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Abstract: As an effective tool to express the subjective preferences of decision makers, the linguistic
term sets (LTS) have been widely used in group decision-making (GDM) problems, such as hesitant
fuzzy LTS, linguistic hesitant fuzzy sets, probabilistic LTS, etc. However, due to the increasing
complexity of practical decision-making (DM) problems, LTS still has a lot of room to expand in
fuzzy theory. Qualitative uncertainty information in the application of GDM is yet to be improved.
Therefore, in order to improve the applicability of linguistic terms in DM problems, a probabilistic
uncertain linguistic intuitionistic fuzzy set (PULIFS) that can fully express the decision-maker’s
(DM’s) evaluation information is first proposed. To improve the rationality of DM results, we give a
method for determining individual weights in the probabilistic uncertain linguistic intuitionistic fuzzy
preference relation (PULIFPR) environment. In addition, we present two consistency definitions
of PULIFPR to reflect both the assessment information and risk attitudes of decision makers.
Subsequently, a series of goal programming models (GPMs) are established, which effectively
avoid the consistency check and correction process of existing methods. Finally, the developed
method is applied to an empirical example concerning the selection of a virtual reality (VR) project.
The advantages of the proposed method are demonstrated by comparative analysis.

Keywords: group decision-making (GDM); probabilistic uncertain linguistic intuitionistic fuzzy
preference relation (PULIFPR); consistency; goal programming model (GPM); risk preference
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1. Introduction

Because of the inherent subjective ambiguity of human thinking and the complexity of practical
decision-making (DM) problems, the use of qualitative information is almost an indispensable link
in DM. As the most commonly used qualitative information expression tool, linguistic terms (LT)
have been extensively studied by scholars. Since Zadeh [1] proposed linguistic variables in 1975,
various extended forms of LT have been proposed to model qualitative information and improve its
calculation. In order to have a general understanding of these extended LT, we will present the general
development process of LT in the form of Table 1.

It is easy to see from the table 1 that the development of LT can be mainly divided into two
stages. The first stage is some traditional linguistic models, whose main research object is single LT.
The second stage is the complex linguistic expression stage, whose linguistic information expression
form is generally more than one LT or implied multiple linguistic information. In addition, it is easy
to find that the LT of the later stage mostly introduces probability to comprehensively reflect the
subjective uncertainty of decision makers (DMs) and the randomness of objective existence. All of
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these proposed sets give expression methods of qualitative information from different perspectives,
and all of them have been applied reasonably in the DM problem. However, the qualitative information
expressed by these sets has different degrees of defects. For example, although probabilistic uncertain
linguistic term sets (PULTS) expresses the DM’s preference information and its probability distribution,
it fails to consider the DM’s non-preference information, while linguistic intuitionistic fuzzy sets (LIFS)
only expressed the subjective hesitation of DMs from the perspective of preference and non-preference,
failing to consider the probability distribution of its information. Therefore, in order to improve the
expression of qualitative information and promote the use of LT in DM problems, this paper further
proposes a probabilistic uncertain linguistic intuitionistic fuzzy set (PULIFS) based on the above
research, which integrates the advantages of LIFS and PULTS.

Table 1. A brief history of the types of linguistic terms.

Year Event

Traditional 1975 Zadeh proposes the linguistic variable and introduced the fuzzy linguistic approach [1–3].
linguistic 1981 Yager presents an ordered structure model [4].
models 1988 Degani and Bortolan present the semantic model [5].

1993 Delgado and Verdegay propose the symbolic model [6].
2000 Herrera and Martinez introduce the two-tuple linguistic model [7].
2004 Xu defines the virtual linguistic model [8].

Complex 2004 Xu introduces the uncertain linguistic term (ULT) [9].
linguistic 2012 Rodriguez et al. present the concept of hesitant fuzzy linguistic term sets (HFLTS) [10].
expression 2014 Meng et al. propose the linguistic hesitant fuzzy sets (LHFS) [11].

2014 Zhang gives the concept of linguistic intuitionistic fuzzy sets (LIFS) [12].
2015 Ye presents the single-valued neutrosophic linguistic sets (SVNLS) [13].
2016 Pang et al. present the probabilistic linguistic term sets (PLTS) [14].
2107 Lin et al. define the probabilistic uncertain linguistic term sets (PULTS) [15].
2018 Bai et al. present the interval-valued probabilistic linguistic term sets (IVPLTS) [16].
2018 Zhang et al. propose the dual hesitant fuzzy linguistic term sets (DHFLTS) [17].

