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Abstract: Autofrettage is a widely used process to enhance the fatigue life of holes. In the theoretical
investigation presented in this article, a semi-analytic solution is derived for a polar, orthotropic,
open-ended cylinder subjected to internal pressure, followed by unloading. Numerical techniques are
only necessary to solve a linear differential equation and evaluate ordinary integrals. The generalized
Hooke’s law connects the elastic portion of strain and stress. The flow theory of plasticity is employed.
Plastic yielding is controlled by the Tsai–Hill yield criterion and its associated flow rule. It is shown
that using the strain rate compatibility equation facilitates the solution. The general solution takes into
account that elastic and plastic properties can be anisotropic. An illustrative example demonstrates
the effect of plastic anisotropy on the distribution of stresses and strains, including residual stresses
and strain, for elastically isotropic materials.
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1. Introduction

High-pressure vessels are often autofrettaged to improve their performance under service
conditions. Numerous theories of the autofrettage process of hollow cylinders under different end
conditions are available. The three main end conditions are usually adopted (plane strain, closed-end,
and open-end conditions). The earliest attempt on a strict mathematical theory of the autofrettage
process appears to have been in [1], where the plane strain condition has been considered assuming
an elastic, perfectly plastic material model. This theory has been extended to closed-end tubes in [2].
A theory of the autofrettage process of tubes with free ends has been proposed in [3]. The Tresca yield
criterion has been adopted, and the solution has been found by a finite difference method.

The elastic/perfectly plastic solutions mentioned above have been extended to other constitutive
equations. In particular, solutions for open-ended cylinders of strain-hardening material have been
derived in [4,5]. Both the Tresca and von Mises criteria, in conjunction with the corresponding
associated flow rule, have been adopted in [4]. In the case of Ni-Cr-Mo cylinders, it has been shown
that the effect of strain hardening is important in cylinders with radius ratios of 3 or greater. Hencky’s
deformation theory of plasticity, based on the von Mises yield criterion, has been employed in [5].
A solution for hollow cylinders under a constant axial strain condition has been provided in [6], using
the deformation theory of plasticity and the von Mises yield criterion. The corresponding plane strain
solution can be obtained as a special case. A nonlinear strain-hardening model for steel has been
proposed in [7]. Then, this model has been used for studying the process of autofrettage in close-ended
cylinders. A comprehensive overview of autofrettage theories for internally pressurized homogeneous
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tubes of perfectly plastic and strain-hardening materials has been provided in [8]. A plane strain
solution based on a gradient theory of plasticity has been found in [9]. Hencky’s deformation theory
of plasticity and a unified yield criterion have been adopted.

The Bauschinger effect can significantly influence the distribution of residual stresses and strains
in tubes subjected to internal pressure followed by unloading. Therefore, many theoretical solutions
for the process of autofrettage are based on material models that incorporate the Bauschinger effect.
A solution for a hardening law suitable for high-strength steel has been given in [10]. A distinguished
feature of this hardening law is that the material is perfectly plastic at loading, but shows a strong
Bauschinger effect within a certain range of the forward strain. The Tresca yield criterion and its
associated flow rule have been used. An approximate method of finding analytic solutions for generic
isotropic and kinematic strain hardening laws has been introduced in [11]. Another approximate
method has been employed in [12], using the concept of the single effective material. Numerical
methods have been developed in [13–15] for materials with nonlinear stress–strain behavior. An effect
of varying elastic and plastic material properties along the radius on the distribution of residual
stresses in autofrettaged cylinders has been evaluated in [16].

An efficient method of improving the performance of autofrettaged tubes is to use two- and multi-layer
tubes [17]. Several theoretical solutions for such tubes are available in the literature (for example, [18–23]).
The methods of analysis employed are similar to those used for homogeneous tubes.

In addition to the autofrettage treatment by internal pressure, thermal and rotational autofrettage
treatments are widely used. Thermal autofrettage has been studied in [24–27], and rotational
autofrettage in [28,29].

A comprehensive overview of theoretical and experimental research on the process of autofrettage
has been recently provided in [30]. It is seen from this review that initially anisotropic materials were
not considered. On the other hand, it is known from solutions to other problems in structural mechanics,
for example in [31–33], that plastic anisotropy may have a significant effect on the solution. In particular,
it is mentioned in [33] that even mild plastic anisotropy significantly affects the distribution of residual
stresses, which is of special importance for the process of autofrettage. In the case of circular discs
and cylinders, a common type of anisotropy is polar orthotropy. In particular, the effect of plastic
anisotropy on stress and strain fields in rotating discs has been studied in [34–39], using different
material models and boundary conditions. Various boundary value problems for orthotropic cylinders
have been solved in [40–44]. All of these studies demonstrate that it is important to take into account
plastic anisotropy in analysis and the design of structures. It is therefore reasonable to provide a
theoretical analysis of the autofrettage process for polar orthotropic cylinders.

In the present paper, the open-ended cylinder is considered. It is assumed that the elastic
strain and stress are connected by the generalized Hooke’s law. Plastic yielding is controlled by the
Tsai–Hill yield criterion. This criterion is often used in applications [45–49]. Therefore, the material is
initially anisotropic. The flow theory of plasticity is employed. It is shown that using the strain rate
compatibility equation facilitates the solution. In particular, a numerical technique is only necessary to
solve a linear differential equation and evaluate ordinary integrals.

2. Statement of the Problem

Consider the expansion of a thick-walled hollow cylinder of inner radius a0 and outer radius b0

by a uniform internal pressure P0, followed by unloading. The external pressure is zero. It is natural to
solve this boundary value problem in a cylindrical coordinate system (r, θ, z) whose z−axis coincides
with the axis of symmetry of the cylinder. It is assumed that the cylinder is sufficiently long to make the
stresses and strains independent of the z-coordinate. The ends of the cylinder are not loaded. The inner
pressure at the end of loading is high enough so that the annulus contained by the inner radius and
some internal radius r = rc is plastic, while the outer annulus contained by the surface r = rc and the
outer radius is elastic. The surface r = rc is the elastic/plastic boundary. Let σr, σθ , and σz be the stress
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components referred to the cylindrical coordinate system. These stresses are the principal stresses.
Moreover, σz = 0 for the open-ended cylinder. The boundary conditions at loading are

σr = −P0 (1)

for r = a0, and
σr = 0 (2)

for r = b0. Let Pm be the value of P0 at the end of loading. Then, the boundary conditions at
unloading are

∆σr = Pm (3)

for r = a0, and
∆σr = 0 (4)

for r = b0. Here ∆σr is the increment of the radial stress in course of unloading.
It is assumed that the cylinder is polar orthotropic. Then, the principal strain directions coincide

with the principal stress directions. In particular, the generalized Hooke’s law, in terms of the principal
stress and strain components under plane stress conditions, is

εe
r = arrσr + arθσθ , εe

θ = arθσr + aθθσθ , εe
z = arzσr + aθzσθ . (5)

Here εe
r, εe

θ , and εe
z are the elastic radial, circumferential, and axial strains, respectively.

