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Abstract: For a class of nonlinear higher-order neutral dynamic equations on a time scale, we analyze
the existence and asymptotic behavior of nonoscillatory solutions on the basis of hypotheses that
allow applications to equations with different integral convergence and divergence of the reciprocal
of the coefficients. Two examples are presented to demonstrate the efficiency of new results.
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1. Introduction

In this article, we investigate the existence and asymptotic behavior of nonoscillatory solutions to
a class of dynamic equations on a time scale T

Rn(t, x(t)) + f (t, x(h(t))) = 0, (1)

where supT = ∞, t ∈ [t0, ∞)T with t0 ∈ T, n ≥ 3, and

Rk(t, x(t)) =


x(t) + p(t)x(g(t)), k = 0,
rn−k(t)R∆

k−1(t, x(t)), 1 ≤ k ≤ n− 1,
R∆

n−1(t, x(t)), k = n.

Definition 1. As is customary in this field, a solution of Equation (1) is termed nonoscillatory provided that x
is either eventually positive or eventually negative; otherwise, it is said to be oscillatory.

We refer the reader to [1–6], where the fundamental theory of time scales was investigated. In the
last few years, the analysis of oscillatory and nonoscillatory behavior of differential and difference
equations has been unified, extended, and generalized by corresponding theory of dynamic equations
on time scales; see, for instance, Refs. [7–24]. Some conclusions for the existence and asymptotic
behavior of nonoscillatory solutions to various classes of neutral dynamic equations have been shown
in [11–13,16,19–22,24]. Zhu and Wang [24] studied a dynamic equation

[x(t) + p(t)x(g(t))]∆ + f (t, x (h(t))) = 0 (2)
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and established several criteria for the existence of the solutions via the Krasnoselskii’s fixed point
theorem. As a matter of fact, Equation (2) can be regarded as Equation (1) in the case when n = 1.
In the special case when n = 2, Equation (1) reduces to a dynamic equation[

r(t)(x(t) + p(t)x (g(t)))∆
]∆

+ f (t, x (h(t))) = 0, (3)

which was examined by Deng and Wang [11] and Gao and Wang [13]. The different assumptions∫ ∞
t0

1/r(t)∆t = ∞ in [11] and
∫ ∞

t0
1/r(t)∆t < ∞ in [13] cause a phenomenon that the asymptotic

behavior of nonoscillatory solutions to Equation (3) is greatly different. Moreover, it is clear that the
asymptotic behavior is more complicated assuming that

∫ ∞
t0

1/r(t)∆t = ∞.
To find a more general rule of the existence and asymptotic behavior of nonoscillatory solutions

to Equation (1), Qiu [19] considered Equation (1) in the special case where n = 3, namely,(
r1(t)

(
r2(t) (x(t) + p(t)x(g(t)))∆

)∆
)∆

+ f (t, x(h(t))) = 0 (4)

with
∫ ∞

t0
1/r1(t)∆t =

∫ ∞
t0

1/r2(t)∆t = ∞. The author introduced two functions

R1(t) = 1 +
∫ t

t0

1
r2(s)

∆s and R2(t) = 1 +
∫ t

t0

∫ s

t0

1
r1(u)r2(s)

∆u∆s

to divide the eventually positive solutions of Equation (4) into five groups, and presented some
existence conditions of them, respectively.

Qiu and Wang [20] were concerned with Equation (1) under the conditions
∫ ∞

t0
1/ri(t)∆t < ∞ for

i = 1, 2, . . . , n− 1, which include Equation (4) when n = 3 with
∫ ∞

t0
1/ri(t)∆t < ∞ for i = 1, 2. It shows

that there exist only two cases that limt→∞ x(t) = b > 0 and limt→∞ x(t) = 0, where x is assumed to
be an eventually positive solution of Equation (1). Furthermore, this result can be extended to [13]
when n = 2 and [24] when n = 1.

When the convergence and divergence of the integrals
∫ ∞

t0
1/ri(t)∆t for i = 1, 2, . . . , n− 1 are

different, for Equation (4), there exist two cases as follows:

(B1)
∫ ∞

t0
1/r1(t)∆t = ∞ and

∫ ∞
t0

1/r2(t)∆t < ∞;

(B2)
∫ ∞

t0
1/r1(t)∆t < ∞ and

∫ ∞
t0

1/r2(t)∆t = ∞.

Qiu et al. considered the case (B1) in [22] and the case (B2) in [21], successively. The conclusions
complement the results in [19,20] when n = 3.