For example, when a decision team needs to evaluate and compare some alternatives, due to
the complexity of the actual decision-making environment, the decision-makers can only provide
qualitative preference and non-preference information based on the linguistic term set (LTS) S = {s0:
extremely poor, s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good, s6: good, s7: very
good, s8: extremely good}. Among them, 40% of the DMs gave preference information between the very
poor and the slightly poor, and the non-preference information was between the fair and the slightly
good. While 60% of DMs gave preference information between fair and good, and non-preference
information was between very poor and poor. Then the preference information given by this decision
team can be represented by PULIFS as

P = {〈([s1, s3], [s4, s5]), 0.4〉, 〈([s4, s6], [s1, s2]), 0.6〉}

From the above example, it can be seen that PULIFSs not only expresses the qualitative preference
and non-preference information of DMs, but also provides flexible linguistic selection space for DMs
and gives the probability distribution information of an uncertain linguistic. Moreover, the above
example is only one application case of PULIFS proposed, besides, PULIFS can also be used to
express individual preference information. So it is natural that we want to apply PULIFS to group
decision-making (GDM) problems to compensate for the application limitations of existing sets,
thus improving the application of qualitative information in fuzzy theory. This is the first focus of
this paper.

Considering the cognitive uncertainty and fuzziness of DMs in complex decision-making
environment, the application of uncertainty theory in decision-making has been widely studied.
For example, Pamucar et al. [18] combined with linguistic neutrosophic numbers presented the
selection method of power generation technology, and Liu et al. [19] established the selection model
of transportation service provider with single valued neutrosophic number. In addition, preference
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relation (PR) has been widely used in GDM as an effective tool to express DMs’ preferences over
alternatives. Its main types include fuzzy PR [20], multiplicative PR [21] and linguistic PR (LPR) [22].
On this basis, many forms of preference relations have been proposed, such as interval fuzzy PR [23],
interval multiplicative PR [24], intuitionistic PR [25], intuitionistic multiplicative PR [26], linguistic
intuitionistic PR [27], etc. These PRs all express the DM’s preference information in different forms from
different perspectives. However, the application of existing PRs in GDM have the following defects:

(1) Most of the PRs fail to reflect the distribution of information given by DMs.
(2) Most studies on PRs ignore the information that cannot be grasped by DMs or fail to take into

account information loss caused by certain objective factors.
(3) In the process of solving the priority weights, most of the GPMs only consider the principle of

minimum consistency deviation and ignore the risk attitude of decision makers, which may
result in the loss of original information and reduce the rationality of the ranking results.

(4) Almost all methods, none can guarantee the consistency of PRs in the process of solving priority
weights. They all need to test and improve the consistency of PRs, which greatly reduces the
accuracy of the results.

Therefore, in order to make up for the above defects of the existing methods, this paper
further proposes probabilistic uncertain linguistic intuitionistic fuzzy preference relation (PULIFPR)
based on the excellent nature of PULIFS proposed. To ensure the reasonable application of PR
in GDM, we divide the uncertain information represented by PULIFPR into vagueness uncertain
information and non-vagueness uncertain information, and its consistency is studied from two spatial
dimensions respectively. Among them, non-vagueness uncertain information refers to some relevant
information held by the decision maker for the alternatives to be compared. While vagueness uncertain
information refers to the decision information that cannot be given by decision makers due to lack
of relevant experience and knowledge, or the information loss caused by some objective factors.
The non-vagueness uncertainty information in PULIFPR is mainly presented in the form of qualitative
preference and non-preference information. For ease of understanding, the relationship between the
uncertain information of each dimension expressed by PULIFPR is shown in Figure 1.

Figure 1. The uncertainty space of probabilistic uncertain linguistic intuitionistic fuzzy preference
relation (PULIFPR).

From Figure 1, we can see intuitively that the uncertain space of PULIFPR is divided into
vagueness subspace and non-vagueness subspace, and non-vagueness subspace can be further divided
into preference information and non-preference information. Therefore, this paper will discuss the
consistency of PULIFPR from the perspectives of preference, non-preference and vagueness, so as
to guarantee the rationality and accuracy of the final results to the greatest extent. We will consider
the DM’s risk preference comprehensively based on the consistency proposed, so as to establish a
reasonable GPM and get a reasonable ranking result.
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Based on the above analysis, the main contributions of this paper is organized as follows:

(1) We put forward PULIFS, which is of great significance for improving the application of LT in
fuzzy theory and effectively promoting the application of qualitative information in GDM.