The coefficients arr, arθ , arz, and aθz are the components of the compliance tensor. In terms of the
principal stresses, the Tsai–Hill yield criterion reads

σ2
θ − σrσθ + σ2

r
X2

Y2 = X2 (6)

where X and Y are the yield stresses in the circumferential and radial directions, respectively. The flow
rule associated with the yield criterion (6) is

∂ε
p
r

∂t
= λ1

(
2X2

Y2 σr − σθ

)
,

∂ε
p
θ

∂t
= λ1(2σθ − σr),

∂ε
p
z

∂t
= λ1

[(
1− 2X2

Y2

)
σr − σθ

]
(7)

where ε
p
r , ε

p
θ , and ε

p
z are the plastic radial, circumferential, and axial strains, respectively; t is the time;

and λ1 is a non-negative multiplier. Since the model under consideration is rate independent, the time
derivatives in (7) can be replaced with derivatives with respect to any monotonically increasing or
decreasing parameter q. Then, Equation (7) is replaced with

ξ
p
r = λ

(
2X2

Y2 σr − σθ

)
, ξ

p
θ = λ(2σθ − σr), ξ

p
z = λ

[(
1− 2X2

Y2

)
σr − σθ

]
(8)

where ξ
p
r = ∂ε

p
r /∂q, ξ

p
θ = ∂ε

p
θ /∂q, ξ

p
z = ∂ε

p
z /∂q, and λ is proportional to λ1. The total strains are

given by
εr = εe

r + ε
p
r , εθ = εe

θ + ε
p
θ , εz = εe

z + ε
p
z . (9)

The constitutive equations should be supplemented with the equilibrium equation of the form

∂σr

∂r
+

σr − σθ

r
= 0. (10)

The solution is facilitated by using the equation of strain-rate compatibility. This equation is
equivalent to

r
∂ξθ

∂r
+ ξθ − ξr = 0. (11)
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In what follows, the following dimensionless quantities will be used:

ρ =
r
b0

, a =
a0

b0
, ρc =

rc

b0
, p0 =

P0

X
, pm =

Pm

X
, k = Xarr. (12)

3. Purely Elastic Solution

The general purely elastic solution for stress can be written as

σr

X
= C1ρτ−1 + C2ρ−τ−1,

σθ

X
= τ

(
C1ρτ−1 − C2ρ−τ−1

)
(13)

where C1 and C2 are constants of integration and τ =
√

arr/aθθ . Substituting Equation (13) into
Equation (5) supplies the solution for strain in the form

εe
r

k = C1

(
1 + Xarθτ

k

)
ρτ−1 + C2

(
1− Xarθ τ

k

)
ρ−τ−1,

εe
θ
k = C1

(
arθ
arr

+ aθθ τ
arr

)
ρτ−1 + C2

(
arθ
arr
− aθθ τ

arr

)
ρ−τ−1,

εe
z
k = C1

(
arz
arr

+ τaθz
arr

)
ρτ−1 + C2

(
arz
arr
− τaθz

arr

)
ρ−τ−1.

(14)

The solution for Equation (13) should satisfy the boundary conditions of Equations (1) and (2).
Then, using Equation (12), the constants C1 and C2 are determined as

C1 = − p0

at−1 − a−t−1 , C2 =
p0

at−1 − a−t−1 . (15)

Substituting Equation (15) into Equation (13) results in

σr

X
=

p0

(aτ−1 − a−τ−1)

(
ρ−τ−1 − ρτ−1

)
,

σθ

X
= − τp0

(aτ−1 − a−τ−1)

(
ρ−τ−1 + ρτ−1

)
. (16)

It is assumed that plastic yielding initiates at the inner radius of the cylinder, ρ = a.
This assumption should be verified for each set of constitutive parameters. The corresponding
condition follows from Equations (6) and (16), in the form

p2
0

(aτ−1 − a−τ−1)
2

[
τ2
(

ρ−τ−1 + ρτ−1
)2

+
τ

ρ2

(
ρ−2τ − ρ2τ

)
+
(

ρ−τ−1 − ρτ−1
)2 X2

Y2

]
≤ 1 (17)

in the range a ≤ ρ ≤ 1. It follows from Equation (16) that

σr

X
= −p0,

σθ

X
=

τp0
(
1 + a2τ

)
(1− a2τ)

(18)

at ρ = a. Substituting Equation (18) into the yield criterion of Equation (6) and using
Equation (12) yields

pe =
(

1− a2τ
)[

τ2
(

1 + a2τ
)2

+ τ
(

1− a4τ
)
+

X2

Y2

(
1− a2τ

)2
]−1/2

. (19)

Here pe is the value of p0, at which point a plastic region starts to propagate from the inner radius
of the cylinder. In what follows, it is assumed that p0 > pe.

4. Elastic/Plastic Stress Solution

There are two regions, a ≤ ρ ≤ ρc and ρc ≤ ρ ≤ 1, at p0 > pe. The region ρc ≤ ρ ≤ 1 is elastic.
The general solution for Equation (13) is valid in this region. However, the constants C1 and C2 are not
given by (15). The stress solution in the region a ≤ ρ ≤ ρc must satisfy the yield criterion of Equation
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(6) and the equilibrium Equation (10). It is possible to verify by inspection that the yield criterion is
satisfied by the following substitution:

σr

X
= −2 sin ϕ

Q
,

σθ

X
= − sin ϕ

Q
− cos ϕ, Q =

X
Y

√
4− Y2

X2 (20)

where ϕ is an auxiliary function of ρ. Substituting Equation (20) into (10) yields

2 cos ϕ
∂ϕ

∂ρ
+

(sin ϕ−Q cos ϕ)

ρ
= 0. (21)

The stress solution in the region a ≤ ρ ≤ ρc should satisfy the boundary condition of Equation (1).
Using Equations (12) and (20), this condition transforms to

ϕ = ϕa (22)

where ρ = a, where ϕa is determined from the equation

2 sin ϕa = Qp0 (23)

The unique solution of this equation is found using the condition that the circumferential stress
at ρ = a at the initiation of plastic yielding is determined from Equation (18), in which p0 should
be replaced with pe, given in Equation (19). The solution of Equation (21) satisfying the boundary
condition of Equation (22) is

ln
ρ

a
=

2Q(ϕ− ϕa)

