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Abstract: In this paper, we define a continuous wavelet transform of a Schwartz tempered distribution
f ∈ S

′
(Rn) with wavelet kernel ψ ∈ S(Rn) and derive the corresponding wavelet inversion formula

interpreting convergence in the weak topology of S
′
(Rn). It turns out that the wavelet transform of a

constant distribution is zero and our wavelet inversion formula is not true for constant distribution,
but it is true for a non-constant distribution which is not equal to the sum of a non-constant
distribution with a non-zero constant distribution.

Keywords: function spaces and their duals; distributions; tempered distributions; Schwartz testing
function space; generalized functions; distribution space; wavelet transform of generalized functions;
Fourier transform

1. Introduction

As studied in the earlier works (see, for example, [1–12], we define a Schwartz testing function
space S(Rn) to consist of C∞ functions φ defined on Rn and satisfying the following conditions:

sup
x∈Rn

∣∣∣∣∣xmn
n · · · x

m2
2 xm1

1
∂kn

∂xn

∂kn−1

∂xn−1
· · · ∂k2

∂x2

∂k1

∂x1
φ(x1, x2, x3, · · · xn)

∣∣∣∣∣ < ∞ (1)

|m| , |k| = 0, 1, 2, · · · .
The topology over S(Rn) is generated by the following sequence of semi-norms:

{γm,k}∞
|m|,|k|=0,

where
γm,k(φ) = sup

x∈Rn

∣∣∣|xm| φ(k)(x)
∣∣∣ , (2)

|m| = m1 + m2 + m3 + · · ·+ mn,

|k| = k1 + k2 + k3 + · · ·+ kn,

|xm| =
∣∣xm1

1 xm2
2 xm3

3 · · · x
mn
n
∣∣ ,
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φ(k)(x) =
∂kn

∂xn
· · · ∂k3

∂x3

∂k2

∂x2

∂k1

∂x1
φ(x).

These collections of semi-norms in Equation (2) are separating which means that an element
φ ∈ S(Rn) is non-zero if and only if there exists at least one of the semi-norms γm,k satisfying
γm,k(φ) 6= 0. A sequence {φν}∞

ν=1 in S(Rn) tends to φ in S(Rn) if and only if γm,k(φν − φ) → 0 as ν

goes to ∞ for each of the subscripts |m| , |k| = 0, 1, 2, · · · , are as defined above. Now, one can verify
that the function e−(t

2
1+t2

2+t3
3+···+t2

n) ∈ S(Rn) and the sequence

ν− 1
ν

e−(t
2
1+t2

2+t3
3+···+t2

n) → e−(t
2
1+t2

2+t3
3+···+t2

n)

in S(Rn) as ν→ ∞. The Dirac delta function δ(t) is defined here by

< δ(t1 − a1, t2 − a2, t3 − a3, · · · , tn − an), φ(t1, t2, t3, · · · , tn) >= φ(a1, a2, a3, · · · , an).

So, we have

< δ(t1, t2, t3, · · · , tn), φ(t1, t2, t3, · · · , tn) >= φ(0, 0, 0, · · · , 0)
(
φ ∈ S(Rn)

)
.

It is easy to check that δ(t1, t2, · · · , tn) is a continuous linear functional on S(Rn). A regular distribution
generated by a locally integrable function is an element of S

′
(Rn).

Our objective now is to find an element ψ ∈ S(Rn), which is a wavelet, so as to be able to define
the wavelet transform of f ∈ S

′
(Rn) with respect to this kernel.

A function ψ ∈ L2(Rn) is a window function if it satisfies the following conditions:

xiψ(x), xixjψ(x), · · · , x1x2x3 · · · xnψ(x) (3)

belonging to L2(Rn). Here, i, j, k, · · · take on all assumed values 1, 2, 3, · · · and all the lower suffixes in
a term in Equation (3) are different. It has been proved by Pandey et al. [4,13] that a window function
which is an element of L2(Rn) belongs to L1(Rn). It is easy to verify that every element of S(Rn) is a
window function.