(2) We extracted fuzzy and non-fuzzy uncertain information from PULIFPR, and then used it
to define the distance measure of PULIFPRs, thus solving the problem of determining the
individual weight in GDM.

(3) We built a series of GPMs by taking into account the DMs’ qualitative preference, non-preference
and fuzzy information, and then give a reasonable ranking results of PULIFPR.

(4) We avoided the consistency test and correction of preference relation in GDM, thus simplifying
the process of GDM and improving the accuracy of decision result.

(5) The proposed method is applied to the industrial docking of virtual reality (VR) industry
conference, which solves the problem of project selection before industrial docking.

To sum up, compared with the existing group decision-making methods, the main advantages of
the proposed method are as follows:

(1) Most of the decision-making methods directly use the information provided by the
decision-maker to model and make judgments, but ignore the information that the
decision-maker fails to grasp or the information loss caused by some objective factors. In this
paper, uncertain information is divided into fuzzy uncertain information and non-fuzzy
uncertain information for comprehensive discussion, which improves the utilization of
information and ensures the rationality of decision-making results.

(2) Most of the existing decision-making models fail to consider the risk attitude of DMs and fail to
guarantee the consistency of preference information given by DMs. In this paper, two extreme
attitudes of DMs under uncertain conditions are considered to establish programming models,
which ensures the consistency of preference relations, simplifies GDM process and improves the
accuracy of decision-making results.

The remainder of this paper is organized as follows: Section 2 recalls some basic concepts,
including LIFS, PLTS, PULTS. Section 3 introduces the concepts of PULIFS and PULIFPR, and gives
the definition of the distance measure of PULIFSs. Section 4 discusses the consistency of PULIFPR
and establishes the corresponding GPM to obtain its comprehensive priority ranking weight. Then a
specific algorithm is developed for GDM with PULIFPRs. In Sections 5, a practical example about VR
industry and comparative analysis are given to demonstrate the proposed method. Finally, Section 6 is
concluding remarks.

2. Preliminaries

In this part, we review some basic concepts of LIFS, PLTS and PULTS, and point out the main
disadvantage of these fuzzy sets.

2.1. PLTS and PULTS

For convenience, all the LST mentioned in this article are represented by S = {sα|α ∈ [0, 2τ]}
except for special explanations. In order to present the probability distribution information of the
HFLTS, Pang et al. [14] proposed PLTS.

Definition 1 ([14]). Let S = {sα|α ∈ [0, 2τ]} be a continuous LTS, then a PLTS is defined as

L(p) = {L(k)(p(k))|L(k) ∈ S, p(k) ≥ 0, k = 1, 2, · · · , #L(p),
#L(p)

∑
k=1

p(k) ≤ 1}, (1)
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where L(k)(p(k)) is the linguistic term L(k) associated with the probability p(k), and #L(p) is the number of
all different linguistic terms in L(p). To further reflect the hesitation of DMs, Lin et al. [15] expanded PLTS
into PULTS:

S(p) = {〈[Lk, Uk], pk〉|pk ≥ 0, k = 1, 2 · · · , #S(p),
#S(p)

∑
k=1

pk ≤ 1}, (2)

where 〈[Lk, Uk], pk〉 represents the uncertain linguistic variable [Lk, Uk] associated with its probability pk.
Lk, Uk ∈ S are the linguistic terms, Lk ≤ Uk, and #S(p) is the cardinality of S(p).

2.2. LIFS

To reflect the DM’s qualitative non-preference information, Zhang [12] proposes LIFS.

Definition 2 ([12]). Let X be a finite universal set and S = {sα|α ∈ [0, 2τ]} be a continuous linguistic term
set. Then a LIFS L in X is given as

L = {(x, sθ(x), sσ(x))|x ∈ X} (3)

where sθ(x), sσ(x) ∈ S stand for the linguistic membership degree and linguistic nonmembership of the element
x to L, respectively, and 0 ≤ θ + σ ≤ 2τ for all x ∈ X.

PULTS only takes into account the DM’s qualitative preference information and its probability
distribution, however, in actual DM, DMs may need to give preference and non-preference
information from both sides due to various uncertainties. Although LIFS takes into account the
DMs’ non-preference information, it requires the DMs to give only single linguistic terms as decision
information, which cannot reflect the decision makers’ hesitation in a complex environment. Therefore,
in order to avoid the limitations mentioned above in actual DM, this paper proposes PULIFS in
combination with the advantages of PULTS and LIFS.