For Equation (1), it is significant to continue to investigate more general cases of the convergence
and divergence of the integrals

∫ ∞
t0

1/ri(t)∆t for i = 1, 2, . . . , n− 1. Throughout, we assume that the
following hypotheses are satisfied:

(C1)ri ∈ Crd([t0, ∞)T, (0, ∞)), i = 1, 2, . . . , n− 1, and there are constants Mi > 0, i = 2, 3, . . . , n− 1
such that ∫ ∞

t0

∆t
r1(t)

= ∞ and
∫ ∞

t0

∆t
ri(t)

= Mi < ∞, i = 2, 3, . . . , n− 1;

(C2)p ∈ Crd([t0, ∞)T,R) and limt→∞ p(t) = p0, where |p0| < 1;
(C3)g, h ∈ Crd([t0, ∞)T,T), g(t) ≤ t, limt→∞ g(t) = limt→∞ h(t) = ∞, and if p0 ∈ (−1, 0], then there

exists a sequence {ck}k≥0 satisfying limk→∞ ck = ∞ and g(ck+1) = ck;
(C4) f ∈ C([t0, ∞)T ×R,R) is nondecreasing in x and x f (t, x) > 0 for x 6= 0;
(C5)if ∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

1

∏n−1
i=1 ri(ui)

∆u1∆u2 · · ·∆un−1 = ∞, (5)
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then define

R(t) = 1 +
∫ t

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

1

∏n−1
i=1 ri(ui)

∆u1∆u2 · · ·∆un−1, (6)

where

lim
t→∞

R(g(t))
R(t)

= η ∈ (0, 1]

is supposed to hold.

In view of the results established in [11,13], it is not difficult to see that the existence and asymptotic
behavior of nonoscillatory solutions to Equation (1) are more complex than those in [20]. Therefore,
the criteria obtained in this article develop and improve some known conclusions reported in the
references. Finally, we present two examples to demonstrate the versatility of new results.

2. Auxiliary Results

To establish criteria for the existence of nonoscillatory solutions to Equation (1), we need a Banach
space and Krasnoselskii’s fixed point theorem as follows.

Definition 2. Letting λ = 0, 1, define a Banach space

BCλ[T0, ∞)T =

{
x : x ∈ C([T0, ∞)T,R) and sup

t∈[T0,∞)T

∣∣∣∣ x(t)
R2λ(t)

∣∣∣∣ < ∞

}

with the norm

‖x‖λ = sup
t∈[T0,∞)T

∣∣∣∣ x(t)
R2λ(t)

∣∣∣∣ ,

where C([T0, ∞)T,R) is the set containing all continuous functions mapping [T0, ∞)T into R.

Lemma 1. (Krasnoselskii’s fixed point theorem) Let Ω be a bounded, convex, and closed subset of a Banach
space X. Assume that there are two operators U, S : Ω → X such that U is contractive, S is completely
continuous, and Ux + Sy ∈ Ω for all x, y ∈ Ω. Then, U + S has a fixed point in Ω.

Define z(t) = x(t) + p(t)x(g(t)). Without loss of generality, we consider only the eventually
positive solutions of Equation (1). Then, we have the following lemma (see [12] (Lemma 2.3) and [22]
(Lemma 2.1)).

Lemma 2. Let x be an eventually positive solution of Equation (1) and

lim
t→∞

z(t)
Rλ(t)

= a, λ = 0, 1,

where λ = 1 only if condition (5) holds. Suppose that a is finite. Then,

lim
t→∞

x(t)
Rλ(t)

=
a

1 + p0ηλ
,

or x/Rλ is unbounded.

For the sake of simplicity, we give a classification to divide all eventually positive solutions of
Equation (1) into four types.

Theorem 1. Let x be an eventually positive solution of Equation (1). Then, there are four possible types for x:
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(A1) limt→∞ x(t) = 0;
(A2) limt→∞ x(t) = b for some constant b > 0;
(A3) limt→∞ x(t) = ∞ and limt→∞ x(t)/R(t) = b, where b > 0 is a constant;
(A4) lim supt→∞ x(t) = ∞ and limt→∞ x(t)/R(t) = 0.

Proof. Let x be an eventually positive solution of Equation (1). By virtue of (C2) and (C3), there exist
a t1 ∈ [t0, ∞)T and |p0| < p1 < 1 satisfying x(t) > 0, x(g(t)) > 0, x(h(t)) > 0, and |p(t)| ≤ p1 for
t ∈ [t1, ∞)T. For t ∈ [t1, ∞)T, we get

R∆
n−1(t, x(t)) = − f (t, x(h(t))) < 0,

which implies that Rn−1(t, x(t)) = r1(t)R∆
n−2(t, x(t)) is strictly decreasing on [t1, ∞)T. Then, we need

to consider two cases.
Case 1. Suppose first that R∆

n−2 is eventually negative. Then,

lim
t→∞

r1(t)R∆
n−2(t, x(t)) = L2,

where −∞ ≤ L2 < 0. Hence, there exist a constant c1 < 0 and a t2 ∈ [t1, ∞)T such that
r1(t)R∆

n−2(t, x(t)) ≤ c1 for t ∈ [t2, ∞)T, which yields

R∆
n−2(t, x(t)) ≤ c1

r1(t)
, t ∈ [t2, ∞)T. (7)

Integrating inequality (7) from t2 to t, t ∈ [σ(t2), ∞)T, we deduce that

Rn−2(t, x(t))− Rn−2(t2, x(t2)) ≤ c1

∫ t

t2

∆s
r1(s)

.

In view of (C1), letting t→ ∞, we obtain Rn−2(t, x(t)) = r2(t)R∆
n−3(t, x(t))→ −∞, which means

that R∆
n−3 is negative and Rn−3 is strictly decreasing for large t. When n = 3, z is nonoscillatory. We can

declare that
lim
t→∞

z(t) = L0, (8)

where 0 ≤ L0 < ∞. Do not assume it; that is, limt→∞ z(t) < 0. Then, we have p0 ∈ (−1, 0] and so there
exists a t3 ∈ [t2, ∞)T such that

x(t) < −p(t)x(g(t)) ≤ p1x(g(t)), t ∈ [t3, ∞)T.

