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Abstract: This paper deals with the methods for investigating the nonlinear dynamics of discrete
chaotic systems (DCS) applied to piecewise linear systems of the third order. The paper proposes
an approach to the analysis of the systems under research and their improvement. Thus, effective
and mathematically sound methods for the analysis of nonlinear motions in the models under
consideration are proposed. It makes it possible to obtain simple calculated relations for determining
the basic dynamic characteristics of systems. Based on these methods, the authors developed
algorithms for calculating the dynamic characteristics of discrete systems, i.e. areas of the existence
of steady-state motion, areas of stability, capture band, and parameters of transients. By virtue of
the developed methods and algorithms, the dynamic modes of several models of discrete phase
synchronization systems can be analyzed. They are as follows: Pulsed and digital different orders,
dual-ring systems of various types, including combined ones, and systems with cyclic interruption of
auto-tuning. The efficiency of various devices for information processing, generation and stabilization
could be increased by using the mentioned discrete synchronization systems on the grounds of
the results of the analysis. We are now developing original software for analyzing the dynamic
characteristics of various classes of discrete phase synchronization systems, based on the developed
methods and algorithms.

Keywords: nonlinear; synchronized; linear discrete; chaotic system; algorithm

1. Introduction

The nonlinear dynamics of discrete chaotic systems are not new for research, but they have not
lost their relevance, due to a number of unresolved issues. As it is known [1], the implementation
of chaotic systems on digital computers with finite-precision arithmetic (i.e., on real computers) has
significant difficulties. It results in the fact that we get pseudochaotic systems [2]. This problem has
led to the need for further development of analytical methods in the theory of nonlinear dynamics of
discrete chaotic systems. New effective approaches to the synthesis and analysis of chaotic systems
have appeared. Thus, Reference [3] shows the increasing importance that the fractional calculus of
meromorphic functions has in chaotic systems. References [4,5] show the prospect of solving a number
of problems using wavelet analysis.

There are a limited number of papers devoted to the study of nonlinear dynamics of discrete
discrete chaotic systems (DCS) of the third order, in which fairly complete and accurate results are
represented. This mainly concerns studies in which periodic motions and the acquisition band of
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synchronization systems [1,2] and numerical studies [3,4] are examined numerically. The purpose of
this paper is to summarize theoretically the results of investigating the nonlinear dynamics of a third
order phase synchronization systems (SPS), both in terms of the development of qualitatively-numerical
methods of analysis, and in part of the study of specific systems described by the generalized model,
Equation (1): 

ϕn+1 = ϕn − αF(ϕn) + xn + gn

xn+1 = dxn − βF(ϕn) + yn + g
yn+1 = hxn − ηF(ϕn)

(1)

where ϕn, xn, yn are the generalized coordinates of the system, α, β, η, d, h, g are generalized parameters,
gn is a variable component of the input frequency.

The expression in Equation (1) reduces to a general expression, as written:

→
q n+1 = A

(→
q n

)
+ B ·→u n, (2)

where
→
q n =

(
ϕn, xi

n
)

is the state vector of the system at the n-th time moment, the dimension of the
vector is determined by the order of the system; ϕn is the phase difference of the impulse or code
sequences at the inputs of the detector; A

(→
q n

)
is a nonlinear transition matrix whose properties

depend on the kind of characteristics of the phase detector F(ϕn);
→
u n is the exposure vector; and B is

the exposure matrix.

2. Phase Portraits of the Onset of Instability of Fixed Points of Piecewise Linear Expressions of
the Third Order

The study of steady motions of piecewise linear 3D DCS of the third order is based on the study
of typical bifurcations of phase portraits of the mapping (Equation (1)). These include [5–10]:

(1) The loss of stability by k-fold fixed points associated with the transition of local stability
boundaries G1, G−1, Gϕ;

(2) The loss of stability by k-fold fixed points associated with the transition of limiting points of
nonlinearity (ϕi = ±c for Fc(ϕ) and ϕi = ±1 for F1(ϕ));

(3) The bifurcations of phase portraits caused by the intersection of separatrix invariant manifolds
of k-fold saddle points.