3. PULIFS and PULIFPR

3.1. PULIFS

Definition 3. Let S = {sα|α ∈ [0, 2τ]} be a continuous LTS, then a PULIFS on S is expressed by a
mathematical symbol:

U(p) = {〈([suk , suk ], [svk , svk ]), pk〉|pk ≥ 0, k = 1, 2 · · · , #U(p),
#U(p)

∑
k=1

pk ≤ 1}, (4)

where 〈([suk , suk ], [svk , svk ]), pk〉 is a PULIF element (PULIFE), which denotes the k-th uncertain linguistic
intuitionistic variable (ULIV) ([suk , suk ], [svk , svk ]) associated with its probability pk in U(p), and [suk , suk ] ⊆
[s0, s2τ ] , [svk , svk ] ⊆ [s0, s2τ ] represent non-vagueness qualitative uncertain preference and non-preference
information respectively. suk , suk , svk , svk ∈ S, are the linguistic terms, suk ≤ suk , svk ≤ svk , uk + vk ≤ 2τ,
and #U(p) is the cardinality of U(p). Similarly, the uncertain linguistic variable sπk = [sπk , s

πk ] represent
vagueness uncertain information, where πk = 2τ − uk − vk, πk = 2τ − uk − vk.

In actual DM, DMs tend to compare two alternatives and give preference information instead of
directly giving evaluation information to one alternative. Therefore, we further give the concept of
PULIFPR based on PULIFS. For convenience, we use u(p) = {([suk , suk ], [svk , svk ]), pk} to represent the
PULIFS, where k = 1, 2, · · · , #u(p), and #u(p) is the number of PULIFE in u(p).
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3.2. PULIFPR

Definition 4. Let U = (u(p)ij)n×n be a matrix on the object set X = {x1, x2, · · · , xn} for the LTS S =

{sα|α ∈ [0, 2τ]}, where u(p)ij = {(suk
ij
, svk

ij
), pk

ij} is a PULIFS, suk
ij
= [suk

ij
, suk

ij
] represents the preference of

DMs for xi over xj, svk
ij
= [svk

ij
, svk

ij
] represents the non-preference of DMs for xi over xj, and sπk

ij
= [sπk

ij
, s

πk
ij
]

indicates the hesitancy (vagueness) degree to the preference of DMs for xi over xj. πk
ij = 2τ − uk

ij − vk
ij, πk

ij =

2τ − uk
ij − vk

ij, k = 1, 2, · · · , #u(p)ij, and #u(p)ij is the number of PULIFE in u(p)ij. U is called a PULIFPR,
if it satisfies the following conditions:

(1) pk
ij, = pk

ji, pk
ii = 1;

(2) suk
ij
= svk

ji
, svk

ij
= suk

ji
;

(3) u(p)ii = {([sτ , sτ ], [sτ , sτ ]), 1} = sτ ;
(4) #u(p)ij = #u(p)ji;

for all i, j = 1, 2, · · · , n with i 6= j, and ∑
#u(p)ij
k=1 pk

ij ≤ 1, 0 ≤ uk
ij + vk

ij ≤ 2τ, suk
ij
⊆ [s0, s2τ ], svk

ij
⊆ [s0, s2τ ].

In particular, when #u(p)ij = 1 and (suk
ij
, svk

ij
) ∈ {([s0, s0], [s2τ , s2τ ]), ([s2τ , s2τ ], [s0, s0])}, it means that the

preference information given by the decision maker is certain and extreme for xi over xj. However, in a complex
decision-making environment, the decision maker often does not give such a judgment with extreme certainty,
so this paper only considers the case of (suk

ij
, svk

ij
) /∈ {([s0, s0], [s2τ , s2τ ]), ([s2τ , s2τ ], [s0, s0])}. In addition,

∑
#u(p)ij
k=1 pk

ij = 0 means that the decision maker cannot give preference information for xi over xj. Therefore,

in order to ensure the completeness of information, we assume that ∑
#u(p)ij
k=1 pk

ij > 0.