It follows from (C3) that there is a positive integer k0 such that ck ∈ [t3, ∞)T for all k ≥ k0. For any
given k ≥ k0 + 1, we always arrive at

x(ck) < p1x(g(ck)) = p1x(ck−1) < p2
1x(ck−2) < · · · < pk−k0

1 x(ck0),

which yields limk→∞ x(ck) = 0 and limk→∞ z(ck) = 0. This contradicts the assumption, and so
equality (8) holds.

When n ≥ 4, since Rn−3(t, x(t)) = r3(t)R∆
n−4(t, x(t)) is eventually strictly decreasing, there exists

a t4 ∈ [t2, ∞)T such that for t ∈ [t4, ∞)T, we have

R∆
n−4(t, x(t)) ≤

r3(t4)R∆
n−4(t4, x(t4))

r3(t)
. (9)

If there is a t5 ∈ [t4, ∞)T such that R∆
n−4(t5, x(t5)) ≤ 0, then r3(t)R∆

n−4(t, x(t)) ≤ 0 for t ∈ [t5, ∞)T
and thus R∆

n−4 is eventually negative. Otherwise, if R∆
n−4(t, x(t)) > 0 for all t ∈ [t4, ∞)T, then R∆

n−4 is



Symmetry 2019, 11, 302 5 of 15

eventually positive. Hence, Rn−4 is always eventually monotonic. Integrating inequality (9) from t4 to
t, t ∈ [σ(t4), ∞)T, we conclude that

Rn−4(t, x(t))− Rn−4(t4, x(t4)) ≤ r3(t4)R∆
n−4(t4, x(t4))

∫ t

t4

∆s
r3(s)

≤ r3(t4)|R∆
n−4(t4, x(t4))| ·M3,

which implies that Rn−4 is upper bounded. If n = 4, then we see that z is eventually monotonic and
upper bounded, and equality (8) holds.

When n ≥ 5, since Rn−4(t, x(t)) (or r4(t)R∆
n−5(t, x(t))) is eventually monotonic, R∆

n−5 is
nonoscillatory. It follows that Rn−5 is eventually monotonic. Noticing that Rn−4 is upper bounded,
there exist a constant c2 and a t6 ∈ [t4, ∞)T such that for t ∈ [t6, ∞)T,

Rn−4(t, x(t)) = r4(t)R∆
n−5(t, x(t)) ≤ c2,

which yields

R∆
n−5(t, x(t)) ≤ c2

r4(t)
, t ∈ [t6, ∞)T. (10)

Integrating inequality (10) from t6 to t, t ∈ [σ(t6), ∞)T, we get

Rn−5(t, x(t))− Rn−5(t6, x(t6)) ≤ c2

∫ t

t6

∆s
r4(s)

≤ |c2| ·M4,

which means that Rn−5 is upper bounded. If n = 5, then we deduce that equality (8) holds similarly.
Analogously, for n ≥ 3, it follows that equality (8) always holds. Therefore, by virtue of Lemma 2,
we conclude that (A1) or (A2) holds.

Case 2. Assume now that R∆
n−2 is eventually positive. Then,

lim
t→∞

r1(t)R∆
n−2(t, x(t)) = L2,

where 0 ≤ L2 < ∞. We consider the following two cases:

lim
t→∞

r1(t)R∆
n−2(t, x(t)) = b > 0 and lim

t→∞
r1(t)R∆

n−2(t, x(t)) = 0.

If limt→∞ r1(t)R∆
n−2(t, x(t)) = b > 0, then there is a t2 ∈ [t1, ∞)T such that for t ∈ [t2, ∞)T,

(
r2(t)R∆

n−3(t, x(t))
)∆

>
b

r1(t)
. (11)

Integrating inequality (11) from t2 to t, t ∈ [σ(t2), ∞)T, we arrive at

r2(t)R∆
n−3(t, x(t)) > r2(t2)R∆

n−3(t2, x(t2)) + b
∫ t

t2

∆s
r1(s)

.

By virtue of (C1), r2(t)R∆
n−3(t, x(t)) → ∞ as t → ∞, which implies that R∆

n−3 is positive and
Rn−3 is strictly increasing for large t. Thus, Rn−3 is nonoscillatory. When n = 3, Rn−3 = z. As before,
we have

lim
t→∞

z(t) = L0, (12)

where 0 ≤ L0 ≤ ∞. When n ≥ 4, since Rn−3(t, x(t)) = r3(t)R∆
n−4(t, x(t)), we deduce that R∆

n−4(t, x(t))
is nonoscillatory, and Rn−4 is eventually monotonic. If n = 4, then Rn−4 = z, and equality (12) holds.
When n ≥ 5, it follows that Rn−5 is eventually monotonic similarly. Analogously, for n ≥ 3, it follows
that equality (12) always holds.
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If limt→∞ r1(t)R∆
n−2(t, x(t)) = 0, since R∆

n−2 =
(
r2R∆

n−3
)∆ is eventually positive, then

lim
t→∞

r2(t)R∆
n−3(t, x(t)) = L1,

where −∞ < L1 ≤ ∞. Moreover, r2R∆
n−3 is strictly increasing for large t. It follows that R∆

n−3 is
nonoscillatory. Thus, Rn−3 is always eventually monotonic and nonoscillatory. Similarly as before,
we deduce that limt→∞ z(t) = L0 ≥ 0 when n ≥ 3.

