum headway of the two consecutive trains;
mi,j the number of boarding passengers for train i at station j;
ni,j the number of alighting passengers for train i at station j;
li,j the number of in-vehicle passengers when train i arrives at station j;
wi,j the number of waiting passengers on the platform when train i arrives at station j;
di,j the arrival delay of train i at station j;
λi,j passenger arrival rate between the arrival of train i− 1 and train i at station j.

Decision variables Definition

ui,j the actual running time of train i for section j;
pi,j the number of controlled passengers of train i for section j.

Figure 1. Train operation on the single metro line.

Generally, passengers are delivered from the origin to their destination as they expect. However,
it is inevitable that trains will suffer disturbances and that the operation will deviate from the
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pre-determined timetable in the actual operation. In the cruising phase, equipment failure,
improper driving behavior, or sudden accidents can cause a late arrival. In the loading process,
there are also some uncertainties that can result in a departure delay, for instance the passengers in
the train are so crowded, that the door cannot be closed on time. If the deviation of the operation
is not eliminated in time, the delay could propagate throughout the network due to the cumulative
passengers, which has been simulated in Refs. [23,24]. The fluctuation of waiting passengers on the
platform is illustrated in Figure 2. To prevent a second delay, train rescheduling is necessary.

Figure 2. The illustration of passengers accumulating.

Usually, both dwelling time and running time would be reset in a train rescheduling problem.
However, with the fast-growing passenger demand, the recovery of train operation experiences
more difficulty. Once a delay occurs, more passengers will accumulate in a short time with the
originally huge arriving passenger flow. This requires higher transportation efficiency and sufficient
dwelling time to disperse passengers, otherwise more passengers will be retained and more trains will
deviate from the previous schedule, thus influencing the operational efficiency of the entire network.
Besides, the squeezing in of passengers increases the uncertainty of the dwelling process, as well;
while the delayed train needs to depart as soon as possible to improve its punctuality performance
at a later station. Therefore, a passenger control measure should be taken to regulate the dwelling
time, thereby achieving a trade-off between the number of loaded passengers and the time required to
return to the normal condition.

In addition, inappropriate running regulation strategies may be counterproductive with lower
service quality and higher operating costs as well. According to Ref. [25], a smaller section running
time leads to a greater energy consumption. In addition, excessive acceleration to move faster would
cause passenger discomfort. As for the adjustment of dwelling time, it also should integrate the train
dispatching and passenger loading.

To develop an adjustment model, we first discuss the interaction between passenger flow and
train operation. In reality, the start and end of the train service are part of the process of train stopping.
The dwelling time is usually predetermined, which matches with passenger flow in the timetabling
stage. However, it should be reset in the case of disturbances in order to return to the original timetable.
Therefore, in this paper, we consider determining the dwelling time based on passenger flow, which has
been investigated greatly in Refs. [26,27]. According to Ref. [28], dwelling time was considered to
be closely related to the speed at which passengers move and the crowding degree, as the following
formulation.

si,j = β0 + β1ni,j + β2mi,j + β3(wi,j/ndoor)3mi,j. (1)

ni,j = µi,jli,j (2)

where β0, β1, β2, β3 are given correlation coefficients, which can be estimated according to historical
data. ndoor is the number of doors of the vehicle. In this paper, the difference of the number of waiting
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passengers before doors is neglected, and we assume that the number of alighting passengers is
proportional to the number of passengers in the vehicle, with the ratio set as µi,j.

As Figure 3 shows, after the train’s arrival at a station, the arrival at the next station is only
determined by the dwelling time in the former station and the section running time, being the initial
stage of the later schedule. Accordingly, based on the interactive process of passenger boarding and
train operation, we propose a train regulation combined with a passenger control model to restore
the deviation of the train operation to a reasonable range as soon as possible concerning both the
passengers and operation costs.

Figure 3. The illustration of train regulation combined with passenger control.