In GDM, it is often necessary to aggregate individual preference information into group
preference information. However, due to the knowledge and experience gaps between individuals,
the determination of individual weight in the aggregation process is particularly important. Therefore,
in order to determine a reasonable individual weight, we first introduce the definition of the distance
measure of PULIFPRs

3.3. The Distance Measure of PULIFSs

Considering that different PULIFS may have different numbers of PULIFE, it may be too
complicated to give the distance measurement directly. Therefore, before giving the distance measure
of PULIFS, we need to convert PULIFS. According to the partition of uncertain space of PULIFS in
Figure 1, we transform the information expressed by PULIFS into two parts: non-fuzzy uncertain
information and fuzzy uncertain information. Inspired by the conversion method of probabilistic
interval-valued intuitionistic hesitant fuzzy set (PIVIHFS) proposed by Zhai et al. [28], we present the
conversion function as follows

Definition 5. Let u(p) = {([suk , suk ], [svk , svk ]), pk} be a PULIFS associated with S, then its non-fuzzy
uncertain information transformation function f is defined as

f (u(p)) =
#u(p)

∑
k=1

pk ×
I(suk )− I(svk ) + I(suk )− I(svk ) + 4τ

8τ
(5)

and its fuzzy uncertain information transformation function g is defined as

g(u(p)) =
#u(p)

∑
k=1

pk ×
I(sπk ) + I(s

πk )

4τ
(6)

where #u(p) is the number of PULIFE in u(p), I(·) is the subscript function of the linguistic term, that is
I(st) = t. Moreover, f (u(p)) represents the non-fuzzy information part of PULIFS, I(suk ) − I(svk ) and
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I(suk )− I(svk ) in Equation (5) can be respectively interpreted as the pessimistic and optimistic attitude values
of DMs. On the contrary, g(u(p)) denotes the fuzzy information part of PULIFS, which can be interpreted as
the average of information that DMs fail to grasp or ignore.

Remark 1. On the premise that the original meaning expressed by PULIFS is not lost, we used Equations (5)
and (6) to transform the qualitative non-fuzzy and fuzzy information into the specific values in [0,1], so as to
simplify the calculation of distance measure. For convenience, we used v = ( f , g) to represent the converted
PULIFS and call it the conversion set (CS). Thus, for each PULIFPR U = (u(p)ij)n×n, there is a transformation
matrix V = (vij)n×n, where vij = ( fij, gij). Now, we give the definition of the distance measure of PULIFSs.

Definition 6. Let u1(p) and u2(p) be two PULIFSs associated with S, v1 = ( f1, g1) and v2 = ( f2, g2) be the
corresponding CSs of u1(p) and u2(p), then the Hamming distance between u1(p) and u2(p) is:

d(u1(p), u2(p)) = d(v1, v2) =
1
2
(| f1 − f2|+ |g1 − g2|) (7)

the Euclidean distance between u1(p) and u2(p) is:

d(u1(p), u2(p)) = d(v1, v2) = [
( f1 − f2)

2 + (g1 − g2)
2

2
]

1
2 (8)

It is obvious that the given distance measure satisfies the following properties:

(1) 0 ≤ d(v1, v2) ≤ 1;
(2) d(v1, v2) = 0 if and only if v1 = v2;
(3) d(v1, v2) = d(v2, v1).

For convenience, this paper only takes hamming distance for discussion, and based on the
relationship between distance measure and similarity degree, we further give the similarity degree
of PULIFSs.

s(u1(p), u2(p)) = 1− d(u1(p), u2(p)) = 1− 1
2
(| f1 − f2|+ |g1 − g2|) (9)

Lets give a simple example to show the distance calculation between PULIFSs u1(p) and u2(p).

Example 1. Let LTS S = {sα|α ∈ [0, 8]}, and the two PULIFSs are shown below:
u1(p) = {〈([s1, s2], [s4, s5]), 0.2〉, 〈([s0, s2], [s3, s5]), 0.3〉, 〈([s2, s3], [s4, s5]), 0.5〉}
u2(p) = {〈([s4, s6], [s0, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉}
the values of non-fuzzy function and fuzzy function corresponding to u1(p) and u2(p) can be easily obtained
from Equations (5) and (6) are as follows
f1 = 0.2× 1−5+2−4+16

32 + 0.3× 0−5+2−3+16
32 + 0.5× 2−5+3−4+16

32 = 0.3438,
g1 = 0.2× 8−2−5+8−1−4

16 + 0.3× 8−2−5+8−0−3
16 + 0.5× 8−3−5+8−2−4

16 = 0.2250,
f2 = 0.45× 4−1+6−0+16

32 + 0.5× 3−2+5−1+16
32 = 0.6797,

g2 = 0.45× 8−6−1+8−4−0
16 + 0.5× 8−5−2+8−3−1

16 = 0.2969,
then the distance between u1(p) and u2(p) is:
d(u1(p), u2(p)) = 1

2 (| f1 − f2|+ |g1 − g2|) = 1
2 (|0.3438− 0.6797|+ |0.225− 0.2969|) = 0.2039,

and the corresponding similarity degree is s(u1(p), u2(p)) = 1− d(u1(p), u2(p)) = 0.7961.