At the qualitative level, the basic regularities of the appearance of fixed k-fold points for mappings
of the second and third orders are repeated [5]. The transition of the boundaries of the areas of local
stability G1, G−1, Gϕ leads to the loss of stability of the fixed points and to qualitatively similar
motions. The boundaries of the existence of fixed points of piecewise linear mappings of both orders
in the general case for non-zero frequency detunings do not coincide with the boundaries of local
stability. In the phase space, the boundaries of existence correspond to the boundaries of linear sections.
This allows the condition for the k-fold fixed point to hit the linearity boundary as one of the necessary
conditions for the appearance of periodic motions of the period k [6].

The cross sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter n have a shape close to a triangular one. They are bounded by the curves
G1, G−1, Gϕ corresponding to the transition of one of the eigenvalues of the linearized matrix of the
map (Equation (1)) through the values ± 1 or e±jϕ. The line R on the sections bounds the region of
existence of a simple fixed point. Its equation is obtained from Equation (1) and it is written as follows:

β = g− (1− d− h)α− η. (3)

The singularity of the transition of stability boundaries, in the case of a third order mapping,
consists of a large variety of possible combinations of the eigenvalues of the linearized matrix A
corresponding to the boundary.
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In accordance with Table 1, when the boundary G−1 is crossed, there are also three types of nodes
and with the transition of the vibrational boundary Gϕ, there are four types of foci. The transition
through the boundaries Gϕ, G−1 occurs in the linear sections of the functions F1(ϕ) and Fc(ϕ). It is
accompanied respectively by such bifurcations as a stable focus-complex saddle and a stable node, i.e.
a real saddle. As in the case of second order mappings, the bifurcation data leads to the appearance of
invariant closed curves, which are quasiperiodic motions. By virtue of the existence of a boundary
R (for g 6= 0) that does not coincide with G1 for piecewise linear mappings, in the general case the
bifurcations of the appearance of both simple and k-fold fixed points occur on this boundary. In this
case, a fixed point (one of the types of a stable node or focus) is generated simultaneously with one of
the types of a saddle fixed point. The disappearance of a fixed stable point also occurs at the boundary
R because of the fusion of a stable node or focus with a saddle point, followed by the formation of
a stream of densified trajectories. The condition for the appearance of a pair of fixed points on the
boundaries of piecewise linear mappings will be laid down below as the basis for the method of
calculating bifurcation parameters.

Table 1. Parameters for solving.

The Eigenvalues of the Matrix A Type of a Stable Point

1) 0 < p < 1, 0 < p2 < 1, 0 < p3 < 1, p1, p2, p3 are real-valued stable node of the 1st type

2) −1 < p3 < 0, p1, p2, p3 are real-valued. stable node of the 2nd type

3) 0 < p < 1, are real-valued stable node of the 3rd type

4) 0 < p < 1, 0 < p2 < 1, −1 < pb < 0, pl, p2, p3 are real-valued stable node of the 4th type

5) 0 < Re < l are real-valued, p2, p3 stable focus of the 1st type

6) −l < Re < 0 stable focus of the 2nd type

7) 0 < R < l; px are real-valued, p2, p3 stable focus of the 3rd type

8) −1 < p < 0, are real-valued, p2, p3 stable focus of the 4th type

In Figure 1, sections of the local stability body of the mapping (Equation (1)) for various values of
the generalized parameter n are given on the plane of generalized parameters a, b.
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=
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Figure 1. Cross-sections of the body with the local stability synchronization systems of the third order
((a) η = −1.2; (b) η = −0.6; (c) η = 0; (d) η = 0.5).

The formation of quasiperiodic motions under the conditions of the existence of fixed points is
determined by the mutual arrangement of invariant separatrix manifolds of a simple or k-fold saddle
fixed point. The difference from the second order mapping consists of a greater number of typical
phase portraits near the saddle point, determined by the variety of the point itself.