Ahead of the model formulation, we give several assumptions as follows. (1) To simplify the
problem, skip-stopping and overtaking are not permitted in our study, so the order of the train passing
through the station is determined. (2) We do not consider the impact of the passenger control measure
on the passenger demand. This means that the passenger would not leave the station or reroute in
spite of being denied. (3) In peak hours, the number of passengers entering stations fluctuates a little
in general, so we used the passenger arrival rate obtained through ATC data directly, ignoring the
temporal gap between the moment passengers enter the station and their arrival at the platform.

3. Model Establishment

As illustrated in Figure 1, train operation planning is a multi-stage decision problem involving
passenger flow. When a train departs from a station, the arrival time depends on the running time.
Based on the dwelling model we discussed before, the number of boarding passengers subject
to remaining capacity determines the dwelling time and the departure time. There will be some
passengers on left platform if the volume is not sufficient. If we consider the period from one
departure to another departure as a step, the metro system evolves in such a discrete stage. Therefore,
from the planning level, we convert the train rescheduling problem into a Markov decision process.
The formulations are as follows.

State, Si,j, is a vector that is made from the arrival time of the train, the number of passengers in
the vehicle, the number of waiting passengers, and the delay of the arrival time.

Si,j = (ti,j, li,j, wi,j, di,j). (3)

Action, xi,j, are decision variables at each step, denoted as Equation (4), which we mentioned
previously.

xi,j = (pi,j, ui,j). (4)
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where pi,j also equals the number of remaining passengers who are left at the platform to wait for the
next train.

State transfer function indicates how the state Si,j evolves to the state Si,j+1 exposed to the action
xi,j. The function is expressed as Equation (5), and the components of the state vector can be obtained
by Equations (7)–(10).

Si,j = SM(Si,j, xi,j). (5)

mi,j = wi,j − ndoor pi,j (6)

ti,j+1 = ti,j + si,j + ui,j (7)

li,j+1 = li,j + wi,j − ndoor pi,j − ni,j. (8)

wi,j+1 =
∫ ti,j+1

ti−1,j+1

λi,j+1 dt + ndoor pi−1,j+1. (9)

di,j+1 = ti,j+1 − Ti,j. (10)

Immediate cost, ci,j, generated by action xi,j, is formulated by:

c(Si,j, xi,j) = wddi,j · wi,j + wp p2
i,j + we(ui,j −Ui,j)

2 (11)

where, wd, wp, and we are weighted parameters. In the problem of this paper, we aim to minimize the
total delay of all the disturbed trains with minimal impact on both operation costs and service quality.
Therefore, the three terms make up the decision cost in our model. The first one is the total delay of
passengers. The second is added to penalize the passenger control to reduce the negative impact on
service quality. The third term is the train regulation penalty. As we discussed before, the variance of
running time should be kept small considering less extra energy consumption and small acceleration
change to avoid passenger discomfort.

However, in fact, train adjustment is a real-time problem, and the number of affected trains is
unknown, but depends on our policy. We can only predict the future based on the current status and
the information we have. In MDP, the value function is calculated to judge how good the decision is in
each step. For state Si,j, it is formulated with the long-term expected return, and then, the recursion
formula is described as Equation (12) according to the Bellman optimality principle.

vi,j(Si,j) = c(Si,j, xi,j) + γ ∑
S′∈S

P(S
′ |Si,j)Vi,j+1(S

′
). (12)

where γ is the discount factor, which indicates the impact of current actions on future ones. S is the set
of allpossible states.

In actual operation, the train operation is also subject to the following constraints on the operating
environment and safety restrictions.

Umin
i,j ≤ ui,j ≤ Umax

i,j (13)

smin
i,j ≤ si,j ≤ smax

i,j (14)

0 ≤ pi,j ≤ wi,j/ndoor (15)

Hmin ≤ ti,j − ti−1,j ≤ Hmax (16)

ti,j ≥ Ti,j (17)

li,j ≤ σC (18)
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where Equations (14)–(18) are the section running time constraint, dwelling time constraint,
passenger control constraint, headway constraint, and passenger loading constraint. C is the vehicle
loading capacity, and σ is the overload ratio.

