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Abstract: In this paper, we introduce central complete and incomplete Bell polynomials which can be
viewed as generalizations of central Bell polynomials and central factorial numbers of the second
kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. Further, some
properties and identities for these polynomials are investigated. In particular, we provide explicit
formulas for the central complete and incomplete Bell polynomials related to central factorial numbers
of the second kind.

Keywords: central incomplete Bell polynomials; central complete Bell polynomials; central complete
Bell numbers

1. Introduction

In this paper, we introduce central incomplete Bell polynomials Tn,k(x1, x2, · · · , xn−k+1) given by

1
k!

( ∞

∑
m=1

1
2m (xm − (−1)mxm)

tm

m!

)k
=

∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!

and central complete Bell polynomials B(c)
n (x|x1, x2, · · · , xn) given by

exp
(

x
∞

∑
i=1

1
2i (xi − (−1)ixi)

ti

i!

)
=

∞

∑
n=0

B(c)
n (x|x1, x2, · · · , xn)

tn

n!

and investigate some properties and identities for these polynomials. They can be viewed as
generalizations of central Bell polynomials and central factorial numbers of the second kind, and also
as ‘central’ analogues for complete and incomplete Bell polynomials.

Here, we recall that the central factorial numbers T(n, k) of the second kind and the central Bell
polynomials B(c)

n (x) are given in terms of generating functions by

1
k!
(
e

t
2 − e−

t
2
)k

=
∞

∑
n=k

T(n, k)
tn

n!
, ex(e

t
2−e−

t
2 ) =

∞

∑
n=0

B(c)
n (x)

tn

n!
,

so that Tn,k(1, 1, · · · , 1) = T(n, k) and B(c)
n (x|1, 1, · · · , 1) = B(c)

n (x).
The incomplete and complete Bell polynomials have applications in such diverse areas as

combinatorics, probability, algebra, modules over a ∗-algebra (see [1,2]), quasi local algebra and
analysis. Here, we recall some applications of them and related works. The incomplete Bell polynomials
Bn,k(x1, x2, · · · , xn−k+1) (see [3,4]) arise naturally when we want to find higher-order derivatives of
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composite functions. Indeed, such higher-order derivatives can be expressed in terms of incomplete
Bell polynomials, which is known as Faà di Bruno formula given as in the following (see [3]):

dn

dtn g( f (t)) =
n

∑
k=0

g(k)( f (t))Bn,k( f ′(t), f ′′(t), · · · , f (n−k+1)(t)).

For the curious history on this formula, we let the reader refer to [5].
In addition, the number of monomials appearing in Bn,k = Bn,k(x1, x2, · · · , xn−k+1) is the number

of partitioning a set with n elements into k blocks and the coefficient of each monomial is the number
of partitioning a set with n elements as the corresponding k blocks. For example,

B10,7 = 3150x3
2x4

1 + 2520x3x2x5
1 + 210x4x6

1

shows that there are three ways of partitioning a set with 10 elements into seven blocks, and 3150
partitions with blocks of size 2, 2, 2, 1, 1, 1, 1, 2520 partitions with blocks of size 3, 2, 1, 1, 1, 1, 1, and
210 partitions with blocks of size 4, 1,1, 1, 1, 1, 1. This example is borrowed from [4], which gives a
practical way of computing Bn,k for any given n, k (see [4], (1.5)).

Furthermore, the incomplete Bell polynomials can be used in constructing sequences of binomial
type (also called associated sequences). Indeed, for any given scalars c1, c2, · · · , cn, · · · the following
form a sequence of binomial type

sn(x) =
n

∑
k=0

Bn,k(c1, c2, · · · , cn−k+1)xk, (n = 0, 1, 2, · · · )

and, conversely, any sequence of binomial type arises in this way for some scalar sequence
c1, c2, · · · , cn · · · . For these, the reader may want to look at the paper [6].