3. SPS Model with Saw-Tooth Nonlinearity

The proposed method for calculating the bifurcation parameters of piecewise linear mappings of
the third order is based on the assertions that fixed points on the boundaries of the linear sections of the
functions Fc(ϕ) and F1(ϕ) can arise. For the occurrence of simple fixed points of data, the assertions are
sufficient. For the appearance of k-fold fixed points, the formulated assertions appear as necessary ones.

Let F(ϕ) = F1(ϕ). Since F1(ϕ) is periodic, the phase space of the mapping (Equation (1)) is a
three-dimensional cylinder, whose scan cross-sections are shown in Figure 2.

Symmetry 2019, 11, x FOR PEER REVIEW 5 of 13 

1nϕ = − . The required domains are a set of planes .Q mG  (the index m is the number of the period 

1( )F ϕ ) on whose boundary the solution falls) whose equations are written as follows [11–17]: 

. : ( 1) 2 1,m 1,2,3Q mG x mα ϕ= − + − =  (5) 

And 

. : ( 1) 2 1,m 1, 2, 3Q mG x mα ϕ= − + + = − − −   (6) 

In Equations (5) and (6), like in the expression for ,0Lϕ , the coordinate у is not included, and 

consequently these planes are perpendicular to the plane 0ny = . 

The arrows show the directions of the motion of the state vector ( , , )n n n nq x yϕ
 along the 

directions nϕ  and nx  under the mapping, in each of the four zones formed by the segments AB 
and CD. For some saddle points shown in Figure 2, quasiperiodic motions do not take place. 

 
Figure 2. Phase cylinder cross section. 

In Figure 2, the domains of the nonlinear mapping are shaded with output correspondingly to 
the boundaries 1nϕ = +  and 1nϕ = −  of the phase cylinder scan 1Q−  and 1Q− . On both sides, 

the domains 1Q  and 1Q−  are bounded by the planes 1nϕ = ± , with the third one, by the plane 

1 (1 )x α ϕ= − −  for 1Q  (mapping in the direction of increasing nx ) and the plane 

1 (1 )x α ϕ= − − −  for 1Q−  (the mapping in the direction of decreasing nϕ ). In the directions ny  

and one of the directions nx , the domains 1Q  and 1Q−  are unbounded. Between the domains 1Q  

and 1Q−  there is a domain 0Q , the map from which occurs linearly. 

For a nonlinear mapping, the domain 1Q  passes to the domain 1Q′ . Moreover, the point 

(1, ,0)B α  is mapped to the point ( 1, , )B d g hα β α σ′ − − + − ; ( 1,2 ,0)L α− −  to the point 
( 1, (2 ) , (2 ) )L d g hα β α σ′ − − + + − − , and so on. 

Changing the coordinate [ ]n yq  of the state vector in the 1Q , a domain leads to a change in the 

coordinate of the vector 1[ ]n xq +


 in 1Q′ : With increasing (decreasing) [ ]n yq  increases (decreases) 

1[ ]n xq +


. Thus, the entire domain 1Q  is mapped into an infinite strip along the nx  -axis bounded 

along the nϕ  axis by the planes 1nϕ = ±  and, in addition, by two parallel planes that are 

mappings of the planes 1nϕ = ± . Analogous arguments lead to the construction of the domain 1Q−′ , 

which is a mapping of 1Q− . It should be noted that there is an intersection of the domains 1Q′  and 

1Q− , as well as 1Q−′  and 1Q , which fundamentally distinguishes the considered system from the 
second order system. 

Figure 2. Phase cylinder cross section.

Figure 2 shows the section of the phase space by the plane yn = 0. The lines Lϕ,0(AB), Lx,0(CD)

and Ly,0 are sections of the surfaces of the map preserving the coordinates ϕ, x and y, respectively.
The equations of these surfaces can be obtained from (Equation (1)) respectively with ϕn+1 = ϕn,
xn+1 = xn, yn+1 = yn:

Lϕ,0 : x = αϕ,
Lϕ,0 : x = (y− γϕ + g)/(1− d),
Lϕ,0 : y = hx− σϕ.