The decision-making process of the proposed model can be explained explicitly by Figure 4.
For train i at station j, Si,j−1 is the past state, and Si,j is the current state. After making a decision
xi,j, which are the number of passenger control and section running time based on the current state,
train i moves to station j + 1 and Si,j transfers to the next Si,j+1; an immediate cost ci,j is produced
simultaneously.

Figure 4. Markov decision process.

4. Approximation Dynamic Programming Method

4.1. Algorithm Idea

In deterministic dynamic programming, the strategy of backward search needs to sweep and
calculate all feasible states and action spaces at the cost of huge computational time and storage.
For large-scale problems with numerous states and actions, the dimension increases exponentially,
making the decision process intractable.

ADP offers a powerful tool for seeking the optimal policy and can effectively address the problem
of dimensional explosion. To avoid this bootstrapping, it approximates the value function and steps
forward in time, then iteratively updates the approximated function targeting the minimum estimation
error until convergence. Virtually, the process of approaching the optimal solution continually is finite
loops that contain value function approximation, decision-making, state transition, and value function
update. The value function approximation and update are two main strategies that affect the accuracy
of the method.

Notice that the value function composes immediate cost and the value function of the next state.
In the ADP method, the post-decision state is introduced to capture the state of the system immediately
after decision-making, but before the arrival of new information. According to:

Sx
i,j = SM,x(Si,j, xi,j), (19)

Equation (12) is rewritten as:

vi,j(Si,j) = min[c(Si,j, xi,j) + Vi,j(Sx
i,j)]. (20)

According to Ref. [19], there are many techniques to approximate the value function. The basic
function is one of the popular methods to create the approximation function through the features of
the state variables, as it is easy to work with. Additionally, it will work well for discrete scheduling
problems and offer computational advantages with regards to algorithms for computing appropriate
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parameters. To formulate the basic function, we recombined the four kinds of attributes in the state
vector to extract the following features: Feature 1: ti,j, the arrival time of trains, the most intuitive
characteristic of the train rescheduling problem. Feature 2: li,j · di,j, the total delay of the passengers in
the vehicle. Feature 3: wi,j · di,j, the total delay of the waiting passengers.

Compared with nonlinear approximation, linear approximation has only one optimal value and
can converge to the global optimum. Therefore, we approximate the value function with the form of
Equation (21).

Vi,j(Sx
i,j) ≈ V̄i,j(Si,j) = ∑

f∈φ

θ f φ f (S
x
i,j) (21)

where θ f is the weight parameter vector and φ f are the basic functions above. Thereby, the value
function is:

ṽ∗i,j(Si,j) = min[c(Si,j, xi,j) + V̄i,j(Sx
i,j)] (22)

Note that the value function of final state is set to zero.
In each decision time, we use a pure exploration strategy to select the current optimal decision as

Equation (23). Though the approximate value function is not the optimal one in the iteration, we use
it a to make decisions; because in ADP, the special idea of computing the value function is to find
decisions that can balance the cost now with the costs in the future instead of getting the optimal
value once.

Given an approximation, a suboptimal decision can be generated using:

x∗i,j = arg[ṽ∗i,j(Si,j)]. (23)

Now, we turn to the parameter update problem. The approximate function means that the value
function V̄i,j(Si,j) depends entirely on vector θ f and only changes with θ f at different decision stages.
The approximate value function strategy is to approach the true value infinitely by updating θ f ,
reducing the error between the estimated value and the true value to be as small as possible. Therefore,
the mean squared error can be used as the performance function approximation criterion.

MSE(θ f )
∗ = ∑

S∈S
PS [Vi,j(Si,j)− V̄i,j(Si,j)]

2. (24)

MSE(θ f )
∗ = ∑

S∈S
PS [vi,j(Si,j)− ṽi,j(Si,j)]

2. (25)

Since all possible states have the same distribution, the gradient direction is the direction with the
fastest decrease in error for Equation (25). In each iteration, the parameter vector gets updated along
this direction.