Remark 2. From the above example, it is not difficult to find that compared with the distance measure defined
in general literature, the distance measure proposed in this paper does not need to normalize the initial set,
which allows different sets to have different elements and allows for the absence of probability information
(0 < ∑

#u(p)
k=1 pk ≤ 1). In addition, under the premise that the original information is not lost, multiple elements

in PULIFS are integrated into two parts of fuzzy information and non-fuzzy information, which greatly simplifies
the calculation between sets.
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Based on the distance between PULIFSs, we give the distance measure of PULIFPRs.

Definition 7. Let Ul = (u(p)l
ij)n×n and Um = (u(p)m

ij )n×n be two PULIFPRs, and their corresponding

transformation matrices are V l = (vl
ij)n×n and Vm = (vm

ij )n×n, where vl
ij = ( f l

ij, gl
ij), vm

ij = ( f m
ij , gm

ij ). Similar

to Equation (7), the hamming distance between individual PULIFPRs Ul and Um is defined as:

d(Ul , Um) = d(V l , Vm) =
1

n× (n− 1)

n

∑
i<j

(| f l
ij − f m

ij |+ |gl
ij − gm

ij |) (10)

where f l
ij = ∑

#u(p)l
ij

k=1 pk
ij ×

I(s
uk

ij
)−I(s

vk
ij
)+I(s

uk
ij
)−I(s

vk
ij
)+4τ

8τ and gl
ij = ∑

#u(p)l
ij

k=1 pk
ij ×

I(s
πk

ij
)+I(s

πk
ij
)

4τ .

Then the similarity degree between Ul and Um is defined as:

s(Ul , Um) = 1− d(Ul , Um) (11)

Next, we have used the distance measure and similarity degree between individual PULIFPRs to
present the aggregation process of GDM.

3.4. Deriving Individual Weights and Aggregating Individual PULIFPRs

For GDM problems, without loss of generality, we supposed there are q DMs D = {d1, d2, · · · , dq}
who are invited to compare n alternatives X = {x1, x2, · · · , xn}, and Ul = (u(p)l

ij)n×n be the individual
PULIFPR provided by the DMs dl , (l = 1, · · · , q). Then, based on the similarity degree of PULIFPRs
given by the DMs, we defined the confidence degree of the l-th decision maker dl as:

csl =
q

∑
m=1,m 6=l

s(Ul , Um)(l = 1, 2, · · · , q) (12)

Obviously, the higher the confidence degree of a decision maker, the higher the overall similarity
between the decision maker and other DMs, and the greater the importance of the decision maker in
GDM. Therefore, we regarded the normalized confidence degree csN

l as the weight of individual in
GDM, where csN

l = csl
∑

q
l=1 csl

. Let the weight of the l-th decision maker be wl = csN
l , then ∑

q
l=1 wl = 1

and 0 ≤ wl ≤ 1, (l = 1, 2, · · · , q).
In order to aggregate individual PULIFPRs into a collective one, the basic operational laws

between PULIFSs u1(p) = {([suk
1
, suk

1
], [svk

1
, svk

1
]), pk

1} and u2(p) = {([suk
2
, suk

2
], [svk

2
, svk

2
]), pk

2} is given
as follows:

u1(p)
⊕

u2(p) =
⋃

k∈(1,··· ,#u1(p))

{〈([suk
1+uk

2
, suk

1+uk
2
], [svk

1+vk
2
, svk

1+vk
2
]),

pk
1 + pk

2
2
〉} (13)

λu1(p) =
⋃

k∈(1,··· ,#u1(p))