(4)

The mapping (display) surface with the preserved coordinate y is defined under the condition
xn = x01. It should be noted that the coordinate y is not included in the equation for Lϕ,0, so the surface
under consideration is perpendicular to the plane y = 0. Moreover, the surface b passes through the
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origin of coordinates, and like in the second order system, it does not depend on the normalized initial
detuning g. The point of intersection of these surfaces is the equilibrium state of the system (at the
same time, the conditions ϕn+1 = ϕn, xn+1 = xn and yn+1 = yn are satisfied, and has the coordinates
O(ϕ01, x01, y01).

By analogy with a system of the second order, domains of space can be found starting from which
the solution (Equation (1)) falls on the boundary of the nonlinearity period F1(ϕ) ϕn = 1 and ϕn = −1.
The required domains are a set of planes GQ.m (the index m is the number of the period F1(ϕ)) on
whose boundary the solution falls) whose equations are written as follows [11–17]:

GQ.m : x = (α− 1)ϕ + 2m− 1, m = 1, 2, 3 . . . (5)

And
GQ.m : x = (α− 1)ϕ + 2m + 1, m = −1,−2,−3 . . . (6)

In Equations (5) and (6), like in the expression for Lϕ,0, the coordinate y is not included,
and consequently these planes are perpendicular to the plane yn = 0.

The arrows show the directions of the motion of the state vector
→
q n(ϕn, xn, yn) along the directions

ϕn and xn under the mapping, in each of the four zones formed by the segments AB and CD. For some
saddle points shown in Figure 2, quasiperiodic motions do not take place.

In Figure 2, the domains of the nonlinear mapping are shaded with output correspondingly
to the boundaries ϕn = +1 and ϕn = −1 of the phase cylinder scan −Q1 and Q−1. On both sides,
the domains Q1 and Q−1 are bounded by the planes ϕn = ±1, with the third one, by the plane
x = 1− (1− α)ϕ for Q1 (mapping in the direction of increasing xn) and the plane x = −1− (1− α)ϕ

for Q−1 (the mapping in the direction of decreasing ϕn). In the directions yn and one of the directions
xn, the domains Q1 and Q−1 are unbounded. Between the domains Q1 and Q−1 there is a domain Q0,
the map from which occurs linearly.

For a nonlinear mapping, the domain Q1 passes to the domain Q′1. Moreover, the point B(1, α, 0)
is mapped to the point B′(−1, αd− β + g, αh− σ); L(−1, 2− α, 0) to the point L′(−1, d(2− α) + β +

g, h(2− α)− σ), and so on.
Changing the coordinate [

→
q n]y of the state vector in the Q1, a domain leads to a change in

the coordinate of the vector [
→
q n+1]x in Q′1: With increasing (decreasing) [

→
q n]y increases (decreases)

[
→
q n+1]x. Thus, the entire domain Q1 is mapped into an infinite strip along the xn -axis bounded along

the ϕn axis by the planes ϕn = ±1 and, in addition, by two parallel planes that are mappings of
the planes ϕn = ±1. Analogous arguments lead to the construction of the domain Q′−1, which is a
mapping of Q−1. It should be noted that there is an intersection of the domains Q′1 and Q−1, as well as
Q′−1 and Q1, which fundamentally distinguishes the considered system from the second order system.

Let us consider iterations with initial conditions from an arbitrary state vector
→
q 0 = (ϕ0, x0, y0).

According to (Equation (1)) vector
→
q n may be expressed by means of

→
q 0 as follows:

→
q n = An ·→q 0 +

n−1

∑
j=0

Aj ·
(→

r +
→
p n−j−1

)
(7)

where A is linearized matrix corresponding to (Equation (1)) under the linear mapping
→
p j = (0, 0, 0)T ,

in the case of a nonlinear mapping
→
p j = (±2, 0, 0)T , with this, the sign "+" corresponds to going abroad

ϕ = −1, the sign "-" corresponds to going abroad x = +1. The vector
→
p j returns the state vector of the

system to the (j + 1)-step in the interval [−1; 1] for the coordinate x. We rewrite (Equation (7)) as:

→
q n = An

→
q 0 + (E− An)(E− A)−1→r +

n−1

∑
j=0

Aj→p n−j−1 (8)
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For a cycle of period k existing, it is necessary that the closure condition −→q k =
→
q 0 be satisfied.