θn
i,j = θn−1

i,j +
1
2

αn−1[vi,j(Si,j)− ṽi,j(Si,j)]∇θn−1
i,j

ṽn
i,j(Si,j) (26)

where αn is the step of the gradient algorithm. Notice that in Equation (26), the real value vi,j(Si,j) is
unknown. To ensure the update, we borrow temporal-difference prediction methods in reinforcement
learning [29], replacing the real value with the expected TD target. It has the advantage of being
model-free, learning by bootstrapping from the current estimate of the value function. The difference
between the estimated value of the state and the better estimated return is measured by TD error δn.

δn = c(Si,j, xi,j) + γṽn−1
i,j+1(Si,j+1)− ṽn−1

i,j (Si,j) (27)

Finally, the weight vector is updated by:

θn
i,j = θn−1

i,j + αδn∇ṽn
i,j(S). (28)
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4.2. Algorithm Procedure

According to the formulated Markov decision problem, the main algorithm of the train regulation
combined with a passenger control model is described as follows.

First, the initial state is built with Sĩ, j̃, including the delay and the passenger information.
The regulation starts with the initial state until all trains’ operation is restored to the scheduled
one. For a given iteration n and the current state Si,j, the optimal action xi,j is selected by
Equation (23) by sweeping all the actions in the feasible set determined by the operation constraints
and calculating the expected value after taking the action. Thus, the current state Si,j transfers
to the next state Si,j+1 by the state transfer function (5), which will be viewed as the current
state in the next decision step. After finishing the decision of all the stages, we get a sample
path [(Sĩ, j̃, xĩ, j̃), (Sĩ, j̃+1, xĩ, j̃+1), . . . , (Si,j, xi,j), . . . , (Si+1,j, xi+1,j), . . . , (SK,N−1, xK,N−1), (SK,N , xK,N)],
which corresponds to a policy. Next, update all the approximated function coefficients θ f , and
substitute the approximate function for the next iteration based on the policy value function. Repeat
the same steps until the maximal iteration time or iterate result converges. The detailed algorithm
procedure is presented in Algorithm 1 below.

Algorithm 1 Algorithm procedure.

Input: initial delay state and algorithm parameters
1: set θi,j = 0, δn = 0, v0

i,j(Si,j) = 0
2: set n = 1
3: while n ≤ N do

4: for i ∈ ı do

5: for j ∈  do

6: if Si,j is final state then

7: ṽn
i,j = 0

8: else

9: ṽn
i,j = min(c(Si,j, xi,j) + γV̄x

i,j(Si,j))
10: Pure exploration strategy: x∗i,j = argminṽn

i,j
11: State transfer: Si,j+1 ← SM(Si,j, xi,j)
12: end if
13: end for
14: end for
15: Update TD error δn = c(Si,j, xi,j) + γṽn−1

i,j+1(Si,j+1)− ṽn−1
i,j (Si,j)

16: Update weight factors θn+1
i,j = θn

i,j + αδn∇ṽn
i,j

17: n← n + 1
18: end while
output: optimal value function and optimal policy

5. Numerical Examples

In this section, we applied our proposed model and ADP methods to the actual case of the
Beijing Subway YIZHUANG Line, which consists of 13 stations, through three different experimental
scenarios. During the morning peak hour, there is an apparent high passenger flow; thus, we only
consider the up direction of the line from the Beijing Economic Technological Development Zone to
the downtown. The time horizon is set from 7:30–8:30 when the passenger arrival rate is high and the
headway is short. The first two scenarios were designed to verify the feasibility of the model, and the
third one focused on the performance of the algorithm.