(1 + Q2)
+

2
(1 + Q2)

ln
(

Q cos ϕa − sin ϕa

Q cos ϕ− sin ϕ

)
. (24)

Let ϕc be the value of ϕ at ρ = ρc. Then, it follows from Equation (24) that

ln
ρc

a
=

2Q(ϕc − ϕa)

(1 + Q2)
+

2
(1 + Q2)

ln
(

Q cos ϕa − sin ϕa

Q cos ϕc − sin ϕc

)
(25)

The solution of Equation (13) should satisfy the boundary condition in Equation (2). Therefore,
using Equation (12), it is possible to find that C1 + C2 = 0. Then, the stress solution in the elastic region
ρc ≤ ρ ≤ 1 is

σr

X
= C1

(
ρτ−1 − ρ−τ−1

)
,

σθ

X
= τC1

(
ρτ−1 + ρ−τ−1

)
. (26)

The radial and circumferential stresses must be continuous across the elastic/plastic boundary.
Then, it follows from Equations (20) and (26) that

− 2 sin ϕc

Q
= C1

(
ρτ−1

c − ρ−τ−1
c

)
, − sin ϕc

Q
− cos ϕc = τC1

(
ρτ−1

c + ρ−τ−1
c

)
. (27)

Eliminating C1 between these equations results in

1 + Q cot ϕc =
2τ
(
ρ2τ

c + 1
)

(ρ2τ
c − 1)

. (28)

In this equation, ρc can be eliminated by means of Equation (25). The resulting equation can be
solved numerically to find ϕc as a function of ϕa. Using this solution, ρc as a function of ϕa is immediate
from Equation (25), and then C1 is a function of ϕa from any part of Equations (27). Equation (23)
allows for all these quantities to be expressed as a function of p0. Then, at any value of p0, the variation
of stresses with ρ in the elastic region follows from Equation (26), and in the plastic region from (20)
and (24). The latter is in parametric form, with ϕ being the parameter. A difficulty is that this general
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solution may not exist. One of the restrictions is that plastic yielding is not initiated in the elastic
region. Using Equations (12), (6), and (26), the corresponding condition can be represented as

C2
1

[
τ2
(

ρτ−1 + ρ−τ−1
)2
− τ

ρ2

(
ρ2τ − ρ−2τ

)
+
(

ρτ−1 − ρ−τ−1
)2 X2

Y2

]
≤ 1 (29)

in the range ρc ≤ ρ ≤ 1. Having found the value of C1 the inequality in Equation (29), it can be verified
by inspection with no difficulty. Another restriction is immediate from (20):

Y
X

< 2. (30)

The physical sense of this restriction is that Equation (6) does not determine a convex yield
surface in principal stress space if Y > 2X. Still another restriction follows from Equation (23).
Since |sin ϕa| ≤ 1, the value of p0 must satisfy the inequality

p0 ≤
2
Q
≡ pp. (31)

If p0 = pp, then the localization of plastic deformation occurs at the inner radius of the cylinder,
and the plastic region cannot propagate beyond the radius reached at this value of p0.

Consider the state of stress in the cylinder when the entire cylinder becomes plastic, and the
localization of plastic deformation occurs at the inner radius of the cylinder simultaneously. The latter
condition requires ϕa = π/2. On the other hand, the stresses in Equation (20) should satisfy the
boundary condition in Equation (2). It is reasonable to assume that at σθ > 0 at ρ = 1. Then, Equations
(2) and (20) combine to give ϕc = π. It is evident that ρc = 1. Substituting ϕa = π/2, ϕc = π,
and ρc = 1 into Equation (25) yields

ln a =
2 ln Q

(1 + Q2)
− Qπ

(1 + Q2)
. (32)

Here, Q can be eliminated using its definition. Then, Equation (32) determines a relationship
between a and Y/X corresponding to the state of stress in question. This relation is illustrated in
Figure 1. If the point corresponding to a pair (a, Y/X) lies above the curve, then the entire disc
becomes plastic before the localization of plastic deformation at the inner surface of the cylinder,
and vice versa.
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Figure 1. Geometric interpretation of two different mechanisms of plastic collapse (localization of
plastic deformation at the inner radius of the cylinder and occurrence of the plastic region over the
entire disc).
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It is also of importance to consider the difference between pe and pp. It is seen from Equations (19)
and (31) that pp is the function only of Y/X, whereas pe depends on Y/X, a, and τ. The variation of
pp − pe with Y/X at a = 0.4 for several values of τ is depicted in Figure 2. It is seen from this figure
that the difference is rather small if the ratio Y/X is small enough. This means that the localization of
plastic deformation at the inner surface of the cylinder occurs at the very beginning of plastic yielding.Symmetry 2019, 11, x FOR PEER REVIEW 2 of 13 
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Figure 2. Effect of constitutive parameters on the magnitude of pressure at which plastic deformation
is localized at the inner radius of the cylinder.

5. Elastic/Plastic Strain Solution

The total strain is elastic in the region ρc ≤ ρ ≤ 1. Therefore, using Equation (12), the principal
strains in this region are found from the generalized Hooke’s law in Equation (5) and the stress solution
of Equation (26), as

εr
k = C1

[(
1 + τarθ

arr

)
ρτ−1 +

(
τarθ
arr
− 1
)

ρ−τ−1
]
,

εθ
k = C1

[(
arθ
arr

+ τaθθ
arr

)
ρτ−1 +

(
τaθθ
arr
− arθ

arr

)
ρ−τ−1

]
,

εz
k = C1

[(
arz
arr

+ τaθz
arr

)
ρτ−1 +

(
τaθz
arr
− arz

arr

)
ρ−τ−1

]
.

(33)

Using Equation (12), the elastic portion of strain in the plastic region, a ≤ ρ ≤ ρc, is determined
from the generalized Hooke’s law (Equation (5)) and the stress solution in Equation (20), as

εe
r

k = − (2+arθ /arr)
Q sin ϕ− arθ

arr
cos ϕ, εe

θ
k = − (2arθ+aθθ)

Qarr
sin ϕ− aθθ

arr
cos ϕ,

εe
z
k = − 2arz sin ϕ

arrQ − aθz
arr

(
sin ϕ

Q + cos ϕ
)

.
(34)

Substituting Equation (20) into Equation (8) leads to

ξ
p
r = λ

[
sin ϕ

Q

(
1− 4X2

Y2

)
+ cos ϕ

]
,

ξ
p
θ = −2λ cos ϕ, ξ

p
z = λ

[(
4X2

Y2 − 1
)

sin ϕ
Q + cos ϕ

]
.