When L1 = ∞, we get 0 ≤ L0 ≤ ∞ similarly as before. If −∞ < L1 < ∞, then there exist a
constant d1 > 0 and a t3 ∈ [t1, ∞)T such that r2(t)R∆

n−3(t, x(t)) ≤ d1 for t ∈ [t3, ∞)T, which yields

R∆
n−3(t, x(t)) ≤ d1

r2(t)
, t ∈ [t3, ∞)T. (13)

Integrating inequality (13) from t3 to t, t ∈ [σ(t3), ∞)T, we have

Rn−3(t, x(t))− Rn−3(t3, x(t3)) ≤ d1

∫ t

t3

∆s
r2(s)

≤ d1 ·M2.

When n = 3, Rn−3 = z, and so z is upper bounded. When n ≥ 4, there exist a constant d2 > 0 and
a t4 ∈ [t3, ∞)T such that r3(t)R∆

n−4(t, x(t)) ≤ d2 for t ∈ [t4, ∞)T. It follows that

R∆
n−4(t, x(t)) ≤ d2

r3(t)
, t ∈ [t4, ∞)T.

Similarly, we see that Rn−4 is upper bounded. If n = 4, then Rn−4 = z, and thus z is upper
bounded. Analogously, for n ≥ 3, we deduce that z is always upper bounded. Hence, 0 ≤ L0 < ∞.

According to Lemma 2, if 0 ≤ L0 < ∞, then case (A1) or case (A2) holds; if L0 = ∞,
then we obtain that x is infinite. Furthermore, by virtue of L’Hôpital’s rule (see [5] (Theorem 1.120)),
we deduce that

lim
t→∞

Rn(t, x(t)) = lim
t→∞

z(t)
R(t)

= L2,

where 0 ≤ L2 < ∞. It follows that one of cases (A3) and (A4) holds.
The proof is complete.

3. Main Results

We establish several criteria for the existence of various types of eventually positive solutions
of Equation (1). Firstly, suppose that∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

1

∏n−1
i=1 ri(ui)

∆u1∆u2 · · ·∆un−1 < ∞, (14)

which means that condition (5) is not satisfied.

Theorem 2. Let condition (14) be fulfilled. Then, Equation (1) has an eventually positive solution x satisfying
limt→∞ x(t) = b iff

∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u1

t0

f (u0, K)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 < ∞ (15)

for some constant K > 0, where b > 0 is a constant.
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Proof. Let x be an eventually positive solution of Equation (1) that satisfies limt→∞ x(t) = b > 0. Then,
limt→∞ z(t) = (1+ p0)b, and there is a t1 ∈ [t0, ∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) ≥ b/2
for t ∈ [t1, ∞)T. Integrating Equation (1) from t1 to t, t ∈ [σ(t1), ∞)T, we arrive at

R∆
n−2(t, x(t)) =

Rn−1(t1, x(t1))

r1(t)
−
∫ t

t1
f (u0, x(h(u0)))∆u0

r1(t)
. (16)

Integrating equality (16) from t1 to t, t ∈ [σ(t1), ∞)T, we get

Rn−2(t, x(t))− Rn−2(t1, x(t1)) =
∫ t

t1

R∆
n−2(u1, x(u1))∆u1

= Rn−1(t1, x(t1))
∫ t

t1

∆u1

r1(u1)
−
∫ t

t1

∫ u1

t1

f (u0, x(h(u0)))

r1(u1)
∆u0∆u1.

Similarly, for n ≥ 3, we conclude that

z(t)− z(t1) = R1(t1, x(t1))
∫ t

t1

1
rn−1(un−1)

∆un−1

+∑n−1
k=2 Rk(t1, x(t1))

∫ t
t1

∫ un−1
t1

∫ un−2
t1
· · ·
∫ un−k+1

t1

1
∏n−1

i=n−k ri(ui)
∆un−k∆un−k+1 · · ·∆un−1

−
∫ t

t1

∫ un−1
t1

∫ un−2
t1
· · ·
∫ u1

t1

f (u0,x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

(17)

Letting t→ ∞, condition (14) holds if n ≥ 3, and, when n ≥ 4, for all 2 ≤ k ≤ n− 2, by virtue of
(C1), we deduce that

∫ ∞

t1

∫ un−1

t1

∫ un−2

t1

· · ·
∫ un−k+1

t1

1

∏n−1
i=n−k ri(ui)

∆un−k∆un−k+1 · · ·∆un−1 ≤
n−1

∏
i=n−k

Mi < ∞.

Hence, ∫ ∞

t1

∫ un−1

t1

∫ un−2

t1

· · ·
∫ u1

t1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 < ∞.