There are certain connections between incomplete Bell polynomials and combinatorial Hopf
algebras such as the Hopf algebra of word symmetric functions, the Hopf algebra of symmetric
functions, the Faà di Bruno algebra, etc. The details can be found in [7].

The complete Bell polynomials Bn(x1, x2, · · · , xn) (see [3,8–10]) have applications to probability
theory. Indeed, the nth moment µn = E[Xn] of the random variable X is the nth complete Bell
polynomial in the first n cumulants. Namely,

µn = Bn(κ1, κ2, · · · , κn).

For many applications to probability theory and combinatorics, the reader can refer to the Ph. D.
thesis of Port [10].

Many special numbers, like Stirling numbers of both kinds, Lah numbers and idempotent
numbers, appear in many combinatorial and number theoretic identities involving complete and
incomplete Bell polynomials. For these, the reader refers to [3,8].

The central factorial numbers have received less attention than Stirling numbers. However,
according to [11], they are at least as important as Stirling numbers, said to be “as important as
Bernoulli numbers, or even more so”. A systematic treatment of these important numbers was
given in [11], including their properties and applications to difference calculus, spline theory, and to
approximation theory, etc. For some other related references on central factorial numbers, we let the
reader refer to [1,2,12–14]. Here, we note that central Bell polynomials and central factorial numbers of
the second kind are respectively ‘central’ analogues for Bell polynomials and Stirling numbers of the
second kind. They have been studied recently in [13,15].

The complete Bell polynomials and the incomplete Bell polynomials are respectively mutivariate
versions for Bell polynomials and Stirling numbers of the second kind. This paper deals with
central complete and incomplete Bell polynomials which are ’central’ analogues for the complete
and incomplete Bell polynomials. In addition, they can be viewed as generalizations of central Bell
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polynomials and central factorial numbers of the second kind (see [15]). The outline of the paper is
as follows. After giving an introduction to the present paper in Section 1, we review some known
properties and results about Bell polynomials, and incomplete and complete Bell polynomials in
Section 2. We state the new and main results of this paper in Section 3, where we introduce central
incomplete and complete Bell polynomials and investigate some properties and identities for them.
In particular, Theorems 1 and 3 give basic formulas for computing central incomplete Bell polynomials
and central complete Bell polynomials, respectively. We remark that the number of monomials
appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the number of partitioning a set with n elements into k
blocks with odd sizes and the coefficient of each monomial is the number of partitioning a set with n
elements as the corresponding k blocks with odd sizes. This is illustrated by an example. Furthermore,
we give expressions for the central incomplete and complete Bell polynomials with some various
special arguments and also for the connection between the two Bell polynomials. We defer more
detailed study of the central incomplete and complete Bell polynomials to a later paper.

2. Preliminaries

The Stirling numbers of the second kind are given in terms of generating function by (see [3,16])

1
k!
(et − 1)k =

∞

∑
n=k

S2(n, k)
tn

n!
. (1)

The Bell polynomials are also called Tochard polynomials or exponential polynomials and defined
by (see [9,13,15,17])

ex(et−1) =
∞

∑
n=0

Bn(x)
tn

n!
. (2)

From Equations (1) and (2), we immediately see that (see [3,18])

Bn(x) = e−x
∞

∑
k=0

kn

k!
xk

=
n

∑
k=0

xkS2(n, k), (n ≥ 0).
(3)

When x = 1, Bn = Bn(1) are called Bell numbers.

The (exponential) incomplete Bell polynomials are also called (exponential) partial Bell
polynomials and defined by the generating function (see [9,15])

1
k!

( ∞

∑
m=1

xm
tm

m!

)k
=

∞

∑
n=k

Bn,k(x1, · · · , xn−k+1)
tn

n!
, (k ≥ 0). (4)

Thus, by Equation (4), we get

Bn,k(x1, · · · , xn−k+1) = ∑
n!

i1!i2! · · · in−k+1!

( x1

1!

