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Abstract: We provide several new q-congruences for truncated basic hypergeometric series, mostly
of arbitrary order. Our results include congruences modulo the square or the cube of a cyclotomic
polynomial, and in some instances, parametric generalizations thereof. These are established by
a variety of techniques including polynomial argument, creative microscoping (a method recently
introduced by the first author in collaboration with Zudilin), Andrews’ multiseries generalization of
the Watson transformation, and induction. We also give a number of related conjectures including
congruences modulo the fourth power of a cyclotomic polynomial.
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1. Introduction

In 1914, Ramanujan [1] stated rather mysteriously a number of formulas for 1/π, including

∞

∑
k=0
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π

.

In 1997, Van Hamme [2] conjectured 13 interesting p-adic analogues of Ramanujan’s or
Ramanujan-type formulas for 1/π, such as
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1
4k ≡ p(−1)

p−1
2 (mod p4), (1)

where (a)n = a(a + 1) · · · (a + n− 1) denotes the Pochhammer symbol and p is an odd prime. All of
the 13 supercongruences have been confirmed by different techniques up to now (see [3,4]). For some
informative background on Ramanujan-type supercongruences, see Zudilin’s paper [5]. During the
past few years, q-analogues of congruences and supercongruences have caught the interests of many
authors (see, for example, [6–28]). As made explicit in [22], q-supercongruences are related to studying
the asymptotic behaviour of q-series at roots of unity. This hints towards an intrinsic connection to
mock theta functions and quantum modular forms (see, e.g., [29,30]).

Congruences of truncated hypergeometric series modulo a high power of a prime such as in
Equation (1) are special. Similarly, in the setting of truncated basic hypergeometric series, congruences
modulo some power of a cyclotomic polynomial are special and, already for the exponent being > 2,
are typically difficult to prove.
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Recently, the first author (Theorem 1.1, [28]) proved that for n ≡ 4 (mod 5)

n−1

∑
k=0

(q; q5)5
k

(q5; q5)5
k

q5k ≡ 0 (mod Φn(q)2),

which, under the substitution q 7→ q−1, can be written as

n−1

∑
k=0

(q; q5)5
k

(q5; q5)5
k

q15k ≡ 0 (mod Φn(q)2).

It follows that for n ≡ 4 (mod 5)

n−1

∑
k=0

[10k + 1]
(q; q5)5

k
(q5; q5)5

k
q5k ≡ 0 (mod Φn(q)2). (2)

Here and in what follows, we adopt the standard q-notation: (a; q)n = (1− a)(1− aq) · · · (1− aqn−1)

is the q-shifted factorial; (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n is a product of q-shifted factorials;
[n] = [n]q = 1 + q + · · ·+ qn−1 is the q-integer; and Φn(q) denotes the n-th cyclotomic polynomial in q
(see [31]), which may be defined as

Φn(q) = ∏
16k6n

gcd(n,k)=1

(q− ζk),

where ζ is an n-th primitive root of unity.
We find that for n ≡ 2 (mod 5) the q-congruence (2) even holds modulo Φn(q)3. More generally

we are able to extend (2) to the following infinite family of q-congruences.

Theorem 1. Let d > 5 be an odd integer. Then

n−1

∑
k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡

0 (mod Φn(q)2), if n ≡ −1 (mod d),

0 (mod Φn(q)3), if n ≡ − 1
2 (mod d).

(3)

Note that for d > 7 and n ≡ −1 (mod d) the above q-congruence cannot be deduced directly
from [28] (Theorem 1.1) in the same way as the q-congruence (2) is derived. This is because the

arguments qd and q
d(d−3)

2 are different for d > 7. It should be pointed out that the q-congruence (3)
does not hold for d = 3. Like many results given in [24], Theorem 1 has a companion as follows.

Theorem 2. Let d > 3 be an odd integer and let n > 1. Then

n−1

∑
k=0

[2dk− 1]
(q−1; qd)d

k

(qd; qd)d
k

q
d(d−1)k

2 ≡

0 (mod Φn(q)2), if n ≡ 1 (mod d),

0 (mod Φn(q)3), if n ≡ 1
2 (mod d).