Since x(h(t)) ≥ b/2, from (C4), it is obvious that

∫ ∞

t1

∫ un−1

t1

∫ un−2

t1

· · ·
∫ u1

t1

f (u0, b/2)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 < ∞,

which implies that condition (15) holds.
Suppose that there exists some constant K > 0 satisfying condition (15). Then, we will analyze

two cases: (i) 0 ≤ p0 < 1 and (ii) −1 < p0 < 0, respectively.
Case (i). 0 ≤ p0 < 1. Take a constant p1 such that p0 < p1 < (1 + 4p0)/5 < 1. When p0 > 0,

by virtue of (C2) and condition (15), there is a T0 ∈ [t0, ∞)T such that for t ∈ [T0, ∞)T,

p(t) > 0,
5p1 − 1

4
≤ p(t) ≤ p1 < 1,

∫ ∞

T0

∫ un−1

T0

∫ un−2

T0

· · ·
∫ u1

T0

f (u0, K)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 ≤
(1− p1)K

8
.

When p0 = 0, choose a constant p1 such that |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0, ∞)T. By virtue
of (C3), there is a T1 ∈ (T0, ∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1, ∞)T.

Let

Ω1 =

{
x ∈ BC0[T0, ∞)T :

K
2
≤ x(t) ≤ K

}
. (18)
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Clearly, Ω1 is a bounded, convex, and closed subset of BC0[T0, ∞)T. Define now two operators
U1, S1: Ω1 → BC0[T0, ∞)T by

(U1x)(t) =

{
3Kp1/4− p(t)x(g(t)), t ∈ [T1, ∞)T,
(U1x)(T1), t ∈ [T0, T1)T,

(S1x)(t) =


3K/4
+
∫ ∞

t

∫ un−1
T1

∫ un−2
T1
· · ·
∫ u1

T1

f (u0,x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1, t ∈ [T1, ∞)T,

(S1x)(T1), t ∈ [T0, T1)T.

(19)

The fact that U1 and S1 satisfy the conditions in Lemma 1 can be proved (see the proofs of [19]
(Theorem 3.1) and [20] (Theorem 3.1)), and so is omitted. By virtue of Lemma 1, there is an x ∈ Ω1

such that (U1 + S1)x = x. For t ∈ [T1, ∞)T,

x(t) =
3(1 + p1)K

4
− p(t)x(g(t)) +

∫ ∞

t

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

Since f (u0, x(h(u0))) ≤ f (u0, K) for u0 ∈ [T1, ∞)T, and

lim
t→∞

∫ ∞

t

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u1

T1

f (u0, K)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 = 0,

we conclude that

lim
t→∞

z(t) =
3(1 + p1)K

4
and lim

t→∞
x(t) =

3(1 + p1)K
4(1 + p0)

> 0.

Case (ii). −1 < p0 < 0. Choose a constant p1 satisfying −p0 < p1 < (1− 4p0)/5 < 1. By (C2)
and condition (15), there is a T0 ∈ [t0, ∞)T such that (5p1 − 1)/4 ≤ −p(t) ≤ p1 < 1 for t ∈ [T0, ∞)T.
There also exists a T1 ∈ (T0, ∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1, ∞)T. Let BC0[T0, ∞)T
and its subset Ω1 be as in (18). Define S1 by (19) and U′1 on Ω1 by

(U′1x)(t) =

{
−3Kp1/4− p(t)x(g(t)), t ∈ [T1, ∞)T,
(U′1x)(T1), t ∈ [T0, T1)T.

Similarly, as in the proofs of [19] (Theorem 3.1) and [20] (Theorem 3.1), we can prove that U′1
and S1 satisfy the assumptions in Lemma 1. Hence, there is an x ∈ Ω1 such that (U′1 + S1)x = x.
For t ∈ [T1, ∞)T,

x(t) =
3(1− p1)K

4
− p(t)x(g(t)) +

∫ ∞

t

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u1

T1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

Letting t→ ∞, we deduce that

lim
t→∞

z(t) =
3(1− p1)K

4
and lim

t→∞
x(t) =

3(1− p1)K
4(1 + p0)

> 0.

This completes the proof.

Remark 1. Actually, the assumption (14) in Theorem 2 is not needed in the sufficiency of its proof. Thus,
we obtain a corollary as follows.

Corollary 1. Assume that condition (15) is fulfilled for some constant K > 0. Then, Equation (1) has an
eventually positive solution x satisfying limt→∞ x(t) = b, where b > 0 is a constant.
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Now, we let

A(α) =

{
x ∈ S : lim

t→∞
x(t) = ∞, lim

t→∞

x(t)
R(t)

= α

}
,

where S stands for the set containing all eventually positive solutions of Equation (1). Then, a lemma
is presented as follows.

Lemma 3. Let x be an eventually positive solution of Equation (1) such that limt→∞ x(t) = ∞. Then,
condition (5) is satisfied, and x ∈ A(0) or x ∈ A(b), where b > 0 is a constant.

Proof. Let x be an eventually positive solution of Equation (1) that satisfies limt→∞ x(t) = ∞.
Suppose that limt→∞ z(t) < ∞. Then, by Lemma 2, limt→∞ x(t) < ∞, which causes a contradiction.
Therefore, limt→∞ z(t) = ∞. In view of equality (17), letting t → ∞, it follows that condition (5) is
fulfilled. Define R by (6). It follows from Theorem 1 that x ∈ A(0) or x ∈ A(b), where b > 0 is a
constant. The proof is complete.