Taking this condition into account, the expression for the initial point of the cycle follows from
(Equation (8)):

→
q n =

(
E− Ak

)−1
(

k−1

∑
j=0

Aj→p k−j−1

)
+ (E− A)−1→r (9)

The expression (Equation (9)) may be considered as the first necessary condition for the existence
of a cycle, or the closure condition. The second condition is to find all the state vectors of a cycle of
a required structure within the interval |ϕ| ≤ 1 (i.e., the structural condition). Implementation of
this condition means that all state vectors of the cycle are in the corresponding domains Q1, Q0, Q−1.
Otherwise, Equation (9) can formally lead to some state that is not a point of the cycle. The formulated
conditions are necessary and sufficient for the existence of a cycle with a certain structure.

Similar to a discrete SPS of the second order, it can be shown that an arbitrary cycle existing
in a system with nonlinearity F1(ϕ) is stable under the conditions of local stability of the mapping
(Equation (1)).

Consider the structure cycle (u/k), where u is the number of nonlinear mappings on the cycle
period, k is the cycle period. For the limit cycle of the first kind u = 0, for the limit cycle of the second
kind in the case of rotation along the coordinate p in the direction of increasing u > 0, in the case of
rotation in the direction of decreasing the coordinate ϕ− u < 0. In accordance with (9), the vector of
an arbitrary point of the cycle can be represented as follows:

→
q j =

→
l j + g

→
b , j = 1, . . . , k (10)

where
→
l j =

(
E− Ak

)−1
(

k−1
∑

j=0
Aj→p k−j−1

)
,
→
b = (E− A)−1(0, 1, 0)T ;

→
l j is a vector, depending on the

structure of the cycle and the choice of the starting point,
→
b is a vector depending neither on the

structure of the cycle nor its initial state.

When g is changed, all points of the cycle in the phase domain are displaced along the vector
→
b .

This can lead to both the occurrence and destruction of the cycle due to the transition of cycle points
between the domains Q1, Q0, Q−1, and also when the points of the plane cycle ϕn = ±1 intersect
the vectors.

Let us find conditions for the generalized detuning g for which there exists a cycle of a certain
structure (u/κ). To do this, we use the above conditions for the existence of a cycle. From (7–9) we
assess the values of the generalized detuning g− j and g+ j for which the state vector

→
q j intersects the

boundaries ϕn = −1 and ϕn = +1, respectively:

g− j =

−1−
[→

lj

]
1[→

bj

]
1

, g+ j =

1−
[→

lj

]
1[→

bj

]
1

(11)

All points of the cycle intersect the plane ϕn = −1 if the condition g > max
j=1...k

(
g−j
)

is satisfied,

at least one cycle point intersects the plane ϕn = 1 for g < min
j=1...k

(
g+j
)

. A cycle can exist when:

max
j=1...k

(
g−j
)
< min

j=1...k

(
g+j
)

, (12)

in the detuning range max
j=1...k

(
g−j
)
< g < min

j=1...k

(
g+j
)

.
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4. Algorithm for Determining the Acquisition Bandwidth

We constructed an algorithm for determining the acquisition band. It is based on the condition
of the occurrence of the simplest limit cycles of the first and second kind. In the general case, it is
necessary to determine two values of the initial detuning γmin, γmax. With γ < γmax all PC2 disappear,
with γ > γmin all PC1 disappear [16–22].