(4)

We shall also prove the following result, which was originally conjectured by the first author [28]
(Conjecture 1.3) who provided a proof of the modulus [n]Φn(q) case [28] (Theorem 1.2).

Theorem 3. Let n > 1 be an odd integer. Then

n−1

∑
k=0

(q−1; q2)2
k

(q2; q2)2
k

q2k ≡ 0 (mod [n]2), (5)
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and

n+1
2

∑
k=0

(q−1; q2)2
k

(q2; q2)2
k

q2k ≡ 0 (mod [n]2). (6)

As mentioned in [28], there are many similar congruences modulo Φn(q)2 for truncated basic
hypergeometric series. In this paper, we shall give more such examples (theorems or conjectures).
The simplest example is as follows.

Theorem 4. Let n > 4 be an integer with gcd(n, 3) = 1. Then

n−1

∑
k=0

(q−1, q−2; q3)k

(q3; q3)2
k

q3k ≡ 0 (mod Φn(q)2). (7)

Note that the first author, in joint work with Pan and Zhang [11], proved that for any odd integer
n > 5 with gcd(n, 3) = 1 there holds

n−1

∑
k=0

(q, q2; q3)k

(q3; q3)2
k

q3k ≡
(n

3

)
q

n2−1
3 (mod Φn(q)2),

where
( ·

3
)

denotes the Legendre symbol modulo 3. This q-congruence was originally conjectured
in [10] when n = p is an odd prime.

We shall prove Theorems 1 and 2 in Sections 2 and 3 by using the creative microscoping method
developed by the first author and Zudilin [22]. We prove these by first establishing their parametric
generalizations modulo (1− aqn)(a− qn) and then letting a→ 1. The proofs are similar to that of [28]
(Theorem 1.1) but also require Andrews’ multiseries generalization of the Watson transformation [32]
(Theorem 4) (which was already used by the first author, Jouhet and Zeng [6], for proving some
q-analogues of Calkin’s congruence [33]). It is worth mentioning that we need to add the parameter a
and also its powers in many places of the left-hand sides of Equations (3) and (4) in order to establish
the desired generalizations modulo (1− aqn)(a− qn). Therefore, the proofs of Theorems 1 and 2 are
quite different from those in the recent two joint papers of us [24,25], where the parameter a is inserted
in a more natural way (without a2 and higher powers of a) as done in [22]. The proofs of Theorems 3
and 4 are based on two q-series identities and are given in Sections 4 and 5, respectively. Two more
congruences modulo Φn(q)2 are given in Section 6. We give some related conjectures in the final
Section 7. These include two refinements of Theorems 1 and 2, some extensions of Theorem 4 for n ≡ 1
(mod 3), and similar conjectures.

2. Proof of Theorem 1

We first establish the following parametric generalization of Theorem 1 for the case n ≡ −1
(mod d).

Theorem 5. Let d > 5 be an odd integer and let n ≡ −1 (mod d). Then modulo (1− aqn)(a− qn),

n−1

∑
k=0

[2dk + 1]
(ad−1q, ad−3q, . . . , a2q; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a1−dq, a3−dq, . . . , a−2q; qd)k(q; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
q

d(d−3)k
2 ≡ 0. (8)
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Proof. It is clear that gcd(d, n) = 1 and therefore the numbers d, 2d, . . . , (n− 1)d are all not divisible
by n. This implies that the denominators of the left-hand side of (8) do not contain the factor 1− aqn

nor 1− a−1qn. Thus, for a = q−n or a = qn, the left-hand side of (8) can be written as

dn−n−1
d

∑
k=0

[2dk + 1]
(q1−(d−1)n, q1−(d−3)n, . . . , q1−2n; qd)k

(qd−(d−2)n, qd−(d−4)n, . . . , qd−n; qd)k

× (q(d−1)n+1, q(d−3)n+1, . . . , q2n+1; qd)k(q; qd)k

(q(d−2)n+d, q(d−4)n+d, . . . , qn+d; qd)k(qd; qd)k
q

d(d−3)k
2 , (9)

where we have used (q1−(d−1)n; qd)k = 0 for k > (dn− n− 1)/d.
Let [

n
k

]
=

[
n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k

be the q-binomial coefficient. It is easy to see, with (k
2) = k(k− 1)/2 denoting a binomial coefficient, that