Theorem 3. Equation (1) has an eventually positive solution which is in A(b) iff∫ ∞

t0

f (t, KR(h(t)))∆t < ∞ (20)

for some constant K > 0, where b > 0 is a constant.

Proof. Let x ∈ A(b) be an eventually positive solution of Equation (1), where b > 0 is a constant.
By virtue of Lemma 2 and Theorem 1, we deduce that

lim
t→∞

z(t) = ∞, lim
t→∞

Rn−1(t, x(t)) = lim
t→∞

z(t)
R(t)

= (1 + p0η)b.

There is a t1 ∈ [t0, ∞)T such that x(t) > 0, x(g(t)) > 0, and x(h(t)) ≥ bR(h(t))/2 for t ∈ [t1, ∞)T.
Integration of Equation (1) from t1 to s (s ∈ [σ(T1), ∞)T) yields

Rn−1(s, x(s))− Rn−1(t1, x(t1)) = −
∫ s

t1

f (t, x(h(t)))∆t.

Letting s→ ∞, it follows that ∫ ∞

t1

f (t, x(h(t)))∆t < ∞.

Since x(h(t)) ≥ bR(h(t))/2 for t ∈ [t1, ∞)T, by (C4), we conclude that

∫ ∞

t1

f
(

t,
b
2

R(h(t))
)

∆t ≤
∫ ∞

t1

f (t, x(h(t)))∆t < ∞,

which means that condition (20) holds.
Then, suppose that condition (20) holds for some constant K > 0.
Case (i). 0 ≤ p0 < 1. Choose a constant p1 as in the proof of Theorem 2. When p0 > 0, there is a

T0 ∈ [t0, ∞)T such that for t ∈ [T0, ∞)T,

p(t) > 0,
5p1 − 1

4
≤ p(t) ≤ p1 < 1, p(t)

R(g(t))
R(t)

≥ 5p1 − 1
4

η,

∫ ∞

T0

f (t, KR(h(t)))∆t ≤ (1− p1η)K
8

.
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When p0 = 0, take a constant p1 satisfying |p(t)| ≤ p1 ≤ 1/13 for t ∈ [T0, ∞)T. There also exists a
T1 ∈ (T0, ∞)T such that g(t) ≥ T0 and h(t) ≥ T0 for t ∈ [T1, ∞)T.

Let

Ω2 =

{
x ∈ BC1[T0, ∞)T :

K
2

R(t) ≤ x(t) ≤ KR(t)
}

. (21)

Then, Ω2 is also a bounded, convex, and closed subset of BC1[T0, ∞)T. Define now two operators
U2, S2: Ω2 → BC1[T0, ∞)T by

(U2x)(t) =

{
3Kp1ηR(t)/4− p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
3Kp1ηR(t)/4− p(t)x(g(t)), t ∈ [T1, ∞)T,

(S2x)(t) =


3KR(t)/4, t ∈ [T0, T1)T,
3KR(t)/4
+
∫ t

T1

∫ un−1
T1

∫ un−2
T1
· · ·
∫ u2

T1

∫ ∞
u1

f (u0,x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1, t ∈ [T1, ∞)T.
(22)

The proof that U2 and S2 satisfy the conditions in Lemma 1 is also omitted. Similarly, there is an
x ∈ Ω2 such that (U2 + S2)x = x. For t ∈ [T1, ∞)T,

x(t) =
3(1 + p1η)K

4
R(t)− p(t)x(g(t))

+
∫ t

T1

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u2

T1

∫ ∞

u1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

Letting t→ ∞, we conclude that

lim
t→∞

z(t)
R(t)

=
3(1 + p1η)K

4
and lim

t→∞

x(t)
R(t)

=
3(1 + p1η)K
4(1 + p0η)

> 0,

which yields limt→∞ x(t) = ∞.
Case (ii). −1 < p0 < 0. Introduce BC1[T0, ∞)T and its subset Ω2 as in (21). Define S2 by (22) and

U′2 on Ω2 by

(U′2x)(t) =

{
−3Kp1ηR(t)/4− p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
−3Kp1ηR(t)/4− p(t)x(g(t)), t ∈ [T1, ∞)T.

Similarly, U′2 and S2 also satisfy the assumptions in Lemma 1. There exists an x ∈ Ω2 such that
(U′2 + S2)x = x. For t ∈ [T1, ∞)T,

x(t) =
3(1− p1η)K

4
R(t)− p(t)x(g(t))

+
∫ t

T1

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u2

T1

∫ ∞

u1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

Then, we deduce that

lim
t→∞

z(t)
R(t)

=
3(1− p1η)K

4
and lim

t→∞

x(t)
R(t)

=
3(1− p1η)K
4(1 + p0η)

> 0.

It follows that limt→∞ x(t) = ∞. This completes the proof.

Theorem 4. Assume that Equation (1) has an eventually positive solution which is in A(0). Then,

∫ ∞

t0

f
(

t,
3
4

)
∆t < ∞ (23)
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and ∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

∫ ∞

u1

f (u0, R(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 = ∞. (24)

Suppose that |p(t)R(t)| ≤ M for some constant M > 0 and for t ∈ [t0, ∞)T,∫ ∞

t0

f (t, R(h(t)))∆t < ∞, (25)

and ∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

∫ ∞

u1

f (u0, M + 3/4)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 = ∞. (26)

Then, Equation (1) has an eventually positive solution which is in A(0).