Let us find γmax, for this we define the value of γk, at which the PC2 structures (1/k) appear. To be
exact, we consider the initial state on the cycle to be the state into which the system comes after the
nonlinear mapping through the boundary ϕn= 1. For this case

→
p j = (0, 0, 0)T , 0 ≤ j <k−1;

→
p k−1 =

(−2, 0, 0)T . According to Equations (10)–(12), the initial state vector
→
q 0 will be as follows [11–17]:

→
q 0 =

→
Pk−1

E− Ak +

→
r

E− A
(13)

The cycle of the second kind of period k will exist when conditions (Equation (13)) are fulfilled
and will occur, taking into account Equations (1) and (5) with frequency detuning

γk
2 =
−1 + 2

[
(E− Ak)

−1
]

11

ξ
[
(E− A)−1

]
12

(14)

The boundary of the cycle generation may be expressed as follows:

γ = γmax = min
k=1...kmax

(
γk

2

)
. (15)

It remains to find k, for which the founded value of the initial detuning will be the smallest,
which determines the boundary condition for the occurrence of PC2. The algorithm proposes the
assignment of some kmax, which obviously exceeds the desired value. Recommendations for choosing
kmax are similar to the second order system and are as follows. In the case of complex eigenvalues of

the matrix A, the behavior of the vector
→
l is oscillatory in parameter k (the end of the vector with an

increase in the cycle period k describes a twisting spiral around a point (−2, 0, 0) and it is enough to
take half the oscillation period as kmax.

The analysis of the above dependencies from the standpoint of global stability of the FAS leads to
the following conclusions:

1. With increasing α1, α2, the stability domains with respect to the amplification D expand. The most
significant increase is observed for large m1. For example, for m1 = 0.8 with increasing α1, α2 from
values 0.5–0.8 (Figure 3) to values 2–4 (Figure 3), the stability domains in parameter D increase
2–4 times.

2. The boundary of the areas with global stability on the initial mismatch β also expands significantly
with increasing α1, α2. However, dependence on m1 is more complex. A decrease in the upper
bound β with increasing m1 is observed near the limits of the local stability. On the contrary,
in the farther zone from the boundary of local stability (medium D), there is a significant increase
in the upper boundary β with increasing m1.

3. Limiting the stability of the bottom of the frequency detuning (limiting with the cycles of the
first kind) is most expressed with small m1 and, as stated above, is non-monotonous. The most
significant restriction is observed for large D (Figure 3) and can reach values of 0.3–0.4.
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5. SPS Model with a Triangular Nonlinearity

Let F(ϕ) = Fc(ϕ). The basic laws of the appearance of periodic motions of the second kind and
quasiperiodic motions in a third order system with a triangular nonlinearity repeat at a qualitative level
in the results obtained for a second order system [12,19,21–25]. In this case, both the final dependencies
and the mechanisms explaining them are qualitatively repeated. In this regard, we will not dwell
on them in detail below. The quantitative differences will be demonstrated on a number of graphs
devoted to the analysis of the acquisition band.

The situation with cycles of the first kind, whose existence has been established in a system with a
saw-tooth nonlinearity, is completely different. Their analysis is important because they have occurred
with small initial detuning and limit the acquisition domain in frequency from below.

A quantitative estimate of the boundary of first kind cycles can be obtained by considering
the change in the area of their existence in the parameter space with a change in the shape of the
characteristic. Figure 5 shows the region of existence of PC1 on the plane D, γ for different values
of c. The boundaries of the areas are almost straight lines, the slope of which depends only on the
filter parameters (α1, m1, α2, m2). Changing c does not change the shape of these curves, but shifts
them along the abscissa. PC1 cycles disappear in two cases: Firstly, at a certain maximum value of
the parameter cmax; and secondly, with a saw-tooth characteristic of the detector and certain filter
parameters (Figure 4).

The authors can note the strong influence of parameters on these dependencies.
From a practical point of view, the filter parameters are of a certain interest. Limit cycles of the

first kind (quasi-synchronism mode) are impossible for them. Figure 5 shows the regions of existence
of PC1 on the plane α1, α2 with equal forcing coefficients m1, m2. For m1 = m2= 0, there is a boundary
close to a straight line, above which there are no cycles. With increasing m1, m2, the area of existence
of cycles is symmetrically limited by α1, α2, and disappears when m1 = m2 ≥ 0.165.
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Analysis of the above results shows that the existence of cycles of the first kind with a
saw-tooth-like, or close to it, detector characteristic is determined only by the filter parameters and is
not related to the gain of the system.