(q1−(d−1)n; qd)k

(qd; qd)k
q

d(d−3)k
2 = (−1)k

[
(dn− n− 1)/d

k

]
qd

qd(k
2)+

(
n+1−dn+ d(d−3)

2

)
k, (10)

(q1−(d−3)n; qd)k

(qd−(d−2)n; qd)k
=

(qd−(d−2)n+dk; qd)(n+1−d)/d

(qd−(d−2)n; qd)(n+1−d)/d
,

(q1−(d−5)n; qd)k

(qd−(d−4)n; qd)k
=

(qd−(d−4)n+dk; qd)(n+1−d)/d

(qd−(d−4)n; qd)(n+1−d)/d
,

...

(q1−2n; qd)k

(qd−3n; qd)k
=

(qd−3n+dk; qd)(n+1−d)/d

(qd−3n; qd)(n+1−d)/d
,

and

(q(d−1)n+1; qd)k

(q(d−2)n+d; qd)k
=

(q(d−2)n+dk+d; qd)(n+1−d)/d

(q(d−2)n+d; qd)(n+1−d)/d
,

(q(d−3)n+1; qd)k

(q(d−4)n+d; qd)k
=

(q(d−4)n+dk+d; qd)(n+1−d)/d

(q(d−4)n+d; qd)(n+1−d)/d
,

...

(q2n+1; qd)k

(qn+d; qd)k
=

(q2n+dk+d; qd)(n+1−d)/d

(qn+d; qd)(n+1−d)/d
,

(q; qd)k

(qd−n; qd)k
=

(qd−n+dk; qd)(n+1−d)/d

(qd−n; qd)(n+1−d)/d
.

Note that the right-hand sides of the identities after (10) are all polynomials in qdk, of degree
(n + 1− d)/d in the first group, and of degree (n + 1− d)/d in the second one too. Moreover,

d
(

k
2

)
+

(
n + 1− dn +

d(d− 3)
2

)
k
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= d
(
(dn− n− 1)/d− k

2

)
− d
(
(dn− n− 1)/d

2

)
+

d(d− 5)k
2

.

Therefore, we can write (9) in the following form

dn−n−1
d

∑
k=0

(−1)kqd((dn−n−1)/d−k
2 )

[
(dn− n− 1)/d

k

]
qd

P(qdk), (11)

where P(qdk) is a polynomial in qdk of degree 2+ (n+ 1− d)(d− 1)/d+ (d− 5)/2 = (dn− n− 1)/d−
(d− 3)/2 6 (dn− n− 1)/d− 1.

Recall that the q-binomial theorem (see [34] (p. 36)) can be written as

n

∑
k=0

(−1)k

[
n
k

]
q(

k
2)zk = (z; q)n.

Putting z = q−j in the above identity and replacing k with n− k, we get

n

∑
k=0

(−1)k

[
n
k

]
q(

n−k
2 )+jk = 0 for 0 6 j 6 n− 1, (12)

which immediately means that the expression in (9), which equals (11), vanishes. This proves (8).

In order to prove Theorem 1 for the case n ≡ − 1
2 (mod d), we need the following lemma.

Lemma 1. Let d > 3 be an odd integer and let n ≡ − 1
2 (mod d). Then for 0 6 k 6 (dn − 2n − 1)/d,

modulo Φn(q) we have

(aq; qd)(dn−2n−1)/d−k

(qd/a; qd)(dn−2n−1)/d−k
≡ (−a)(dn−2n−1)/d−2k (aq; qd)k

(qd/a; qd)k
q(dn−2n−d+1)(dn−2n−1)/(2d)+(d−1)k.