(35)

Eliminating λ between these equations gives

ξ
p
r

ξ
p
θ

= Q
2

(
4X2

Y2 − 1
)

tan ϕ− 1
2 ,

ξ
p
z

ξ
p
θ

= −Q
2

(
4X2

Y2 − 1
)

tan ϕ− 1
2 .

(36)



Symmetry 2019, 11, 280 8 of 18

In what follows, it is assumed that q ≡ ϕa and

ξe
r =

∂εe
r

∂ϕa
, ξe

θ =
∂εe

θ

∂ϕa
, ξe

z =
∂εe

z
∂ϕa

, ξr =
∂εr
∂ϕa

, ξe
θ =

∂εθ

∂ϕa
, ξe

z =
∂εz
∂ϕa

. (37)

Then, differentiating Equation (34) with respect to ϕa yields

ξe
r

k =
[
− (2+arθ /arr)

Q cos ϕ + arθ
arr

sin ϕ
]

∂ϕ
∂ϕa

,
ξe

θ
k =

[
− (2arθ+aθθ)

Qarr
cos ϕ + aθθ

arr
sin ϕ

]
∂ϕ
∂ϕa

,
ξe

z
k = −

[
2arz cos ϕ

arrQ + aθz
arr

(
cos ϕ

Q − sin ϕ
)]

∂ϕ
∂ϕa

.

(38)

Substituting Equation (9) differentiated with respect to ϕa into Equation (11) and using
Equation (12) leads to

ρ
∂ξθ

∂ρ
+ ξθ − ξ

p
r − ξe

r = 0. (39)

Moreover, using Equation (36),

ξ
p
r =

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ− 1
2

]
ξ

p
θ =

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ− 1
2

]
(ξθ − ξe

θ) (40)

Then, eliminating ξ
p
r in Equation (39) by means of Equation (40) yields

ρ
∂ξθ

∂ρ
+

ξθ

2

[
3−Q

(
4X2

Y2 − 1
)

tan ϕ

]
+

[
Q
2

(
4X2

Y2 − 1
)

tan ϕ− 1
2

]
ξe

θ − ξe
r = 0. (41)

Using Equation (21), differentiation with respect to ρ in Equation (41) can be replaced with
differentiation with respect to ϕ. As a result,

∂ξθ

∂ϕ
(Q− tan ϕ) + ξθ

[
3−Q

(
4X2

Y2 − 1
)

tan ϕ

]
+

[
Q
(

4X2

Y2 − 1
)

tan ϕ− 1
]

ξe
θ − 2ξe

r = 0. (42)

It is seen from (38) that the expressions for ξe
r and ξe

θ involve the derivative ∂ϕ/∂ϕa. In general,
this derivative can be found from Equation (24), which is the solution of Equation (21). However,
it is more convenient to represent the solution of this equation satisfying the boundary condition
Equation (22) as

ln
ρ

a
= 2

ϕ∫
ϕa

cos η

(Q cos η − sin η)
dη (43)

where η is a dummy variable of integration. Differentiating Equation (43) gives

2 cos ϕ

(Q cos ϕ− sin ϕ)
dϕ =

2 cos ϕa

(Q cos ϕa − sin ϕa)
dϕa +

dρ

ρ
.

It follows from this equation that

∂ϕ

∂ϕa
=

cos ϕa(Q cos ϕ− sin ϕ)

cos ϕ(Q cos ϕa − sin ϕa)
. (44)



Symmetry 2019, 11, 280 9 of 18

Equations (38) and (44) combine to give

ξe
r

k =
[
− (2+arθ /arr)

Q cos ϕ + arθ
arr

sin ϕ
]
(Q−tan ϕ)
(Q−tan ϕa)

,
ξe

θ
k =

[
− (2arθ+aθθ)

Qarr
cos ϕ + aθθ

arr
sin ϕ

]
(Q−tan ϕ)
(Q−tan ϕa)

,
ξe

z
k = −

[
2arz cos ϕ

arrQ + aθz
arr

(
cos ϕ

Q − sin ϕ
)]

(Q−tan ϕ)
(Q−tan ϕa)

.

(45)

Eliminating ξe
r and ξe

θ in Equation (42) by means of Equation (45) results in the following linear
differential equation for ξθ/k:

∂(ξθ /k)
∂ϕ +

ξθ
k Φ1(ϕ) +

Φ2(ϕ)
(Q−tan ϕa)

= 0,

Φ1(ϕ) =
[
3−Q

(
4X2

Y2 − 1
)

tan ϕ
]
(Q− tan ϕ)−1,

Φ2(ϕ) =
[

aθθ sin ϕ− (2arθ+aθθ)
Q cos ϕ

][
Q
(

4X2

Y2 − 1
)

tan ϕ− 1
]
+

2
[
(2arr+arθ)

Q cos ϕ− arθ sin ϕ
]
.

(46)

The circumferential strain rate must be continuous across the elastic/plastic boundary. Therefore,
the boundary condition to Equation (46) is

ξθ

k
=

ξc

k
(47)

for ϕ = ϕc. Here, ξc is the value of ξθ on the elastic side of the elastic/plastic boundary. Differentiating
the second equation in Equation (33) with respect to ϕa, and then putting ρ = ρc results in

ξc

k
=

dC1

dϕa

[(
arθ

arr
+

τaθθ

arr

)
ρτ−1

c +

(
τaθθ

arr
− arθ

arr

)
ρ−τ−1

c

]
. (48)

It is seen from this equation that it is necessary to find the derivative dC1/dϕa. It follows from
Equation (43) that

ln
ρc

a
= 2

ϕc∫
ϕa

cos ϕ

(Q cos ϕ− sin ϕ)
dϕ. (49)

Differentiating this equation and Equation (28) with respect to ϕa yields

dϕc

dϕa
=

(Q− tan ϕc)

2

[
dρc

ρcdϕa
+

2
(Q− tan ϕa)

]
(50)

and
dϕc

dϕa
=

8τ2ρ2τ−1
c sin2 ϕc

Q(ρ2τ
c − 1)2

dρc

dϕa
, (51)

respectively. Solving Equations (50) and (51) for the derivatives dρc/dϕa and dϕc/dϕa gives

dρc
dϕa

= (Q−tan ϕc)
(Q−tan ϕa)

[
8τ2ρ2τ−1

c sin2 ϕc

Q(ρ2τ
c −1)

2 − (Q−tan ϕc)
2ρc

]−1
,

dϕc
dϕa

= 8τ2ρ2τ−1
c sin2 ϕc(Q−tan ϕc)

Q(ρ2τ
c −1)

2
(Q−tan ϕa)

[
8τ2ρ2τ−1

c sin2 ϕc

Q(ρ2τ
c −1)

2 − (Q−tan ϕc)
2ρc

]−1
.