The map of the Beijing Subway YIZHUANG Line and its system parameters are shown in
Figure 5 and Appendix A (Table A1). Based on practice survey data and AFC records, the minimum
and maximum running times are defined as 0.85-times and 1.2-times the scheduled running time.
The upper and lower bounds of headway are 120 s and 400 s. The minimum dwell time for door
opening and closing is 8 s.The capacity is 1480, and the overload ratio is 1.4. The number of doors is 24.
The coefficients in the immediate cost are set as 0.6, 0.2, 0.2. Besides, the algorithm parameters are all
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fixed in the experimental scenarios. Discount factor γ is 0.9, and the maximum iteration N is 500 with
a 1/N step size.

Figure 5. Beijing Subway YIZHUANGXIAN Line.

5.1. Scenario 1

To validate the feasibility and effectiveness of the model and algorithm presented in this paper,
we first considered the situation where an equipment failure occurred in Section 2 for Train 2 and
resulted in an arrival delay of 110 s. Owing to SONGJIAZHAUNG being a transfer station to the city,
few passengers get off at the stations along the line. Therefore, in our experiments, the number of
people alighting is proportional to the number of people in the vehicle, and the ratio is a small fixed
value. Passenger arrival rate and alighting ratio are listed in Table 2.

Table 2. Passenger arrival rate and alighting ratio.

Type 1 2 3 4 5 6 7 8 9 10 11 12 13

λi,j 2.43 2.03 2.03 1.77 2.3 2.83 2.03 1.63 1.37 1.5 1.9 2.03 0
µi,j 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1

First, to demonstrate the validity of the ADP method we used in our proposed model,
we compared the solving performance of policy iteration algorithms and the ADP method on
the MATLAB platform. Due to the high effectiveness of the train operation adjustment problem,
we concentrated more on the computational efficiency. It took 18 s to converge by the ADP method,
as shown in Figure 6, while it took 123 s to get the optimal solution with a 2.3× 106 total cost under
the policy iteration strategy.

Figure 6. Convergence of the objective function.
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From Table 3, we can conclude that the delay was effectively reduced through train regulation
and passenger control to recover to the normal operation schedule as soon as possible. For the delayed
Train 2 and the following affected train, some boarding passengers were restricted. The section running
time was shortened, to avoid arriving too late at the latter station for Train 2, while being prolonged
due to the headway constraint for Train 3. Furthermore, the number of passengers controlled reduced
to zero gradually, and the running time returned to the scheduled value. Gradually, delay disappeared,
and the train operation returned to normal. The comparison between the scheduled timetable and the
rescheduled one is clear in Figure 7. Here, it should be clearly pointed out that although the two red
lines of Train 2 and Train 3 are close to each other, they still meet the minimum headway constraint.

Table 3. Computation results of Scenario 1.

i Station 1 2 3 4 5 6 7 8 9 1 11 12

i = 2 pi,j 0 6 5 5 5 6 6 5 4 3 2 2
ui,j - 125 135 149 89 88 99 75 120 142 93 175

i = 3 pi,j 2 1 1 0 3 2 1 0 0 0 0 0
ui,j 121 143 154 162 111 121 119 87 135 168 113 188

i = 4 pi,j 0 0 0 0 0 0 0 0 0 0 0 0
ui,j 102 140 150 166 100 92 107 90 135 157 108 190

Figure 7. Train distance-time diagram.

5.2. Scenario 2

In the former scenario experiment, the delay was caused by systemic disorder, and we assumed
the passenger arrival rate was constant. However, in the actual operation, there is also another
disturbance that is caused by a sudden increase in passenger flow sometimes. Therefore, we designed
the second scenario experiment to analyze the sensitivity to passenger flow of the proposed model and
algorithm in this paper. All rates in this case fluctuated with a small increment k. Due to the limitation
of length for the manuscript, we just chose the solution results of the first followed train affected by
the delayed train and used Figures 8 and 9 to reveal its features of change.
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Figure 8. Section running time error.

Figure 9. The number of passengers controlled.