Proof. Since qn ≡ 1 (mod Φn(q)), we have

(aq; qd)(dn−2n−1)/d

(qd/a; qd)(dn−2n−1)/d
=

(1− aq)(1− aqd+1) · · · (1− aqdn−2n−d)

(1− qd/a)(1− q2d/a) · · · (1− qdn−2n−1/a)

≡ (1− aq)(1− aqd+1) · · · (1− aqdn−2n−d)

(1− qd+2n−dn/a)(1− q2d+2n−dn/a) · · · (1− q−1/a)

= (−a)(dn−2n−1)/dq(dn−2n−d+1)(dn−2n−1)/(2d) (mod Φn(q)). (13)

Furthermore, modulo Φn(q), there holds

(aq; qd)(dn−2n−1)/d−k

(qd/a; qd)(dn−2n−1)/d−k

=
(aq; qd)(dn−2n−1)/d

(qd/a; qd)(dn−2n−1)/d

(1− qdn−2n+d−1−dk/a)(1− qdn−2n+2d−1−dk/a) · · · (1− qdn−2n−1/a)
(1− aqdn−2n−dk)(1− aqdn−2n+d−dk) · · · (1− aqdn−2n−d)

≡
(aq; qd)(dn−2n−1)/d

(qd/a; qd)(dn−2n−1)/d

(1− qd−1−dk/a)(1− q2d−1−dk/a) · · · (1− q−1/a)
(1− aq−dk)(1− aqd−dk) · · · (1− aq−d)

,

which together with (13) establishes the assertion.
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We now give a parametric generalization of Theorem 1 for the case n ≡ − 1
2 (mod d).

Theorem 6. Let d > 3 be an odd integer and let n ≡ − 1
2 (mod d). Then modulo Φn(q)(1− aqn)(a− qn),

n−1

∑
k=0

[2dk + 1]
(ad−2q, ad−4q, . . . , aq; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dq, a4−dq, . . . , a−1q; qd)k(q; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
q

d(d−3)k
2 ≡ 0. (14)

Proof. By Lemma 1, for 0 6 k 6 (dn − 2n − 1), we can check that the k-th and
((dn− 2n− 1)/d− k)-th terms on the left-hand side of (14) modulo Φn(q) cancel each other. Moreover,
for (dn− 2n− 1)/d < k 6 n− 1, the q-shifted factorial (q; qd)k contains the factor 1 − qn and is
therefore divisible by Φn(q). This proves that the congruence (14) is true modulo Φn(q).

To prove that (14) is also true modulo (1− aqn)(a− qn), it suffices to prove the following identity:

dn−2n−1
d

∑
k=0

[2dk + 1]
(q1−(d−2)n, q1−(d−4)n, . . . , q1−n; qd)k

(qd−(d−2)n, qd−(d−4)n, . . . , qd−n; qd)k

× (q(d−2)n+1, q(d−4)n+1, . . . , qn+1; qd)k(q; qd)k

(q(d−2)n+d, q(d−4)n+d, . . . , qn+d; qd)k(qd; qd)k
q

d(d−3)k
2 = 0, (15)

where we have used that (q1−(d−2)n; qd)k = 0 for k > (dn− 2n− 1)/d. This time the method employed
to prove (9) does not work. Instead, we shall use Andrews’ multiseries generalization of the Watson
transformation [32] (Theorem 4):