)i1( x2

2!

)i2
× · · ·

×
( xn−k+1
(n− k + 1)!

)in−k+1
,

(5)

where the summation runs over all integers i1, · · · , in−k+1 ≥ 0 such that i1 + i2 + · · ·+ in−k+1 = k and
i1 + 2i2 + · · ·+ (n− k + 1)in−k+1 = n.
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From (1) and (4), we easily see that

Bn,k (1, 1, · · · , 1)︸ ︷︷ ︸
n−k+1−times

= S2(n, k), (n, k ≥ 0).
(6)

We easily deduce from (5) the next two identities:

Bn,k(αx1, αx2, · · · , αxn−k+1) = αkBn,k(x1, x2, · · · , xn−k+1) (7)

and

Bn,k(αx1, α2x2, · · · , αn−k+1xn−k+1) = αnBn,k(x1, x2, · · · , xn−k+1), (8)

where α ∈ R (see [15]).

From (4), it is not difficult to note that

∞

∑
n=k

Bn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

1
k!
(
xt +

t2

2
)k

=
tk

k!

k

∑
n=0

(
k
n

)( t
2

)n
xk−n

=
k

∑
n=0

(n + k)!
k!

(
k
n

)
1
2n xk−n tn+k

(n + k)!
,

(9)

and

∞

∑
n=k

Bn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

∞

∑
n=0

Bn+k,k(x, 1, 0, · · · , 0)
tn+k

(n + k)!
. (10)

Combining (9) with (10), we have

Bn+k,k(x, 1, 0, · · · , 0) =
(n + k)!

k!

(
k
n

)
1
2n xk−n, (0 ≤ n ≤ k). (11)

Replacing n by n− k in (11) yields the following identity

Bn,k(x, 1, 0, · · · , 0) =
n!
k!

(
k

n− k

)
x2k−n

(1
2

)n−k
, (k ≤ n ≤ 2k). (12)

We recall here that the (exponential) complete Bell polynomials are defined by

exp
( ∞

∑
i=1

xi
ti

i!

)
=

∞

∑
n=0

Bn(x1, x2, · · · , xn)
tn

n!
. (13)

Then, by (4) and (13), we get

Bn(x1, x2, · · · , xn) =
n

∑
k=0

Bn,k(x1, x2, · · · , xn−k+1). (14)
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From (3), (6), (7) and (14), we have

Bn(x, x, · · · , x) =
n

∑
k=0

xkBn,k(1, 1, · · · , 1)

=
n

∑
k=0

xkS2(n, k) = Bn(x), (n ≥ 0).
(15)

We recall that the central factorial numbers of the second kind are given by (see [19,20])

1
k!
(
e

t
2 − e−

t
2
)k

=
∞

∑
n=k

T(n, k)
tn

n!
, (16)

where k ≥ 0.
From (16), it is not difficult to derive the following expression

T(n, k) =
1
k!

k

∑
j=0

(
k
j

)
(−1)k−j(j− k

2
)n, (17)

where n, k ∈ Z with n ≥ k ≥ 0, (see [16,20]).
In [20], the central Bell polynomials B(c)

n (x) are defined by

B(c)
n (x) =

n

∑
k=0

T(n, k)xk, (n ≥ 0). (18)

When x = 1, B(c)
n = B(c)

n (1) are called the central Bell numbers.
It is not hard to derive the generating function for the central Bell polynomials from (18) as follows

(see [15]):

ex
(

e
t
2−e−

t
2
)
=

∞

∑
n=0

B(c)
n (x)

tn

n!
. (19)

By making use of (19), the following Dobinski-like formula was obtained earlier in [15]:

B(c)
n (x) =

∞

∑
l=0

∞

∑
j=0

(
l + j

j

)
(−1)j 1

(l + j)!

( l
2
− j

2

)n
xl+j, (20)

where n ≥ 0.