Proof. Let x ∈ A(0) be an eventually positive solution of Equation (1). Similarly, as in the proof of
Theorem 3, we arrive at

lim
t→∞

z(t) = ∞, lim
t→∞

Rn−1(t, x(t)) = lim
t→∞

z(t)
R(t)

= 0.

There exist a t1 ∈ [t0, ∞)T and a t2 ∈ (t1, ∞)T such that 3/4 ≤ x(t) ≤ R(t) for t ∈ [t1, ∞)T,
and g(t) ≥ t1, h(t) ≥ t1 for t ∈ [t2, ∞)T. Integration of Equation (1) from t2 to s (s ∈ [σ(t2), ∞)T) yields

Rn−1(s, x(s))− Rn−1(t2, x(t2)) = −
∫ s

t2

f (t, x(h(t)))∆t.

Letting s→ ∞, we obtain

Rn−1(t2, x(t2)) =
∫ ∞

t2

f (t, x(h(t)))∆t. (27)

Since x(t) ≥ 3/4 for t ∈ [t2, ∞)T, by (C4), we get

∫ ∞

t2

f
(

t,
3
4

)
∆t < ∞,

which implies that inequality (23) holds. Then, replacing t with u0, and t2 with u1 in equality (27),
it follows that

R∆
n−2(u1, x(u1)) =

∫ ∞
u1

f (u0, x(h(u0)))∆u0

r1(u1)
. (28)

Integrating equality (28) from t2 to u2, u2 ∈ [σ(t2), ∞)T, we have

R∆
n−3(u2, x(u2)) =

r2(t2)R∆
n−3(t2, x(t2))

r2(u2)
+

1
r2(u2)

∫ u2

t2

∫ ∞

u1

f (u0, x(h(u0)))

r1(u1)
∆u0∆u1.

Analogously, for n ≥ 3, we conclude that

z(t)− z(t2) =R1(t2, x(t2))
∫ t

t2

1
rn−1(un−1)

∆un−1

+
n−1

∑
k=2

Rk(t2, x(t2))
∫ t

t2

∫ un−1

t2

∫ un−2

t2

· · ·
∫ un−k+1

t2

1

∏n−1
i=n−k ri(ui)

∆un−k∆un−k+1 · · ·∆un−1

+
∫ t

t2

∫ un−1

t2

∫ un−2

t2

· · ·
∫ u2

t2

∫ ∞

u1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.
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Letting t→ ∞, similarly as the proof in Theorem 2, we deduce that

∫ ∞

t2

∫ un−1

t2

∫ un−2

t2

· · ·
∫ u2

t2

∫ ∞

u1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 = ∞.

Since x(t) ≤ R(t) for t ∈ [t2, ∞)T, by virtue of (C4),

∫ ∞

t2

∫ un−1

t2

∫ un−2

t2

· · ·
∫ u2

t2

∫ ∞

u1

f (u0, R(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1 = ∞,

which means that equality (24) holds.
Assume that |p(t)R(t)| ≤ M for some constant M > 0 and for t ∈ [t0, ∞)T, conditions (25)

and (26) hold. Then, limt→∞ p(t) = p0 = 0. Choose a T0 ∈ [t0, ∞)T and 0 < p1 < 1 such that for
t ∈ [T0, ∞)T,

|p(t)| ≤ p1 < 1, 2M +
3
2
≤ 1

4
R(t),

∫ ∞

T0

f (t, R(h(t)))∆t ≤ 1− p1

8
.

There exists a T1 ∈ (T0, ∞)T such that g(t) ≥ T0 and h(t) ≥ T0 hold for t ∈ [T1, ∞)T.
Let

Ω3 =

{
x ∈ BC1[T0, ∞)T : M +

3
4
≤ x(t) ≤ R(t)

}
.

Then, Ω3 is a bounded, convex, and closed subset of BC1[T0, ∞)T. Define now two operators
U3, S3: Ω3 → BC1[T0, ∞)T by

(U3x)(t) =

{
M + 3/4− p(T1)x(g(T1))R(t)/R(T1), t ∈ [T0, T1)T,
M + 3/4− p(t)x(g(t)), t ∈ [T1, ∞)T,

(S3x)(t) =


M + 3/4, t ∈ [T0, T1)T,
M + 3/4
+
∫ t

T1

∫ un−1
T1

∫ un−2
T1
· · ·
∫ u2

T1

∫ ∞
u1

f (u0,x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1, t ∈ [T1, ∞)T.

The proof that U3 and S3 satisfy the assumptions in Lemma 1 is also omitted. Then, there is an
x ∈ Ω3 such that (U3 + S3)x = x. For t ∈ [T1, ∞)T,

x(t) = 2M +
3
2
− p(t)x(g(t)) +

∫ t

T1

∫ un−1

T1

∫ un−2

T1

· · ·
∫ u2

T1

∫ ∞

u1

f (u0, x(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1.

In view of condition (26), we get

lim
t→∞

z(t) = ∞ and lim
t→∞

z(t)
R(t)

= 0.