∑
k>0

(a, q
√

a,−q
√

a, b1, c1, . . . , bm, cm, q−N ; q)k

(q,
√

a,−
√

a, aq/b1, aq/c1, . . . , aq/bm, aq/cm, aqN+1; q)k

(
amqm+N

b1c1 · · · bmcm

)k

=
(aq, aq/bmcm; q)N
(aq/bm, aq/cm; q)N

∑
l1,...,lm−1>0

(aq/b1c1; q)l1 · · · (aq/bm−1cm−1; q)lm−1

(q; q)l1 · · · (q; q)lm−1

×
(b2, c2; q)l1 . . . (bm, cm; q)l1+···+lm−1

(aq/b1, aq/c1; q)l1 . . . (aq/bm−1, aq/cm−1; q)l1+···+lm−1

×
(q−N ; q)l1+···+lm−1

(bmcmq−N/a; q)l1+···+lm−1

(aq)lm−2+···+(m−2)l1 ql1+···+lm−1

(b2c2)l1 · · · (bm−1cm−1)l1+···+lm−2
. (16)

Let q 7→ qd, a = q, b1 = q(d+1)/2, m = (d− 1)/2, and N = (dn− 2n− 1)/d in (16). Moreover, put

{c1, b2, c2, . . . , bm, cm} = {q1−(d−4)n, q1−(d−6)n, . . . , q1−n, q(d−2)n+1, q(d−4)n+1, . . . , qn+1}

with bm = q1−n and cm = q3n+1. Then the left-hand side of (16) reduces to the left-hand side of (15),
while the right-hand side of (16) contains the factor

(qd+1/bmcm; qd)N = (qd−2n−1; qd)N = 0,

because d − 2n − 1 ≡ 0 (mod d), d − 2n − 1 6 0 and N > (d − 2n − 1)/d. This proves (15), i.e.,
the congruence (14) holds modulo (1− aqn)(a− qn). Since the polynomials Φn(q) and (1− aqn)(a− qn)

are clearly relatively prime, the proof of (14) is complete.

Proof of Theorem 1. For n ≡ −1 (mod d), the limits of the denominators in (8) as a→ 1 are relatively
prime to Φn(q). On the other hand, the limit of (1− aqn)(a− qn) as a → 1 has the factor Φn(q)2. It
follows that the limiting case a→ 1 of the congruence (8) reduces to (3) for the case n ≡ −1 (mod d).
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Similarly, for n ≡ − 1
2 (mod d), the limit of Φn(q)(1− aqn)(a− qn) as a→ 1 has the factor Φn(q)3,

and so the limiting case a→ 1 of the congruence (14) reduces to (3) for the case n ≡ − 1
2 (mod d). This

completes the proof of the theorem.

3. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. We have the following parametric
generalization of Theorem 2 for the case n ≡ −1 (mod d). Its proof is completely analogous to that of
Theorem 5 and is left to the interested reader.

Theorem 7. Let d > 3 be an odd integer and let n ≡ 1 (mod d). Then modulo (1− aqn)(a− qn),

n−1

∑
k=0

[2dk− 1]
(ad−1q−1, ad−3q−1, . . . , a2q−1; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a1−dq−1, a3−dq−1, . . . , a−2q−1; qd)k(q−1; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
q

d(d−1)k
2 ≡ 0.

Moreover, we have the following result similar to Lemma 1.

Lemma 2. Let d be a positive odd integer and let n ≡ 1
2 (mod d), Then for 0 6 k 6 (dn − 2n + 1)/d,

modulo Φn(q), we have

(aq−1; qd)(dn−2n+1)/d−k

(qd/a; qd)(dn−2n+1)/d−k
≡ (−a)(dn−2n+1)/d−2k (aq−1; qd)k

(qd/a; qd)k
q(dn−2n−d−1)(dn−2n+1)/(2d)+(d+1)k.

By Lemma 2 and Andrews’ transformation (16), we can establish the following parametric
generalization of Theorem 2 for the case n ≡ 1

2 (mod d).

Theorem 8. Let d > 3 be an odd integer and let n ≡ 1
2 (mod d). Then modulo Φn(q)(1− aqn)(a− qn),

n−1

∑
k=0

[2dk− 1]
(ad−2q−1, ad−4q−1, . . . , aq−1; qd)k

(ad−2qd, ad−4qd, . . . , aqd; qd)k

× (a2−dq−1, a4−dq−1, . . . , a−1q−1; qd)k(q−1; qd)k

(a2−dqd, a4−dqd, . . . , a−1qd; qd)k(qd; qd)k
q

d(d−1)k
2 ≡ 0.