A window function ψ belonging to L2(Rn) and satisfying the following condition:

∞∫
−∞

ψ(x1, x2, x3, · · · , xi, · · · , xn)dxi = 0 (∀ i = 1, 2, 3, · · · , n) (4)

also satisfies the admissibility condition given by

∫
Rn

∣∣ψ̂(Λ)
∣∣2

|Λ| dΛ < ∞, (5)

where
ψ̂(Λ) = ψ̂(λ1, λ2, λ3, · · · , λn),

|Λ| = |λ1λ2 · · · λn|

and ψ̂(Λ) is the Fourier transform of ψ(x) ≡ ψ(x1, x2, x3, · · · , xn) (see also a recent work [14]). Clearly,
ψ in Equation (4) is a wavelet [13]. As an example, one can easily verify that the function given by

ψ(x) = x1x2 · · · xne−(x2
1+x2

2+x3
3+···+x2

n)

is a wavelet belonging to S(Rn). Let s(Rn) be a subspace of S(Rn) such that every element φ ∈ s(Rn)

satisfies Equation (4). Clearly, every element of s(Rn) is a wavelet [4].
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Now, if f ∈ S′(Rn) and ψ is a wavelet belonging to S(Rn), the wavelet transform of f can be
defined by

W f (a, b) =

〈
f (x),

1√
|a|

ψ(
x− b

a
)

〉
,

where 〈·, ·〉 denotes the inner product and (a, b) is the argument of wavelet transform W f (a, b) of f
with respect to wavelet ψ,

ψ

(
x− b

a

)
= ψ

(
x1 − b1

a1
,

x2 − b2

a2
,

x3 − b3

a3
, · · · ,

xn − bn

an

)
(
ai 6= 0 (∀ i = 1, 2, 3, · · · , n)

)
and

|a| = |a1a2a3 · · · an| .

Our objective next is to prove the following inversion formula:〈
1

Cψ

∫
Rn

∫
Rn

W f (a, b)ψ(
t− b

a
)

db da√
|a|a2

, φ(t)

〉
→ 〈 f , φ〉 , φ ∈ S(Rn) (6)

by interpreting the convergence in S′(Rn). Here, we have

Cψ = (2π)n
∫
Rn

|ψ̂(∧)|2
| ∧ | d ∧ .

The derivation of the inversion formula given by the formula (6) is difficult. We, therefore, make an
easy approach. The work on the multidimensional wavelet transform with positive scale [a > 0] was done
by Daubechies [15], Meyer [16], Pathak [17], and some others. Motivated by the earlier works [6,8,12],
Pandey et al. [4] studied a generalization of these works and extended the multidimensional wavelet
transform with real scale [a 6= 0]. In the year 1995, Holschneider [18] extended the multidimensional
wavelet transform to Schwartz tempered distributions with positive scales [a > 0]. Recently, Weisz [19,20]
studied the inversion formula for the continuous wavelet transform and found its convergence in Lp

and Wiener amalgam spaces. Postnikov et al. [21] studied computational implementation of the inverse
continuous wavelet transform without a requirement of the admissibility condition.

Our objective in this investigation is to extend the wavelet transform to Schwartz tempered
distributions with real scale [a 6= 0]. The standard cut off of negative frequencies (which is required
to apply continuous wavelet transform with a > 0) may result in a loss of information if the
transformed functions were non-symmetric (in the Fourier space) mixture of real and imaginary
frequency components. Our proposed and proven inversion formula is free from the mentioned defect.
The main advantage of our work is a possible further practical utility of the proven result and the
simplicity of calculation; in addition, our extension of the multidimensional wavelet inversion formula
is the most general. In [4], it is proved that a window function ψ(x) ∈ L2(Rn) is a wavelet if and only
if the integral of ψ along each of the axes is zero; therefore, any ψ(x) ∈ s(Rn) is a wavelet. Hence, the
wavelet transform of a constant distribution is zero.

We thus realize that two elements of S′(Rn) having equal wavelet transform will differ by a constant
in general. Holschneider [18] uses the wavelet inversion formula for f ∈ S′(Rn), but he does not mention
the wavelet inversion formula and its convergence in S′(Rn). Perhaps, he takes it for granted, as such an
inversion formula is valid for elements of L2(Rn) by interpreting convergence in L2(Rn) . Our objective
in this paper is to fill up all these gaps. We will prove the inversion Formula (6) in Section 3.
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2. Structure of Generalized Functions of Slow Growth

Elements of S′(Rn) are called tempered distributions or distributions of slow growth.