From the two figures, something interesting can be concluded. First, when the rate was relatively
small, the number of passengers controlled was zero, which is consistent with the actual situation.
That is because the scheduled dwell time was sufficient enough, in addition to the time for passenger
alighting and boarding; there was no need to sacrifice the benefit to passenger, and it was easy to
recover to the normal operation only by regulating the section running time. Moreover, with the
increase of arriving passengers, exclusively changing the running time did not work, and the passenger
control strategy was supposed to be adopted, which makes sense. The higher the rate, the greater
the degree of delay that may result, and more passengers should be controlled. By comparison,
there is something else notable: the change of the running time was not monotonous. Although our
goal was to dissipate the delay, the section running time was not reduced all the time due to the
headway constraint.

These results also prove that our model does consider both dynamic passenger flow and operating
characteristics, and it can reflect the impact of passenger flow on operations. Such adjustment measures
are also applicable to sudden large passenger flow situations. Passenger control can flexibly regulate
dwell time, meeting the demand of reasonable deployment for transportation resources well.

5.3. Scenario 3

In this scenario, we further investigated the model application in situations where delay occurs
at different station and for different train. By comparison, the extensive applicability was verified.
The different initial delays are shown in Table 4. Other parameters were identical to scenario 1.

Convergence results are explicitly shown in Figure 10. In each case, objective functions converged
at about the 50th iteration. Actually, this iterative update method involves the idea of machine learning.
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Although we did not have the real value, we could substitute it with other targets. The historical
results of each cycle were used as sample data, by which exploration and exploitation were used to
work out the optimal policy.

Table 4. Setting of different delay circumstances.

Case Arrival Delay (s)

Train 2 at Station 2 70
Train 3 at Station 3 110

(a) Case I (b) Case II

Figure 10. Convergence of the two cases.

As we discussed before, the regulation models in other literature works have limitations to
consider the indices of train running simply. However, we found that with the contradiction between
demand and supply getting more serious, the impact of passenger flow fluctuations on operations can
become more apparent, and the passenger control variable and running time variable were sensitive
to environmental changes. Through the above three experimental scenarios, we have proven the
necessity of passenger control and verified the effectiveness of our model in different situations.

6. Conclusions

This paper studies the train adjustment problem under dynamic passenger flow and establishes a
model combined train regulation with passenger control. First, we selected the number of passengers
for flow control and the section running time as two decision variables and then divided the complex
adjustment process into multiple decision-making stages. Compared with other works, our model links
the train operation adjustment with the passenger flow control based on the Markov decision process
to describe the interaction process visually, and we also took both operation costs and passenger loss
into account. As for the algorithm, the ADP method used in this paper significantly improved the
computational efficiency, satisfying the real-time performance of train operation regulation in different
experimental scenarios. We approximated the value function with the basic function formulated with
feature variables, which solved the dimension problem. Besides, the results showed that the passenger
control measure can be suitable for uncrowded and overcrowded situations. In future work, we will
pay more attention to the algorithm performance of different parameter values. It is an interesting
work to study the travel behavior of passengers under the passenger control situation.
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Appendix A

Numerical Characteristics of the YIZHUANG Line

Table A1. Numerical characteristics of the YIZHUANG line.

Station Index smin
i,j Di,j smax

i,j Index Umin
i,j Ui,j Umax

i,j
(s) (s) (s) (s) (s) (s)

CIQU South 1 10 25 60 - - - -

1 92 102 122
CIQU 2 10 25 60

2 126 140 178
JINGHAILU 3 10 25 60

3 135 150 180
TONGJINANLU 4 10 25 60

4 148 164 197
RONGCHANGDONGJIE 5 10 25 60

5 94 104 125
RONGJINGDONGJIE 6 10 25 60

6 93 103 127
WANYUANJIE 7 10 25 60

7 103 114 137
YIZHUANGCulture park 8 10 25 60

8 81 90 108
YIZHUANGQIAO 9 10 25 60

9 122 135 162
JIUGONG 10 10 25 60

10 141 157 188
XIAOHONGMEN 11 10 25 60

11 97 108 130
XIAOCUN 12 10 25 60

12 171 190 228
SONGJIAZHUANG 13 10 25 60 - - - -
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