The proof of Theorem 2 then follows from Theorems 7 and 8 by taking the limit a→ 1.
Finally, we point out that for d = 3 and any n > 0 the sum in Theorem 8 has a closed form

as follows:

n−1

∑
k=0

[6k− 1]
(aq−1, q−1/a, q−1; q3)k
(aq3, q3/a, q3; q3)k

q3k = [3n− 2][3n− 4]
(aq2, q2/a, q−1; q3)n−1

(aq3, q3/a, q3; q3)n−1
,

which can be easily proved by induction on n. The a = 1 case implies that when d = 3,
the congruence (4) modulo Φn(q)3 is still true for n ≡ 1 (mod 3) and n > 1.

4. Proof of Theorem 3

By induction on N, we can easily prove that for N > 1,

N−1

∑
k=0

(q−1; q2)2
k

(q2; q2)2
k

q2k =
(q; q2)2

N−1

(q2; q2)2
N−1

(2[2N − 3] + q2N−2)
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=

[
2N − 2
N − 1

]2
2[2N − 3] + q2N−2

(−q; q)4
N−1

. (17)

Note that 1
[N]

[
2N−2
N−1

]
is the well-known q-Catalan number which is a polynomial in q (see [35]).

Thus [N] divides
[

2N−2
N−1

]
. Moreover, it is easy to see that [N] = 1−qN

1−q is relatively prime to (−q; q)N−1

for odd N. We conclude that (5) holds by taking N = n in (17).
Letting N = (n + 3)/2 in (17), we obtain

n+1
2

∑
k=0

(q−1; q2)2
k

(q2; q2)2
k

q2k =

[
n + 1

(n + 1)/2

]2
2[n] + qn+1

(−q; q)4
(n+1)/2

.

It is clear that

[(n + 1)/2]
[n]

[
n

(n− 1)/2

]
=

[
n− 1

(n− 1)/2

]

is a polynomial in q. Since the polynomials [(n + 1)/2] and [n] are relatively prime, we deduce that[
n

(n−1)/2

]
is divisible by [n], and so is

[
n+1

(n+1)/2

]
= (1 + q(n+1)/2)

[
n

(n−1)/2

]
. The proof of (6) then

follows from the fact that [n] is relatively prime to (−q; q)(n+1)/2.

5. Proof of Theorem 4

By induction on n, we can prove that for n > 1

n−1

∑
k=0

(q−1, q−2; q3)k

(q3; q3)2
k

q3k =
(2 + q3n − q− q2 − q3n−3)(q, q2; q3)n−1

(1− q)(1− q2)(q3; q3)2
n−1

. (18)

We now assume that n > 4 and gcd(n, 3) = 1. If n ≡ 1 (mod 3), then (q; q3)n−1 contains the factor
1− qn and (q2; q3)n−1 contains the factor 1− q2n, and therefore (q, q2; q3)n−1 is divisible by Φn(q)2.
If n ≡ 2 (mod 3), then (q; q3)n−1 contains 1− q2n and (q2; q3)n−1 contains 1− qn, and (q, q2; q3)n−1 is
also divisible by Φn(q)2. Clearly, the denominator of the right-hand side of (18) is relatively prime to
Φn(q). This completes the proof.

6. More Congruences Modulo Φn(q)2

The first author [28] (Theorem 1.4) proved that for n > 1,

n−1

∑
k=0

(q, q, q4; q6)k

(q6; q6)3
k

q6k ≡ 0 (mod Φn(q)2) if n ≡ 5 (mod 6), (19)

and

n−1

∑
k=0

(q−1, q−1, q−4; q6)k

(q6; q6)3
k

q6k ≡ 0 (mod Φn(q)2) if n ≡ 1 (mod 6). (20)

Here we give generalizations of the q-congruences (19) and (20) as follows.