Definition 1. A function f (x) is said to be a function of slow growth in Rn if, for m = 0, we have∫
Rn
| f (x)| (1 + |x|)−m dx < ∞

and it determines a regular functional f in S′(Rn) by the formula given by

〈 f , φ〉 =
∫
Rn

f (x)φ(x)dx (φ ∈ S(Rn)). (7)

It is easy to verify that the functional f defined by Equation (7) exists ∀φ ∈ S(Rn) and that it is
linear as well as continuous on S(Rn).

We now quote a theorem of Vladimirov proved in his book [8].

Theorem 1. If f ∈ S′(Rn), then there exists a continuous function g of slow growth in Rn and an integer
m = 0 such that

f (x) = Dm
1 Dm

2 Dm
3 · · ·Dm

n g(x),
∂

∂xi
≡ Di (8)

or, equivalently,

f (x) = Dmg(x) (D := D1D2D3 · · ·Dn). (9)

The n-dimensional wavelet inversion formula for tempered distributions will now be proved very
simply by using the structure Formula (9). This structure formula enables us to reduce the wavelet
analysis problem relating to tempered distributions to the classical wavelet analysis problem of L2(Rn)

functions. Our wavelet inversion formula of L2(Rn) functions will be used quite successfully in order
to derive the wavelet inversion formula for the wavelet transform of tempered distributions.

3. Wavelet Transform of Tempered Distributions in Rn and Its Inversion

Henceforth, we assume that a 6= 0 implies each of the components ai 6= 0 for all i = 1, 2, 3, · · · , n
and that a > 0 means each of the component ai of a is greater than zero. Moreover, |a| > ε will mean
that |ai| > ε for all i = 1, 2, 3, · · · , n.

Let ψ(x) = ψ(x1, x2, · · · , xn) ∈ S(Rn). Then ψ(x) is a window function and is a wavelet if and
only if

∞∫
−∞

ψ(x1, x2, · · · , xi, · · · , xn)dxi = 0 (∀ i = 1, 2, · · · , n). (10)

We define ψ
(

x−b
a

)
≡ ψ

(
x1−b1

a1
, x2−b2

a2
, · · · , xn−bn

an

)
, where ai, bi are real numbers and none of the

ai is zero. The wavelet transform W f (a, b) of f with respect to the kernel 1√
|a|

ψ
(

x−b
a

)
is defined by

W f (a, b) =

〈
f (x),

1√
|a|

ψ

(
x− b

a

)〉
. (11)

Here, we assume that

|a| = |a1a2a3 · · · an|
(
ai 6= 0 (i = 1, 2, 3, · · · , n)

)
.
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We now prove the following lemmas which will be used to prove the main inversion formula.

Lemma 1. (see [13]) Let φ ∈ S(Rn) and ψ be a wavelet belonging to S(Rn).

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t−b

a

)
ψ
(

x0−b
a

)
dt db da

a2|a|

= (−Dx)
m φ(x)|x=x0 (∀ x0 ∈ Rn).

This is called pointwise convergence of the wavelet inversion formula.

Lemma 2. Let φ ∈ S (Rn) and let ψ be a wavelet belonging to S (Rn). Then

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
ψ

(
x− b

a

)
dt db da

a2|a|

converges to (−Dm
x ) φ(x) uniformly for all x ∈ Rn.

Proof. Let
F(∧) = 1

(2π)
n
2

∫
Rn

(−Dt)
m φ(t) e−i ∧.t dt

be the Fourier transform of (−Dt)
m φ(t). It follows that, in the sense of L2(Rn) convergence [17],

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
c∈Rn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
ψ

(
x− b

a

)
dt db da

a2|a|

=
1

(2π)
n
2

∫
Rn

F(∧)ei∧.xd∧ = (−Dx)
m φ(x).

This convergence is also uniform by a Weierstrass M-test because∣∣∣∣∣∣ 1

(2π)
n
2

∫
Rn

F(∧) ei∧.x d∧

∣∣∣∣∣∣ 5 1

(2π)
n
2

∫
Rn

|F(∧)|d∧ < ∞

and
F(∧) ∈ S(Rn).

Theorem 2. Let f ∈ S′(Rn) and W f (a, b) be its wavelet transform defined by

W f (a, b) =

〈
f (x),

1√
|a|

ψ

(
x− b

a

)〉
.