(52)

The derivative dC1/dϕa is determined from the first equation in Equation (27) as

dC1

dϕa
=

2 sin ϕc
[
(τ − 1)ρτ−2

c + (τ + 1)ρ−τ−2
c

]
Q
(

ρτ−1
c − ρ−τ−1

c

)2
dρc

dϕa
− 2 cos ϕc

Q
(

ρτ−1
c − ρ−τ−1

c

) dϕc

dϕa
(53)
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In this equation, the derivatives dρc/dϕa and dϕc/dϕa can be eliminated by means of Equation
(52). In the previous section, ϕc and ρc have been found as functions of ϕa. Therefore, Equations (48)
and (53) combine to supply ξc/k as a function of ϕa. Then, the solution of Equation (46), satisfying the
boundary condition of Equation (47), can be solved numerically.

By definition, ξθ = ∂εθ/∂ϕa if ξθ and εθ are regarded as functions of ϕa and ρ. However,
the solution of Equation (46) provides ξθ as a function of ϕa and ϕ. In this case, ∂εθ

∂ϕa
+ ∂εθ

∂ϕ
∂ϕ
∂ϕa

= ξθ .
In this equation, the derivative ∂ϕ/∂ϕa can be eliminated by means of Equation (44). Then,

∂εθ

∂ϕa
+

∂εθ

∂ϕ

(Q− tan ϕ)

(Q− tan ϕa)
= ξθ . (54)

Using a standard technique, it is possible to find that the equation of the characteristics is

dϕ =
(Q− tan ϕ)

(Q− tan ϕa)
dϕa (55)

and the relation along the characteristics is

d
( εθ

k

)
=

ξθ

k
dϕa. (56)

Equation (55) can be immediately integrated to give

Q(ϕa − ϕ) + ln
(

Q cos ϕ− sin ϕ

Q cos ϕa − sin ϕa

)
= D (57)

where D is a constant of integration. The boundary condition to Equation (56) is that εθ/k = εe
θ/k at the

elastic/plastic boundary. Here εe
θ is the circumferential strain on the elastic side of the elastic/plastic

boundary. Using Equation (33), this boundary condition is represented as

εθ

k
= C1

[(
arθ

arr
+

τaθθ

arr

)
ρτ−1

c +

(
τaθθ

arr
− arθ

arr

)
ρ−τ−1

c

]
(58)

for ρ = ρc (or ϕ = ϕc).
It is evident from Equation (57) that ϕ = ϕa is a characteristic curve, and that D = 0 on this

curve. Having ξθ/k as a function of ϕa at ϕ = ϕa (or ρ = a) from the solution of Equation (46), it is
possible to integrate Equation (56) along the characteristic curve ϕ = ϕa with the use of the boundary
condition in Equation (58), to find the circumferential strain at the inner radius of the cylinder without
solving Equation (54) for the entire plastic region. In order to illustrate the procedure for finding
the strain solution in the entire plastic region, consider a schematic field of characteristics shown in
Figure 3, where ϕm is the value of ϕa at the end of loading. Since ϕc as a function of ϕa is found
from the solution of Equation (28), the curve ϕ = ϕc is known. Choosing any pair (ϕa, ϕ) on this
curve, it is possible to find D from Equation (57). The corresponding characteristic curve follows from
Equation (57) at this value of D if ϕa varies in the range ϕe ≥ ϕa ≥ ϕm. In particular, the value of ϕ at
ϕa = ϕm is determined. This value of ϕ is denoted as ϕM. The value of the circumferential strain at
ϕa = ϕM and ϕ = ϕM is found from the solution of Equation (56) satisfying the boundary condition
of Equation (58). The plastic portion of this strain is immediate from Equations (9) and (34). Having
found the distribution of ξθ/k along the characteristic curve, it is possible to determine the distribution
of ξ

p
θ /k using the equation ξ

p
θ /k = ξθ/k− ξe

θ/k and Equation (45). Then, Equation (36) supplies the
distribution of ξ

p
r /k and ξ

p
z /k.
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By analogy to Equation (54), it is possible to get

∂ε
p
r

∂ϕa
+

∂ε
p
z

∂ϕ

(Q− tan ϕ)

(Q− tan ϕa)
= ξ

p
θ ,

∂ε
p
z

∂ϕa
+

∂ε
p
z

∂ϕ

(Q− tan ϕ)

(Q− tan ϕa)
= ξ

p
z . (59)

These equations can be integrated in the same manner as Equation (54). In particular, Equation
(57) is the equation of characteristic curves. The boundary conditions are

ε
p
r = ε

p
z = 0 (60)

for ρ = ρc (or ϕ = ϕc). Once the values of ε
p
r and ε

p
z at ϕa = ϕm and ϕ = ϕM have been found, the total

strains are immediate from Equations (9) and (34). The strain solution described supplies the variation
of strain components with ϕ at a given value of ϕa. In order to find the radial distributions, it is
necessary to use Equation (24).

6. Unloading

It is assumed that the process of unloading is purely elastic. This assumption should be verified a
posteriori. The general elastic solution of Equation (13), in which the stress components are replaced
with their increments, is valid in the entire cylinder. Then,

∆σr

X
= C3ρτ−1 + C4ρ−τ−1,

∆σθ

X
= τ

(
C3ρτ−1 − C4ρ−τ−1

)
(61)

where C3 and C4 are new constants of integration. These constants are found from the boundary
conditions of Equations (3) and (4). As a result,

C3 = −C4 =
pm

(a−τ−1 − aτ−1)
. (62)

Here, Equation (12) has been taken into account. Substituting Equation (62) into (61) supplies the
radial distribution of ∆σr and ∆σθ in the form

∆σr

X
=

pm

(a−τ−1 − aτ−1)

(
ρτ−1 − ρ−τ−1

)
,

∆σθ

X
=

τpm

(a−τ−1 − aτ−1)

(
ρτ−1 + ρ−τ−1

)
. (63)
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The variation of the residual stresses with ρ is found as

σres
r = σr + ∆σr and σres

θ = σθ + ∆σθ . (64)

It is understood here that σr and σθ are known from the stress solution given in Section 4,
at p0 = pm. The process of unloading is purely elastic if the yield criterion is not violated in the entire
cylinder. Using Equation (6), this condition can be represented as(

σres
θ

X

)2

−
(

σres
θ

X

)(
σres

r
X

)
+

(
σres

r
X

)2 X2

Y2 ≤ 1 (65)

in the range a ≤ ρ ≤ 1. The radial distribution of the strain increments is determined from the
generalized Hooke’s law in Equations (5) and (62), as

∆εe
r

k = pm

(a−τ−1−aτ−1)

[(
1 + τarθ

arr

)
ρτ−1 − ρ−τ−1

(
1− τarθ

arr

)]
,

∆εe
θ

k = pm

(a−τ−1−aτ−1)

[(
arθ
arr

+ τaθθ
arr

)
ρτ−1 −

(
arθ
arr
− τaθθ

arr

)
ρ−τ−1

]
,

∆εe
z

k = pm

(a−τ−1−aτ−1)

[(
arz
arr

+ τaθz
arr

)
ρτ−1 −

(
arz
arr
− τaθz

arr

)
ρ−τ−1

]
.