Theorem 9. Let d > 3 and let r be a nonzero integer with |r| < d and 2r 6= ±d. Let n > 1 be an integer with
n > d− r. Then

n−1

∑
k=0

(qr, qr, qd−2r; qd)k

(qd; qd)3
k

qdk ≡ 0 (mod Φn(q)2) for n ≡ −r (mod d). (21)
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Proof. The proof is similar to that of Theorem 1 (or [28] (Theorem 1.4)). Here we merely give the
parametric generalization of (21):

n−1

∑
k=0

(ad−1qr, a1−dqr, qd−2r; qd)k

(ad−2qd, a2−dqd, qd; qd)k
qdk ≡ 0 (mod (1− aqn)(a− qn)).

Note that when d = 4 and r = 1 the q-congruence (21) was originally conjectured in [22]
(Conjecture 5.5).

Theorem 10. Let d > 3 and let 0 < r < d with 2r 6= d. Let n > d + r be an integer. Then

n−1

∑
k=0

(q−r, q−r, q2r−d; qd)k

(qd; qd)3
k

qdk ≡ 0 (mod Φn(q)2) for n ≡ r (mod d). (22)

Proof. This time the parametric generalization of (22) is as follows:

n−1

∑
k=0

(ad−1q−r, a1−dq−r, q2r−d; qd)k

(ad−2qd, a2−dqd, qd; qd)k
qdk ≡ 0 (mod (1− aqn)(a− qn)).

7. Concluding Remarks and Open Problems

The creative microscoping method used to prove Theorems 1 and 2 can be used to prove many
other q-congruences (see [21,22,24,26,28]). We also learned that this method has already caught the
interests of Gorodetsky [23], Guillera [12] and Straub [18]. However, to the best of our knowledge,
the (creative) method of adding extra parameters can only be used to prove q-congruences modulo
Φn(q)3 or Φn(q)2 but not those modulo Φn(q)4 or higher powers of Φn(q). The following conjectural
refinements of Theorems 1 and 2 seem to be rather challenging to prove.

Conjecture 1. Let d > 5 be an odd integer. Then

n−1

∑
k=0

[2dk + 1]
(q; qd)d

k

(qd; qd)d
k

q
d(d−3)k

2 ≡

0 (mod Φn(q)3), if n ≡ −1 (mod d),

0 (mod Φn(q)4), if n ≡ − 1
2 (mod d).

Conjecture 2. Let d > 5 be an odd integer and let n > 1. Then

n−1

∑
k=0

[2dk− 1]
(q−1; qd)d

k

(qd; qd)d
k

q
d(d−1)k

2 ≡

0 (mod Φn(q)3), if n ≡ 1 (mod d),

0 (mod Φn(q)4), if n ≡ 1
2 (mod d).

The first author ([28] (Theorem 1.1)) proved that for d > 3 and n ≡ −1 (mod d)

n−1

∑
k=0

(q; qd)d
k

(qd; qd)d
k

qdk ≡ 0 (mod Φn(q)2); (23)

and that for n, d > 2 and n ≡ 1 (mod d)

n−1

∑
k=0

(q−1; qd)d
k

(qd; qd)d
k

qdk ≡ 0 (mod Φn(q)2). (24)

These two q-congruences were originally conjectured by the first author and Zudilin [22] (Conjectures
5.3 and 5.4). Here we would like to make some similar conjectures on congruences modulo Φn(q)2.
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Conjecture 3. Let d > 3 and n > 1 be integers with n ≡ −1 (mod d(d + 1)/2). Then

n−1

∑
k=0

(q, q2, . . . , qd; qd(d+1)/2)k

(qd(d+1)/2; qd(d+1)/2)d
k

qd(d+1)k/2 ≡ 0 (mod Φn(q)2).

In particular, if p ≡ −1 (mod d(d + 1)/2) is a prime and m = d(d + 1)/2, then

p−1

∑
k=0

( 1
m )k(

2
m )k · · · ( d

m )k

k!d ≡ 0 (mod p2).