Then the inversion formula of the wavelet transform W f (a, b) is given by〈
1

Cψ

∫
Rn

∫
Rn

W f (a, b)ψ
(

t− b
a

)
db da√
|a|a2

, φ(t)

〉
= 〈 f , φ〉 (12)

(
∀ φ ∈ S(Rn)

)
,

where the equality holds true almost everywhere.
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Proof. Using the structure formula (9) for f , we find by distributional differentiation that

W f (a, b) =

〈
Dm

x g(x), 1√
|a|

ψ
(

x−b
a

)〉
=

〈
g(x), (−Dx)

m 1√
|a|

ψ
(

x−b
a

)〉
.

Here, we have

(−Dx) = (−Dx1) (−Dx2) (−Dx3) · · · (−Dxn) Dxi ≡
∂

∂xi
(i = 1, 2, 3, · · · , n).

We thus obtain

W f (a, b) =

〈
g(x), (Db)

m 1√
|a|

ψ
(

x−b
a

)〉
Db =

(
∂

∂b1
∂

∂b2
∂

∂b3
· · · ∂

∂bn

)
.

The expression on the left-hand side in (12) can be written as follows:

Ω :=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)Dm
b

1√
|a|

ψ̄

(
x− b

a

)
ψ

(
t− b

a

)
φ̄(t)dx db da dt

=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

 ∫
b∈Rn

{
Dm

b ψ̄

(
x− b

a

)}
ψ

(
t− b

a

)
db

 φ̄(t) dx da dt
a2|a| . (13)

We now evaluate the integral in the big bracket by parts to find from Equation (13) that

Ω =
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

 ∫
b∈Rn

ψ̄

(
x− b

a

)
(−Db)

m ψ

(
t− b

a

)
db

 φ̄(t) dx da dt
a2|a|

=
1

Cψ

∫
t∈Rn

∫
a∈Rn

∫
x∈Rn

g(x)

 ∫
b∈Rn

ψ̄

(
x− b

a

)
(+Dt)

m ψ

(
t− b

a

)
db

 φ̄(t) dx da dt
a2|a| ,

which, upon inverting the order of integration with respect to a and t, yields

Ω =
1

Cψ

∫
a∈Rn

∫
t∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)ψ̄
(

x− b
a

)
dx Dm

t ψ

(
t− b

a

)
dbφ̄(t)

dt da
|a|2|a|

=
1

Cψ

∫
a∈Rn

∫
b∈Rn

∫
x∈Rn

g(x)ψ̄
(

x− b
a

)
dx

∫
t∈Rn

ψ

(
t− b

a

)
db (−Dt)

m φ̄(t)
dt da
|a|2|a| . (14)

In order to justify the inversion of the order of integration with respect to a and t, we first perform
the integration in the region [(a, t) : |a| > ε, a, t ∈ Rn], invert the order of integration and then let
ε→ 0. This existence of the triple integral in terms of b, a and t in Equation (14) is proved by using the
Plancherel theorem with respect to the variable b. Thus, by using

Cψ = (2π)n
∫
Rn

∣∣ψ̂(∧)∣∣2
|∧| d∧,

we notice that the variable a disappears from the denominator and every calculation goes on smoothly.
Since the functions φ and ψ are elements of S(Rn), the Fubini’s theorem can be applied in order to
justify the above interchanges of the order of integration.
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Now, Equation (14) can be written as follows:〈
g(x),

1
Cψ

∫
a∈Rn

∫
b∈Rn

∫
t∈Rn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
dt ψ

(
x− b

a

)
db da
|a|2|a|

〉
(15)

=
〈

g(x), (−Dx)
m φ(x)

〉
, (16)

by means of the wavelet inversion formula in Rn [4] and Lemma 2.
We note that the triple integral in Equation (15) converges uniformly to (−Dx)

m φ(x)∀ x ∈ Rn.
Thus, Equation (15) becomes Equation (16):〈

g(x), (−Dx)
m φ(x)

〉
=
〈
(Dx)

m g(x), φ(x)
〉

= 〈 f (x), φ(x)〉 .

4. Conclusions

In our present investigation, we have introduced and studied a continuous wavelet transform
of a Schwartz tempered distribution f ∈ S

′
(Rn) with the wavelet kernel ψ ∈ S(Rn). We have

successfully derived the corresponding wavelet inversion formula by interpreting convergence in the
weak topology of S

′
(Rn).

We have found that the wavelet transform of a constant distribution is zero and also that our
wavelet inversion formula is not true for constant distribution, but it is true for a non-constant
distribution which is not equal to the sum of a non-constant distribution with a non-zero constant
distribution. Our results and findings are stated and proved as Lemmas and Theorems.
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