Motivated by (4) and (13), we will introduce central complete and incomplete Bell polynomials
and investigate some properties and identities for these polynomials. Also, we present explicit formulas
for the central complete and incomplete Bell polynomials related to central factorial numbers of the
second kind.

3. On Central Complete and Incomplete Bell Polynomials

In view of (13), we may consider the central incomplete Bell polynomials which are given by

1
k!

( ∞

∑
m=1

1
2m (xm − (−1)mxm)

tm

m!

)k
=

∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!
, (21)

where k = 0, 1, 2, 3, · · · .
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For n, k ≥ 0 with n− k ≡ 0 (mod 2), by (4) and (5), we get

Tn,k(x1, x2, · · · , xn−k+1) = ∑
n!

i1!i2! · · · in−k+1!

( x1

1!

)i1( 0
2 · 2!

)i2

× (
x3

22 · 3!

)i3
· · ·
( xn−k+1

2n−k(n− k + 1)!

)in−k+1
,

(22)

where the summation is over all integers i1, i2, · · · , in−k+1 ≥ 0 such that i1 + · · ·+ in−k+1 = k and
i1 + 2i2 + · · ·+ (n− k + 1)in−k+1 = n.

From (5) and (22), we note that

Tn,k(x1, x2, · · · , xn−k+1) = Bn,k
(
x1, 0,

x3

22 , 0, · · · ,
xn−k+1

2n−k

)
, (23)

where n, k ≥ 0 with n− k ≡ 0 (mod 2) and n ≥ k.
Therefore, from (22) and (23), we obtain the following theorem.

Theorem 1. For n, k ≥ 0 with n ≥ k and n− k ≡ 0 (mod 2), we have

Tn,k(x1, x2, · · · , xn−k+1) = Bn,k
(
x1, 0,

x3

22 , 0, · · · ,
xn−k+1

2n−k

)
= ∑

n!
i1!i3! · · · in−k+1!

( x1

1!

)i1
(

x3

22 · 3!

)i3
× · · · ×

( xn−k+1

2n−k(n− k + 1)!

)in−k+1
,

(24)

where the summation is over all integers i1, i2, · · · , in−k+1 ≥ 0 such that i1 + i3 + · · · + in−k+1 = k and
i1 + 3i3 + · · ·+ (n− k + 1)in−k+1 = n.

Remark 1. Theorem 1 shows in particular that we have

Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) = Bn,k
(

x1, 0, x3, 0, · · · , xn−k+1
)
.

From this, we note that the number of monomials appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the
number of partitioning a set with n elements into k blocks with odd sizes and the coefficient of each monomial is
the number of partitioning a set with n elements as the corresponding k blocks with odd sizes. For example, from
the example in Section 3 of [4], we have

T13,7(x1, 2x2, 22x3, 23x4, 24x5, 25x6, 26x7) = 200, 200x3
3x4

1 + 72, 072x5x3x5
1 + 1716x7x6

1.

Thus, there are three ways of partitioning a set with 13 elements into seven blocks with odd sizes, and
200,200 partitions with blocks of size 3, 3, 3, 1, 1, 1, 1, 72,072 partitions with blocks of size 5, 3, 1, 1, 1, 1, 1, and
1716 partitions with blocks of size 7, 1, 1, 1, 1, 1, 1.
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For n, k ≥ 0 with n ≥ k and n− k ≡ 0 (mod 2), by (21), we get

∞

∑
n=k

Tn,k(x, x2, x3, · · · , xn−k+1)
tn

n!
=

1
k!

(
xt +

x3

22
t3

3!
+

x5

24
t5

5!
+ · · ·

)k

=
1
k!

(
e

x
2 t − e−

x
2 t
)k

=
1
k!

e−
kx
2 t
(

ext − 1
)k

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−le(l−

k
2 )xt

=
1
k!

k

∑
l=0

(
k
l

)
(−1)k−l

∞

∑
n=0

(
l − k

2
)nxn tn

n!