Conjecture 4. Let d > 2 and n > 1 be integers with n ≡ 1 (mod d(d + 1)/2). Then

n−1

∑
k=0

(q−1, q−2, . . . , q−d; qd(d+1)/2)k

(qd(d+1)/2; qd(d+1)/2)d
k

qd(d+1)k/2 ≡ 0 (mod Φn(q)2).

In particular, if p ≡ 1 (mod d(d + 1)/2) is a prime and m = d(d + 1)/2, then

p−1

∑
k=0

(− 1
m )k(− 2

m )k · · · (− d
m )k

k!d ≡ 0 (mod p2).

We should concede that we are not able to prove Conjectures 3 and 4 even for d = 3 (we are only
capable to deal with the modulus Φn(q) case). Note that Conjecture 4 is true for d = 2 by Theorem 4.

Conjecture 5. Let d > 3 and n > 1 be integers with n ≡ −1 (mod d2). Then

n−1

∑
k=0

(q, q3, . . . , q2d−1; qd2
)k

(qd2 ; qd2)d
k

qd2k ≡ 0 (mod Φn(q)2).

In particular, if p ≡ −1 (mod d2) is a prime, then

p−1

∑
k=0

( 1
d2 )k(

3
d2 )k · · · ( 2d−1

d2 )k

k!d ≡ 0 (mod p2).

Conjecture 6. Let d > 2 and n > 1 be integers with n ≡ 1 (mod d2). Then

n−1

∑
k=0

(q−1, q−3, . . . , q−2d+1; qd2
)k

(qd2 ; qd2)d
k

qd2k ≡ 0 (mod Φn(q)2).

In particular, if p ≡ 1 (mod d2) is a prime, then

p−1

∑
k=0

(− 1
d2 )k(− 3

d2 )k · · · (− 2d−1
d2 )k

k!d ≡ 0 (mod p2).

Using the following identity

n−1

∑
k=0

(q−1, q−3; q4)k

(q4; q4)2
k

q4k =
(2 + q4n − q− q3 − q4n−4)(q, q3; q4)n−1

(1− q)(1− q3)(q4; q4)2
n−1

,

we can easily prove that Conjecture 6 is true for d = 2.
It seems that Conjectures 3 and 4 can be further generalized as follows.
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Conjecture 7. Let d and r be positive integers with dr > 3. Let n > 1 be an integer with n ≡ −1
(mod d(d + 1)r/2). Then

n−1

∑
k=0

(q, q2, . . . , qd; qd(d+1)r/2)r
k

(qd(d+1)r/2; qd(d+1)r/2)dr
k

qd(d+1)rk/2 ≡ 0 (mod Φn(q)2).

Conjecture 8. Let d and r be positive integers with dr > 2. Let n > 1 be an integer with
n ≡ 1 (mod d(d + 1)r/2). Then

n−1

∑
k=0

(q−1, q−2, . . . , q−d; qd(d+1)r/2)r
k

(qd(d+1)r/2; qd(d+1)r/2)dr
k

qd(d+1)rk/2 ≡ 0 (mod Φn(q)2).

Likewise, Conjectures 5 and 6 can be further generalized as follows.

Conjecture 9. Let d and r be positive integers with dr > 3. Let n > 1 be an integer with n ≡ −1
(mod d2r). Then

n−1

∑
k=0

(q, q3, . . . , q2d−1; qd2r)r
k

(qd2r; qd2r)dr
k

qd2rk ≡ 0 (mod Φn(q)2).

Conjecture 10. Let d and r be positive integers with dr > 2. Let n > 1 be an integer with n ≡ 1
(mod d2r). Then

n−1

∑
k=0

(q−1, q−3, . . . , q−2d+1; qd2r)r
k

(qd2r; qd2r)dr
k

qd2rk ≡ 0 (mod Φn(q)2).

Finally, we point out that Conjectures 7–10 are clearly true for d = 1 by the d 7→ r cases of
(23) and (24).
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