(66)

The variation of the residual strains with ρ is found as

εres
r = εr + ∆εr, εres

θ = εθ + ∆εθ and εres
z = εz + ∆εz (67)

It is understood here that εr, εθ , and εz are known from the strain solution given in Section 5 at
p0 = pm.

7. Numerical Example

This section illustrates the effect of plastic anisotropy on the distribution of stress and strain in
an a = 0.4 cylinder, assuming that the elastic properties are isotropic. In particular, it is assumed that
Poisson’s ratio is equal to 0.3 (i.e., arθ = −0.3). The value of k is immaterial, because all strains are
proportional to k. The solution given in Section 4 has been used to calculate the radial distribution
of the radial and circumferential stress corresponding to ρc = 0.8. It is seen from Figure 1 that the
solution without the localization of plastic deformation at the inner radius of the cylinder exists only
if Y/X > 0.8. Therefore, the stress solution has been found at Y/X = 0.85, Y/X = 1 (isotropic
material), Y/X = 1.25, and Y/X = 1.5. This solution is illustrated in Figure 4 (radial stress) and
Figure 5 (circumferential stress). The associate strain solution has been found using the approach
described in Section 5. This strain solution is illustrated in Figure 6 (total radial strain), Figure 7 (total
circumferential strain), and Figure 8 (total axial strain). It can be seen from these figures that the effect
of the ratio Y/X on the distribution of the strains is very significant in the range Y/X < 1.25. In this
range, the magnitude of strains is very large in the vicinity of the inner surface of the cylinder, which
indicates the tendency towards the localization of plastic deformation. Since the solution found is
for small strains, it is necessary to verify for each combination of material and geometric parameters
that the assumption of small strain is acceptable. The distribution of the residual stresses has been
determined using the stress distributions depicted in Figures 4 and 5, in conjunction with the solution
provided in Section 6. This solution is illustrated in Figure 9 (residual radial stress) and Figure 10
(residual circumferential stress). The associate strain solution has been found using the approach
described in Section 6. This solution for residual strains is illustrated in Figure 11 (residual radial
strain), Figure 12 (residual circumferential strain), and Figure 13 (residual axial strain). As in the case
of the strain distribution at the end of loading, it is seen from these figures that the solution is very
sensitive to the value of Y/X in the range Y/X < 1.25. The residual circumferential stress is of special
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significance for autofrettage. It is seen from Figure 10 that the magnitude of this stress at the inner
surface of the cylinder is significantly affected by plastic anisotropy.
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8. Conclusions

A new theoretical solution for the distribution of residual stresses and strains in an open-ended,
thick-walled cylinder subjected to internal pressure followed by unloading has been proposed.
A distinguished feature of this solution is that the cylinder is initially anisotropic. In particular,
the paper is concentrated on a common type of anisotropy: polar orthotropy of elastic and plastic
properties. The elastic response of the cylinder is controlled by the generalized Hooke’s law, and the
plastic response by the Tsai–Hill yield criterion and its associated flow rule. The flow theory of
plasticity is employed. It has been shown that using the strain rate compatibility equation facilitates
the solution. In particular, numerical techniques are only necessary to solve the linear differential
Equation (46), and to evaluate ordinary integrals along characteristic curves.

The solution found can be directly used for the analysis and design of the process of autofrettage.
It is worthy of note that in this case, there is no need to construct the field of strain in the entire cylinder,
which is the most difficult part of the numerical solution. It follows from Equation (57) that ϕ = ϕa is a
characteristic curve, and this curve corresponds to the inner surface of the cylinder. The circumferential
strain along this curve can be immediately found from Equation (56). Therefore, the radius of the
cylinder after unloading is determined. The circumferential stress at the inner radius of the cylinder at
the end of loading follows from Equation (20) at ϕ = ϕa. Then, the corresponding residual stress is
immediate from Equations (61), (62), and (64).

An illustrative example is given in Section 7. In this case, it is assumed that the elastic properties
are isotropic. As a result, the effect of the ratio Y/X on the distribution of stresses and strains has been
revealed. This effect is especially significant in the range Y/X < 1.25 (Figures 5–8 and Figures 10–13).
An exception is the distribution of the radial stress at the end of loading and after unloading. (Figures 4
and 9). This is because the boundary conditions on σr and ∆σr, from Equations (2) and (94), dictate
that this stress vanishes at the inner radius of the cylinder.

Author Contributions: All three authors participated in the research and in the writing of this paper.

Funding: S.A. acknowledges support from the Russian Foundation for Basic Research (Project 16-08-00469).

Acknowledgments: This work was initiated while M.R. was a visiting researcher at Beihang University, Beijing,
China. The publication has been prepared with the support of the “RUDN University Program 5-100”.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2019, 11, 280 17 of 18

References

1. Hill, R.; Lee, E.H.; Tupper, S.J. The theory of combined plastic and elastic deformation with particular
reference to a thick tube under internal pressure. Proc. Roy. Soc. London. Series A Math. Phys. Sci. 1947, 191,
278–303.

2. Hill, R. The Mathematical Theory of Plasticity; Clarendon Press: Oxford, UK, 1950.
3. Thomas, D.G.B. The autofrettage of thick tubes with free ends. J. Mech. Phys. Solids 1953, 1, 124–133. [CrossRef]
4. Rees, D.W.A. Autofrettage theory and fatigue life of open-ended cylinders. J. Strain Anal. 1990, 25, 109–121.