=
∞

∑
n=0

( xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n
) tn

n!
.

(25)

Now, the next theorem follows by comparing the coefficients on both sides of (25).

Theorem 2. For n, k ≥ 0 with n− k ≡ 0 (mod 2), we have

xn

k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n

=

{
Tn,k(x, x2, · · · , xn−k+1), if n ≥ k,
0, if n < k.

(26)

In particular,

1
k!

k

∑
l=0

(
k
l

)
(−1)k−l(l − k

2
)n

=

{
Tn,k(1, 1, · · · , 1), if n ≥ k,
0, if n < k.

(27)

For n, k ≥ 0 with n− k ≡ 0 (mod 2) and n ≥ k, by (17) and (27), we get

Tn,k(1, 1, · · · , 1) = T(n, k). (28)

Therefore, by (26)–(28) and Theorem 1, we obtain the following corollary

Corollary 1. For n, k ≥ 0 with n− k ≡ 0 (mod 2), n ≥ k, we have

Tn,k(x, x2, · · · , xn−k+1) = xnTn,k(1, 1, · · · , 1)

and

Tn,k(1, 1, · · · , 1) = T(n, k) = Bn,k
(
1, 0,

1
22 , · · · ,

1
2n−k

)
= ∑

n!
i1!i3! · · · in−k+1!

( 1
1!

)i1( 1
223!

)i3
· · ·
( 1

2n−k(n− k + 1)!

)in−k+1
,

where i1 + i3 + · · ·+ in−k+1 = k and i1 + 3i3 + · · ·+ (n− k + 1)in−k+1 = n.

For n, k ≥ 0 with n ≥ k and n− k ≡ 0 (mod 2), we observe that

∞

∑
n=k

Tn,k(x, 1, 0, 0, · · · , 0)
tn

n!
=

1
k!
(xt)k. (29)
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Thus, we have

Tn,k(x, 1, 0, · · · , 0) = xk
(

0
n− k

)
.

The next two identities follow easily from (24):

Tn,k(x, x, · · · , x) = xkTn,k(1, 1, · · · , 1), (30)

and

Tn,k(αx1, αx2, · · · , αxn−k+1) = αkTn,k(x1, x2, · · · , xn−k+1),

where n, k ≥ 0 with n− k ≡ 0 (mod 2) and n ≥ k.

Now, we observe that

exp
(

x
∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
=

∞

∑
k=0

xk 1
k!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)k

= 1 +
∞

∑
k=1

xk 1
k!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)k

= 1 +
∞

∑
k=1

xk
∞

∑
n=k

Tn,k(x1, x2, · · · , xn−k+1)
tn

n!

= 1 +
∞

∑
n=1

( n

∑
k=1

xkTn,k(x1, x2, · · · , xn−k+1)
) tn

n!
.

(31)

In view of (13), it is natural to define the central complete Bell polynomials by

exp
(

x
∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
=

∞

∑
n=0

B(c)
n (x|x1, x2, · · · , xn)

tn

n!
. (32)

Thus, by (31) and (32), we get

B(c)
n (x|x1, x2, · · · , xn) =

n

∑
k=0

xkTn,k(x1, x2, · · · , xn−k+1). (33)

When x = 1, B(c)
n (1|x1, x2, · · · , xn) = B(c)

n (x1, x2, · · · , xn) are called the central complete
Bell numbers.

For n ≥ 0, we have

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1) (34)

and

B(c)
0 (x1, x2, · · · , xn) = 1.
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By (18) and (33), we get

B(c)
n (1, 1, · · · , 1) =

n

∑
k=0

Tn,k(1, 1, · · · , 1) =
n

∑
k=0

T(n, k) = B(c)
n , (35)

and

B(c)
n (x|1, 1, · · · , 1) =

n

∑
k=0

xkTn,k(1, 1, · · · , 1) =
n

∑
k=0

xkT(n, k) = B(c)
n (x). (36)

From (31), we note that

exp
( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)
= 1 +

∞

∑
n=1

1
n!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)n

= 1 +
1
1!

∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!
+

1
2!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)i

× xi)
ti

i!

)2
+

1
3!

( ∞

∑
i=1

(1
2
)i
(xi − (−1)ixi)

ti

i!

)3
+ · · ·

= 1 +
1
1!

x1t +
1
2!

x2
1t2 +

1
3!

(
x3

1 +
1
22 x3

)
t3 + · · ·

=
∞

∑
n=0

(
∑

m1+2m2+···+nmn=n

n!
m1!m2! · · ·mn!

( x1

1!

)m1
( 0

2!2

)m2

×
( x3

3!22

)m3
· · ·
( xn

(
1− (−1)n)

n!2n

)mn) tn

n!
.

(37)

Now, for n ∈ N with n ≡ 1 (mod 2), by (32), (34) and (37), we get

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1)

= ∑
m1+3m3+···+nmn=n

n!
m1!m3! · · ·mn!

( x1

1!

)m1
( x3

3!22

)m3
· · ·
( xn

n!2n−1

)mn
.

(38)

Therefore, Equation (38) yields the following theorem.

Theorem 3. For n ∈ N with n ≡ 1 (mod 2), we have

B(c)
n (x1, x2, · · · , xn) =

n

∑
k=0

Tn,k(x1, x2, · · · , xn−k+1)

= ∑
m1+3m3+···+nmn=n

n!
m1!m3! · · ·mn!

( x1

1!

)m1
( x3

3!22

)m3
· · ·
( xn

n!2n−1

)mn
.

Example 1. Here, we illustrate Theorem 3 with the following example:

B(c)
5 (x1, 2x2, 22x3, 23x4, 24x5) =

5!
0!0!1!

( x1

1!

)0( x3

3!

)0( x5

5!

)1
+

5!
2!1!0!

( x1

1!

)2( x3

3!

)1( x5

5!

)0

+
5!

5!0!0!

( x1

1!

)5( x3

3!

)0( x5

5!

)0
= x5

1 + 10x2
1x3 + x5,
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T5,1(x1, 2x2, 22x3, 23x4, 24x5) =
5!

0!0!1!

( x1

1!

)0( x3

3!

)0( x5

5!

)1
= x5,

T5,3(x1, 2x2, 22x3) =
5!

2!1!

( x1

1!

)2( x3

3!

)1
= 10x2

1x3, T5,5(x1) =
5!
5!

( x1

1!

)5
= x5

1,

T5,0(x1, 2x2, 22x3, 23x4, 24x5, 25x6) = 0, T5,2(x1, 2x2, 22x3, 23x4) = 0, T5,4(x1, 2x2) = 0.

On the one hand, we have

exp
(

x
∞

∑
i=1

(1
2
)i(1− (−1)i) ti

i!

)
= 1 +

∞

∑
k=1

xk

k!

( ∞

∑
n=k

(1
2
)i(1− (−1)i) ti

i!

)k

= 1 +
∞

∑
k=1

xk
∞

∑
n=k

Tn,k(1, 1, · · · , 1)
tn

n!

= 1 +
∞

∑
n=1

( n

∑
k=1

xkTn,k(1, 1, · · · , 1)
) tn

n!
.

(39)

On the other hand, from (19), we have

exp
(

x
∞

∑
i=1

(1
2
)i(1− (−1)i) ti

i!

)
= exp

(
x
(
t +

1
22 t3 +

1
24 t5 + · · ·

))
= exp

(
x
(
e

t
2 − e−

t
2
))

=
∞

∑
n=0

B(c)
n (x)

tn

n!
.

(40)

Therefore, by (39) and (40), we obtain the following theorem.

Theorem 4. For n, k ≥ 0 with n ≥ k, we have

n

∑
k=0

xkTn,k(1, 1, · · · , 1) = B(c)
n (x).