{([sλuk
1
, sλuk

1
], [sλvk

1
, sλvk

1
]), pk

1} (14)

where #u1(p) = #u2(p), when #u1(p) 6= #u2(p), we normalized it by the following method:
If #u1(p) 6= #u2(p), #u1(p) > #u2(p), then we have added #u1(p)− #u2(p) PULIFEs to u2(p) so

that the PULIFSs u1(p) and u2(p) have the same number of elements. The added uncertain linguistic
intuitionistic variables (ULIVs) are the smallest one(s) in u2(p), and the probabilities of the added
ULIVs are zero. In addition, the comparison method of two PULIFE ek = 〈([suk , suk ], [svk , svk ]), pk〉 and
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el = 〈([sul , sul ], [svl , svl ]), pl〉 in PULIFS is as follows
Let

fi = pi × [I(sui )− I(svi ) + I(sui )− I(svi )],

gi = pi × [I(sπi ) + I(sπi )], (i = k, l).
(15)

(1) If gk > gl , then ek < el ;
(2) If gk = gl , then

(a) If fk > fl , then ek > el ;
(b) If fk = fl , then ek = el .

The larger the PULIFE, the larger its corresponding ULIV. Based on this, we give the definition of
probabilistic uncertain linguistic intuitionistic weighted average (PULIWA) operator.

Definition 8. Given q PULIFSs ui(p) = {([suk
i
, suk

i
], [svk

i
, svk

i
]), pk

i }, (i = 1, 2, · · · , q), k = 1, 2 · · · , #ui(p),

the weight vector W = (w1, w2, · · · , wq), wi ∈ [0, 1], ∑
q
i=1 wi = 1, then we called

PWA(u1(p), · · · , uq(p)) =
q⊕

i=1

wiui(p)

=
⋃

k=1,2··· ,#ui(p)

{([s∑
q
i=1 wiuk

i
, s∑

q
i=1 wiuk

i
], [s∑

q
i=1 wivk

i
, s∑

q
i=1 wivk

i
]),

∑
q
i=1 pk

i
q
}

(16)

the PULIWA operator.

Example 2. Continuing with Example 1, assuming that the weight values of both PULIFS u1(p) and
u2(p) are 0.5. Since #u2(p) = 2 < #u1(p) = 3, we can easily know from Equation (15) that
g21 = 0.45 · [8 − 1 − 6 + 8 − 4 − 0] = 2.25 and g22 = 0.5 · [8 − 5 − 2 + 8 − 3 − 1] = 2.5 in u2(p).
Therefore, g21 < g22, e21 > e22, the normalized u2(p) = {〈([s4, s6], [s0, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉,
〈([s3, s5], [s1, s2]), 0〉}, and the PULIWA operator PWA(u1(p), u2(p)) = {〈([s2.5, s4], [s2, s3]), 0.325〉,
〈([s1.5, s3.5], [s2, s3.5]), 0.4〉, 〈([s2.5, s4], [s2.5, s3.5]), 0.5〉} of u1(p) and u2(p) can be obtained by using
Equation (16).

Obviously, it is easy to aggregate individual PR into collective PR by using Equation (16).
Therefore, the process of obtaining priority weights is given in the following discussion based on the
consistency of collective PULIFPR Ũ.

4. Consistency Analysis of PULIFPR and Acquisition of Its Priority Weight

4.1. Consistency Analysis of PULIFPR

At present, the research on the consistency of PR is mainly divided into two categories:
multiplicative consistency and additive consistency. Without loss of generality, this paper discusses
PULIFPR consistency based on multiplicative consistency. Therefore, before giving the definition of
PULIFPR consistency, lets review the multiplicative consistency of fuzzy preference relations (FPRs).

Definition 9. [29]. For the FPR R = (rij)n×n, (i, j = 1, 2, · · · , n), rij ∈ [0, 1], if we have

rij =
wi

wi + wj
. (17)

for all i, j = 1, 2, · · · , n, and which satisfies: 1) rii = 0.5; 2) rij + rji = 1; 3) ∑n
i=1 wi = 1. then we called the

FPR R is multiplicative consistent, where rij is the preference degree of the objectives xi over xj, and wi ∈ [0, 1],
w = (w1, w2, · · · , wn) is the priority vector of R.
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Inspired by this, we presented the following definition of consistency by combining the
preferences, non-preferences and vagueness information expressed by PULIFPR.