[CrossRef]
5. Gao, X. An exact elasto-plastic solution for an open-ended thick-walled cylinder of a strain-hardening

material. Int. J. Press. Vessels Pip. 1992, 52, 129–144. [CrossRef]
6. Hosseinian, E.; Farrahi, G.H.; Movahhedy, M.R. An analytical framework for the solution of autofrettaged

tubes under constant axial strain condition. J. Press. Vessel Techn. 2009, 131, 1–8. [CrossRef]
7. Molaie, M.; Darijani, H.; Bahreman, M.; Hosseini, S.M. Autofrettage of nonlinear strain-hardening cylinders

using the proposed analytical solution for stresses. Int. J. Mech. Sci. 2018, 141, 450–460. [CrossRef]
8. Rees, D.W.A. A theory for swaging of discs and lugs. Meccanica 2011, 46, 1213–1237. [CrossRef]
9. Gao, X.-L.; Wen, J.-F.; Xuan, F.-Z.; Tu, S.-T. Autofrettage and shakedown analyses of an internally pressurized

thick-walled cylinder based on strain gradient plasticity solutions. J. Appl. Mech. 2015, 82, 1–12. [CrossRef]
10. Chen, P.C.T. The Bauschinger and Hardening effect on residual stresses in an autofrettaged thick-walled

cylinder. Press. Vessel Techn. 1986, 108, 108–112. [CrossRef]
11. Livieri, P.; Lazzarin, P. Autofrettaged cylindrical vessels and bauschinger effect: An analytical frame for

evaluating residual stress distributions. J. Press. Vessel Techn. 2002, 124, 38–46. [CrossRef]
12. Parker, A.P.; Gibson, M.C.; Hameed, A.; Troiano, E. Material modeling for autofrettage stress analysis

including the “single effective material”. J. Press. Vessel Techn. 2012, 134, 1–7. [CrossRef]
13. Gibson, M.C.; Parker, A.P.; Hameed, A.; Hetherington, J.G. Implementing realistic, nonlinear, material

stress–strain behavior in ANSYS for the autofrettage of thick-walled cylinders. J. Press. Vessel Techn. 2012,
134, 1–7. [CrossRef]

14. Perl, M.; Perry, J. The beneficial influence of bauschinger effect mitigation on the barrel’s safe maximum
pressure. J. Press. Vessel Techn. 2013, 135, 1–5. [CrossRef]

15. Farrahi, G.H.; Voyiadjis, G.Z.; Hoseini, S.H.; Hosseinian, E. Residual stress analysis of the autofrettaged
thick-walled tube using nonlinear kinematic hardening. J. Press. Vessel Techn. 2013, 135, 1–8. [CrossRef]

16. Haghpanah Jahromi, B.; Farrahi, G.H.; Maleki, M.; Nayeb-Hashemia, H.; Vaziri, A. Residual stresses in
autofrettaged vessel made of functionally graded material. Eng. Struct. 2009, 31, 2930–2935. [CrossRef]

17. Jahed, H.; Farshi, B.; Karimi, M. Optimum autofrettage and shrink-fit combination in multi-layer cylinders.
J. Press. Vessel Techn. 2006, 128, 196–200. [CrossRef]

18. Lee, E.-Y.; Lee, Y.-S.; Yang, Q.-M.; Kim, J.-H.; Cha, K.-U.; Hong, S.-K. Autofrettage process analysis of a
compound cylinder based on the elastic-perfectly plastic and strain hardening stress-strain curve. J. Mech.
Sci. Techn. 2009, 23, 3153–3160. [CrossRef]

19. Gexia, Y.; Hongzhao, L. An analytical solution of residual stresses for shrink-fit two-layer cylinders after
autofrettage based on actual material behavior. J. Press. Vessel Techn. 2012, 134, 1–8. [CrossRef]

20. Benghalia, G.; Wood, J. Material and residual stress considerations associated with the autofrettage of weld
clad components. Int. J. Press. Vessels Pip. 2016, 139–140, 146–158. [CrossRef]

21. Abdelsalam, O.R.; Sedaghati, R. Design optimization of compound cylinders subjected to autofrettage and
shrink-fitting processes. J. Press. Vessel Techn. 2013, 135, 1–11. [CrossRef]

22. Hu, C.; Yang, F.; Zhao, Z.; Zeng, F. An alternative design method for the double-layer combined die using
autofrettage theory. Mech. Sci. 2017, 8, 267–276. [CrossRef]

23. Seifi, R. Maximizing working pressure of autofrettaged three layer compound cylinders with considering
Bauschinger effect and reverse yielding. Meccanica 2018, 53, 2485–2501. [CrossRef]

24. Hamilton, N.R.; Wood, J.; Easton, D.; Olsson Robbie, M.B.; Zhang, Y.; Galloway, A. Thermal autofrettage of
dissimilar material brazed joints. Mater. Des. 2015, 67, 405–412. [CrossRef]

25. Kamal, S.M.; Dixit, U.S. Feasibility study of thermal autofrettage of thick-walled cylinders. J. Press.
Vessel Techn. 2015, 137, 1–18. [CrossRef]

http://dx.doi.org/10.1016/0022-5096(53)90016-7
http://dx.doi.org/10.1243/03093247V252109
http://dx.doi.org/10.1016/0308-0161(92)90064-M
http://dx.doi.org/10.1115/1.3148082
http://dx.doi.org/10.1016/j.ijmecsci.2018.04.019
http://dx.doi.org/10.1007/s11012-010-9377-x
http://dx.doi.org/10.1115/1.4029798
http://dx.doi.org/10.1115/1.3264743
http://dx.doi.org/10.1115/1.1425809
http://dx.doi.org/10.1115/1.4006351
http://dx.doi.org/10.1115/1.4006909
http://dx.doi.org/10.1115/1.4007645
http://dx.doi.org/10.1115/1.4007472
http://dx.doi.org/10.1016/j.engstruct.2009.07.019
http://dx.doi.org/10.1115/1.2172957
http://dx.doi.org/10.1007/s12206-009-1009-9
http://dx.doi.org/10.1115/1.4006121
http://dx.doi.org/10.1016/j.ijpvp.2016.02.003
http://dx.doi.org/10.1115/1.4007960
http://dx.doi.org/10.5194/ms-8-267-2017
http://dx.doi.org/10.1007/s11012-018-0834-2
http://dx.doi.org/10.1016/j.matdes.2014.11.019
http://dx.doi.org/10.1115/1.4030025


Symmetry 2019, 11, 280 18 of 18

26. Kamal, S.M.; Borsaikia, A.C.; Dixit, U.S. Experimental assessment of residual stresses induced by the thermal
autofrettage of thick-walled cylinders. J. Strain Anal. 2016, 51, 144–160. [CrossRef]

27. Shufen, R.; Dixit, U.S. An analysis of thermal autofrettage process with heat treatment. Int. J. Mech. Sci. 2018,
144, 134–145. [CrossRef]