We note from Theorem 4 the next identities:

n

∑
k=0

xkTn,k(1, 1, · · · , 1) =
n

∑
k=0

Tn,k(x, x, · · · , x) = B(c)
n (x, x, · · · , x). (41)

Thus, Theorem 4 and (41) together give us the following corollary.

Corollary 2. For n ≥ 0, we have

B(c)
n (x, x, · · · , x) = B(c)

n (x).

The Stirling numbers of the first kind are given in terms of the generating function by (see [3,21])

1
k!
(

log(1 + t)
)k

=
∞

∑
n=k

S1(n, k)
tn

n!
, (k ≥ 0). (42)
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In order to get the following result and using (42), we first observe that

1
k!

(
log
(

1 +
x

1− x
2

))k
=

∞

∑
l=k

S1(l, k)
1
l!

( x
1− x

2

)l

=
∞

∑
l=k

S1(l, k)
xl

l!
(
1− x

2
)−l

=
∞

∑
l=k

1
l!

S1(l, k)
∞

∑
n=l

(
n− 1
l − 1

)(1
2
)n−l xn

=
∞

∑
n=k

( n

∑
l=k

1
l!

S1(l, k)
(

n− 1
l − 1

)(1
2
)n−l

)
xn.

(43)

The following equation can be derived from (21) and (43):

∞

∑
n=k

Tn,k(0!, 1!, 2!, · · · , (n− k)!
) tn

n!

=
1
k!

(
t +
(1

2
)2 t3

3
+
(1

2
)4 t5

5
+
(1

2
)6 t7

7
+ · · ·

)k

=
1
k!

(
log
(
1 +

t
2
)
− log

(
1− t

2
))k

=
1
k!

(
log
(1 + t

2

1− t
2

))k

=
1
k!

(
log
(
1 +

t
1− t

2

))k
=

∞

∑
n=k

( n

∑
l=k

S1(l, k)
l!

(
n− 1
l − 1

)(1
2
)n−l

)
tn.

(44)

Now, we obtain the following theorem by comparing the coefficients on both sides of (44).

Theorem 5. For n, k ≥ 0 with n ≥ k, we have

Tn,k
(
0!, 1!, 2!, · · · , (n− k)!

)
= n!

n

∑
l=k

S1(l, k)
l!

(
n− 1
l − 1

)(1
2
)n−l .

4. Conclusions

In this paper, we introduced central complete and incomplete Bell polynomials which can be
viewed as generalizations of central Bell polynomials and central factorial numbers of the second
kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. As examples
and recalling some relevant works, we reminded the reader that the incomplete and complete Bell
polynomials appearing in a Faà di Bruno formula, which encode integer partition information, can be
used in constructing sequences of binomial type, have connections with combinatorial Hopf algebras,
have applications in probability theory and arise in many combinatorial and number theoretic identities.
One additional thing we want to mention here is that the Faà di Bruno formula has been proved to
be very useful in finding explicit expressions for many special numbers arising from many different
families of linear and nonlinear differential equations having generating functions of some special
numbers and polynomials as solutions (see [22]).

The main results of the present paper are stated in Section 3, in which we introduced
central incomplete and complete Bell polynomials and investigated some properties and identities.
In particular, in Theorems 1 and 3, we gave basic formulas for computing central incomplete Bell
polynomials and central complete Bell polynomials, respectively. We remarked that the number of
monomials appearing in Tn,k(x1, 2x2, · · · , 2n−kxn−k+1) is the number of partitioning n into k odd parts
and the coefficient of each monomial is the number of partitioning n as the corresponding k odd parts.
This was illustrated by an example. Furthermore, we gave expressions for the central incomplete and
complete Bell polynomials with some various special arguments and also for the connection between
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the two Bell polynomials. In the near future, we hope to find some further properties, identities and
various applications for central complete and incomplete Bell polynomials.
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