The dependencies in Figure 5 allow us to analyze the acquisition band when changing the duration
of the stable branch of the detector characteristics and to answer the question about its optimal value.
As in the case of pulsed DSC of the second order, for small D, a weak dependence of the acquisition
band on the shape of the characteristics is observed. There is some loss for Fc(ϕ), increasing with the
steepness of the stable branch.

With increasing D (to the boundary of local stability) due to a shift in the boundary of the onset of
quasiperiodic motions towards large β, the maximum of the acquisition band is provided in the case
of Fc(ϕ). With different ratios of filter parameters, the gain in the acquisition band can reach up to 50%
as compared with Fc(ϕ). Figure 5 also shows the limitations of the acquisition area from below due to
PC1. It is possible to get rid of such restrictions by increasing the steepness (decreasing the duration)
of a stable part of the characteristics.
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6. Results

The dual-ring synthesizer was simulated. The computer model made it possible to take into
account a number of factors additionally, which were not considered in the mathematical model.
They included the inconstancy of the discretization periods and the difference between the detector
model and the zero order extrapolator.

Allowance for variations of the sampling period (epoch) resulted in corrections of the dynamic
characteristics, primarily the stability domain. However, this applied mainly to the range of large gains
(α > 1, β > 1). For operating gains, the results of mathematical and computer simulation coincided
with high accuracy [25–28].

Figure 6 shows the dependences of the capture band and the transient time of the dual-ring SPS,
taking into account the variable nature of the sampling periods, for k1 / k2 = 8. To compare, Figure 6a
shows the results for a constant sampling period (upper curves). With positive detuning, allowance for
the variations led to a certain decrease in the capture band, repeating the known result for single-ring
systems. A change in the capture band as a function of µ repeated similar changes for a model with a
constant sampling period. A decrease in the capture band with increasing µ was observed. Changing
the sign of µ to the opposite, resulted in an increase in the capture band, partially offsetting the loss
from the variations in the sampling period.Symmetry 2019, 11, x FOR PEER REVIEW 11 of 13 
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An analysis of the average time for the frequency settling in a dual-ring SPS (Figure 6b–d)
suggested a qualitative coincidence with the results of the model analysis [6,8].

In particular, there is was a fairly wide range of parameters (shown in the Figure for gains),
where the frequency setting time was rather small and almost invariable. It confirmed the stabilizing
effect of mutual bonds (the results are given to establish the frequency with an accuracy of 0.01 F).
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A certain range shift to the left was explained by an increase in the equivalent gain due to the variable
sampling period. According to the above results, for filter parameters that provided suppression at a
sampling frequency close to 10 dB (m = 0.5, αΦ = 0.5–1.0), the time for setting the frequency did not
exceed 10 samples of the output ring in a wide range of gains.

7. Conclusions

Based on the general provisions of the theory of bifurcations, the directions for analyzing the
conditions for the occurrence of periodic and quasiperiodic motions in a third order DCS with a
piecewise linear characteristic of the detector are defined. As in the case of the second order DCS,
the basis for the occurrence and loss of stability of k-multiple fixed points is the condition that the
linear sections fall on the boundaries of linear sections. The mandatory requirement for the occurrence
of quasiperiodic motions is the contact of the incoming and outgoing separatrix manifolds by a
saddle point. The difference from the second order systems is in a large number of different types of
saddle points and, accordingly, the number of possible scenarios of motions in the neighborhood of
separatrix manifolds.

The method of estimating the bifurcation parameters of piecewise linear mappings of the
third order has been developed. This makes it possible to find the boundaries of areas of the
existence of various types of periodic and quasiperiodic motions. The method is based on the
mandatory and sufficient conditions for the occurrence of a k-multiple fixed point through the
formation of an intermediate complex point node-saddle or focus-saddle and the conditions for
tangency of the incoming and outgoing separatrix manifolds at the boundaries of the linear sections of
the characteristics.
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