28. Zare, H.R.; Darijani, H. A novel autofrettage method for strengthening and design of thick-walled cylinders.
Mater. Des. 2016, 105, 366–374. [CrossRef]

29. Kamal, S.M. Analysis of residual stress in the rotational autofrettage of thick-walled disks. J. Press.
Vessel Techn. 2018, 140, 1–10. [CrossRef]

30. Shufen, R.; Dixit, U.S. A review of theoretical and experimental research on various autofrettage processes.
ASME J. Press. Vessel Technol. 2018, 140, 050802. [CrossRef]

31. Alexandrov, S.; Chung, K.-H.; Chung, K. Effect of plastic anisotropy of weld on limit load of undermatched
middle cracked tension specimens. Fat. Fract. Engng. Mater. Struct 2007, 30, 333–341. [CrossRef]

32. Alexandrov, S.; Mustafa, Y. Influence of plastic anisotropy on the limit load of highly under-matched scarf
joints with a crack subject to tension. Eng. Fract. Mech. 2014, 131, 616–626. [CrossRef]

33. Prime, M.B. Amplified effect of mild plastic anisotropy on residual stress and strain anisotropy. Int. J.
Solids Struct. 2017, 118, 70–77. [CrossRef]

34. Alexandrova, N.; Alexandrov, S. Elastic-plastic stress distribution in a plastically anisotropic rotating disk.
Trans. ASME J. Appl. Mech. 2004, 71, 427–429. [CrossRef]

35. Alexandrova, N.; Vila Real, P.M.M. Effect of plastic anisotropy on stress-strain field in thin rotating disks.
Thin-Walled Struct. 2006, 44, 897–903. [CrossRef]

36. Peng, X.-L.; Li, X.-F. Elastic analysis of rotating functionally graded polar orthotropic disks. Int. J. Mech. Sci.
2012, 60, 84–91. [CrossRef]

37. Essa, S.; Argeso, H. Elastic analysis of variable profile and polar orthotropic FGM rotating disks for a
variation function with three parameters. Acta Mech. 2017, 228, 3877–3899. [CrossRef]

38. Jeong, W.; Alexandrov, S.; Lang, L. Effect of plastic anisotropy on the distribution of residual stresses and
strains in rotating annular disks. Symmetry 2018, 10, 420. [CrossRef]

39. Yildirim, V. Numerical/analytical solutions to the elastic response of arbitrarily functionally graded polar
orthotropic rotating discs. J. Brazilian Soc. Mech. Sci. Eng. 2018, 40, 320. [CrossRef]

40. Leu, S.-Y.; Hsu, H.-C. Exact solutions for plastic responses of orthotropic strain-hardening rotating hollow
cylinders. Int. J. Mech. Sci. 2010, 52, 1579–1587. [CrossRef]

41. Abd-Alla, A.M.; Mahmoud, S.R.; AL-Shehri, N.A. Effect of the rotation on a non-homogeneous infinite
cylinder of orthotropic material. Appl. Math. Comp. 2011, 217, 8914–8922. [CrossRef]

42. Lubarda, V.A. On Pressurized curvilinearly orthotropic circular disk, cylinder and sphere made of radially
nonuniform material. J. Elast. 2012, 109, 103–133. [CrossRef]

43. Croccolo, D.; De Agostinis, M. Analytical solution of stress and strain distributions in press fitted orthotropic
cylinders. Int. J. Mech. Sci. 2013, 71, 21–29. [CrossRef]

44. Shahani, A.R.; Torki, H.S. Determination of the thermal stress wave propagation in orthotropic hollow
cylinder based on classical theory of thermoelasticity. Cont. Mech. Thermodyn. 2018, 30, 509–527. [CrossRef]

45. Callioglu, H.; Topcu, M.; Tarakcılar, A.R. Elastic–plastic stress analysis of an orthotropic rotating disc. Int. J.
Mech. Sci. 2006, 48, 985–990. [CrossRef]

46. Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D. Simulation of mechanical behavior and damage of
a large composite wind turbine blade under critical loads. Appl. Compos. Mater. 2018, 25, 237–254. [CrossRef]

47. Quadrino, A.; Penna, R.; Feo, L.; Nicola Nistico, N. Mechanical characterization of pultruded elements: Fiber
orientation influence vs web-flange junction local problem. Exp. Numer. Tests Compos. Part B 2018, 142, 68–84.
[CrossRef]

48. Morgado, T.; Silvestre, N.; Correia, J.R. Simulation of fire resistance behaviour of pultruded GFRP beams
—Part II: Stress analysis and failure criteria. Comp. Struct. 2018, 188, 519–530. [CrossRef]

49. Zhou, Y.; Duan, M.; Ma, J.; Sun, G. Theoretical analysis of reinforcement layers in bonded flexible marine
hose under internal pressure. Eng. Struct. 2018, 168, 384–398. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/0309324715616005
http://dx.doi.org/10.1016/j.ijmecsci.2018.05.053
http://dx.doi.org/10.1016/j.matdes.2016.05.062
http://dx.doi.org/10.1115/1.4041339
http://dx.doi.org/10.1115/1.4039206
http://dx.doi.org/10.1111/j.1460-2695.2007.01110.x
http://dx.doi.org/10.1016/j.engfracmech.2014.10.002
http://dx.doi.org/10.1016/j.ijsolstr.2017.04.022
http://dx.doi.org/10.1115/1.1751183
http://dx.doi.org/10.1016/j.tws.2006.08.018
http://dx.doi.org/10.1016/j.ijmecsci.2012.04.014
http://dx.doi.org/10.1007/s00707-017-1896-2
http://dx.doi.org/10.3390/sym10090420
http://dx.doi.org/10.1007/s40430-018-1216-3
http://dx.doi.org/10.1016/j.ijmecsci.2010.07.006
http://dx.doi.org/10.1016/j.amc.2011.03.077
http://dx.doi.org/10.1007/s10659-012-9372-7
http://dx.doi.org/10.1016/j.ijmecsci.2013.03.002
http://dx.doi.org/10.1007/s00161-017-0618-2
http://dx.doi.org/10.1016/j.ijmecsci.2006.03.008
http://dx.doi.org/10.1007/s10443-017-9612-x
http://dx.doi.org/10.1016/j.compositesb.2018.01.001
http://dx.doi.org/10.1016/j.compstruct.2017.12.064
http://dx.doi.org/10.1016/j.engstruct.2018.04.061
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Statement of the Problem 
	Purely Elastic Solution 
	Elastic/Plastic Stress Solution 
	Elastic/Plastic Strain Solution 
	Unloading 
	Numerical Example 
	Conclusions 
	References