Since |p(t)x(g(t))| ≤ |p(t)R(t)| ≤ M, by virtue of Lemma 2, we conclude that

lim
t→∞

x(t) = ∞ and lim
t→∞

x(t)
R(t)

= 0.

The proof is complete.

Remark 2. It is not easy to establish the sufficient and necessary conditions which guarantee that Equation (1)
has an eventually positive solution x satisfying limt→∞ x(t) = 0. We refer the reader to [20] (Theorems 3.2
and 3.3) for sufficient conditions to ensure it.
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Remark 3. When n = 3, it is obvious that Theorems 2–4, Corollary 1, and Lemma 3 cover the results in [22].
Furthermore, even when n = 2, the conclusions above are also consistent with those in [12,13].

4. Examples

The following two examples are presented to illustrate theoretical results obtained in this article.

Example 1. Let T =
⋃∞

n=1[(4n− 3)c, 4nc], where c > 0. For t ∈ [5c, ∞)T, consider

Rn(t, x(t)) + tγx(t) = 0, (29)

where n ≥ 3, γ ∈ R, and

Rk(t, x(t)) =


x(t)− (t− c)/(2t)x(t− 4c), k = 0,
tn−kR∆

k−1(t, x(t)), 1 ≤ k ≤ n− 1,
R∆

n−1(t, x(t)), k = n.

We can see that ri(t) = ti, i = 1, 2, . . . , n − 1, p(t) = −(t − c)/(2t), g(t) = t − 4c, h(t) = t,
f (t, x) = tγx, t0 = 5c, and p0 = −1/2. Obviously, conditions (C1)–(C4) and (14) are satisfied. Taking K = 1,
we conclude that ∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u1

t0

f (u0, 1)

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1

=
∫ ∞

5c

∫ un−1

5c

∫ un−2

5c
· · ·

∫ u1

5c

uγ
0

∏n−1
i=1 ui

i

∆u0∆u1 · · ·∆un−1

=
∫ ∞

5c
O
(

uγ−(n−1)(n−2)/2
n−1

)
∆un−1.

When γ < n(n− 3)/2, which means that γ− (n− 1)(n− 2)/2 < −1, condition (15) holds. By virtue
of Theorem 2 (or Corollary 1), we deduce that Equation (29) has an eventually positive solution x that satisfies
limt→∞ x(t) = b, where b > 0 is a constant. Moreover, Equation (29) has no eventually positive solutions x
satisfying limt→∞ x(t) = b > 0 provided that γ ≥ n(n− 3)/2.

Example 2. Let T =
⋃∞

n=0[2 · 3n, 3n+1]. For t ∈ [6, ∞)T, consider

Rn(t, x(t)) + tγx3(3t) = 0, (30)

where n ≥ 3, γ ∈ R, and

Rk(t, x(t)) =


x(t) + 1/t · x(t/3), k = 0,
t2R∆

k−1(t, x(t)), 1 ≤ k ≤ n− 2,
1/tn−2 · R∆

n−2(t, x(t)), k = n− 1,
R∆

n−1(t, x(t)), k = n.

We get r1(t) = 1/tn−2, ri(t) = t2, i = 2, 3, . . . , n− 1, p(t) = 1/t, g(t) = t/3, h(t) = 3t, f (t, x) =
tγx3, t0 = 6, and p0 = 0. It is not difficult to see that the assumptions (C1)–(C4) are fulfilled. From (C5),
we have

R(t) = 1 +
∫ t

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

1

∏n−1
i=1 ri(ui)

∆u1∆u2 · · ·∆un−1

= 1 +
∫ t

6

∫ un−1

6

∫ un−2

6
· · ·

∫ u2

6

un−2
1

∏n−1
i=2 u2

i

∆u1∆u2 · · ·∆un−1 = O(t),
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which implies that

η = lim
t→∞

R(g(t))
R(t)

= lim
t→∞

O(t/3)
O(t)

=
1
3
∈ (0, 1].

Hence, (C5) holds, and we arrive at∫ ∞

t0

f (t, KR(h(t)))∆t =
∫ ∞

6
tγ(O(t))3∆t =

∫ ∞

6
O(tγ+3)∆t.

Due to Theorem 3, condition (20) holds when γ < −4, and we conclude that Equation (30) has an
eventually positive solution x ∈ A(b) for some constant b > 0. However, Equation (30) has no eventually
positive solutions x ∈ A(b) provided that γ ≥ −4.

On the other hand, when γ < −5, we obtain∫ ∞

t0

∫ un−1

t0

∫ un−2

t0

· · ·
∫ u2

t0

∫ ∞

u1

f (u0, R(h(u0)))

∏n−1
i=1 ri(ui)

∆u0∆u1 · · ·∆un−1

=
∫ ∞

6

∫ un−1

6

∫ un−2

6
· · ·

∫ u2

6

∫ ∞

u1

O(uγ+3
0 ) · un−2

1

∏n−1
i=2 u2

i

∆u0∆u1 · · ·∆un−1

=
∫ ∞

6
uγ+4

n−1∆un−1 < ∞.

That is, inequality (23) does not hold. It follows from Theorem 4 that Equation (30) has no eventually
positive solutions x ∈ A(0).
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