Definition 10. Let Ũ = (u(p)ij)n×n be a PULIFPR on the object set X = {x1, x2, · · · , xn} for the LTS
S = {sα|α ∈ [0, 2τ]}, its corresponding transformation matrix is V = (vij)n×n, where vij = ( fij, gij) is a CS.
Based on this, we can extract the FPR H = (hij)n×n from the PULIFPR Ũ, where

hij =


θij fij + (1− θij)gij, I f i < j

0.5, I f i = j

1− hji, I f i > j

(18)

If we have
hij =

wi
wi + wj

(19)

for all i, j = 1, 2, · · · , n, then we called PULIFPR Ũ multiplicative consistent, where θij ∈ [0, 1] represents
the importance of non-fuzzy information fij extracted from u(p)ij , and w = (w1, w2, · · · , wn) is the priority
vector of Ũ, satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1.

Remark 3. From Equations (5) and (6), it is not difficult to see that the values of non-fuzzy information fij
and fuzzy information gij extracted from PULIFPR are all located in [0,1]. Furthermore, it is easy to know that
fii = 0.5 and gii = 0 by the nature of PULIFPR. Therefore, the FPR H = (hij)n×n is generated by combining
the non-fuzzy and fuzzy information of the DMs, and the consistency of PULIFPR is transformed into the
consistency of the FPR. However, this definition of consistency only considers the fuzzy and non-fuzzy space
of PULIFPR in general. In order to make full use of the decision-making information expressed by PULIFPR,
we have considered the decision maker’s risk attitude and further discuss its consistency with the preference and
non-preference information in the non-fuzzy space.

Definition 11. Based on Definitions 4 and 5, we set aij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ as the maximum

preference (the most optimistic judgment) of DMs for xi over xj, while bij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ as
the minimum preference (the most pessimistic judgment) of DMs for xi over xj. So similarly, we can extract a
FPR D = (dij)n×n from the PULIFPR Ũ, where

dij =


tijaij + (1− tij)bij, I f i < j

0.5, I f i = j

1− dji, I f i > j

(20)

If we have

dij =
w′i

w′i + w′j
(21)

for all i, j = 1, 2, · · · , n, then we also called PULIFPR Ũ multiplicative consistent, where tij ∈ [0, 1] indicates
the degree of optimism of the DMs, the bigger the values of tij, the higher DM’s optimistic degree, and w =

(w′1, w′2, · · · , w′n) is the priority vector of Ũ, satisfying w′i ∈ [0, 1] and ∑n
i=1 w′i = 1.

Based on the two consistency definitions given above, we give the method to obtain the priority
weight of collective PULIFPR.
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4.2. Determine the Priority Weights of PULIFPR through the GPM

The consistency definition given by Equation (19) integrates the fuzzy uncertainty and non-fuzzy
uncertainty of the information given by the decision-maker. However, in actual decision-making,
we hope that the fuzzy uncertainty degree of information expressed by PULIFPR is as small as possible,
so as to make the ranking result as reasonable and accurate as possible. Therefore, the higher the
value of parameter θij, which indicates the importance of non-fuzzy uncertainty information, the more
reasonable the result will be. Based on this principle, we establish the following GPM to obtain the
priority weight of the PULIFPR.

max θ = ∑i<j θij

s.t.


hij =

wi
wi+wj

, (1)

∑i 6=j wi > wj − 0.5, (2)

∑n
i=1 wi = 1, wi ≥ 0,

0 ≤ θij ≤ 1, (i, j = 1, 2, · · · , n; i < j).

(22)

In Equation (22), the constraint condition (1) guarantees the consistency of the FPR H extracted
from PULIFPR Ũ, and the constraint condition (2) avoids the occurrence of extreme judgment caused
by individual subjective preference, thus guaranteeing the objectivity of decision-making process.
In addition, the literature [30] shows that the consistency of the FPR only needs to discuss the upper
triangular part of it. So to simplify the calculation, we have i < j.

If the feasible region of Equation (22) is nonempty, the optimal solutions θij and priority weight
vector wi, (i = 1, 2, · · · , n) can be obtained by solving it. However, it does not guarantee that there will
always be nonempty feasible regions. Therefore, when the feasible region is empty, we expand the
feasible region of the model by appropriately increasing the fuzzy uncertain information value gij and
reducing the non-fuzzy uncertain information value fij, and the expanded model is as follows

max θ = ∑i<j θij −∑i<j(φij + ψij)

s.t.


θij( fij − φij) + (1− θij)(gij + ψij) =

wi
wi+wj

,

∑i 6=j wi > wj − 0.5,

∑n
i=1 wi = 1, wi ≥ 0, φij, ψij ≥ 0,

0 ≤ θij ≤ 1, (i, j = 1, 2, · · · , n; i < j).

(23)

where φij and ψij are the deviation variables, satisfying φij ≥ 0, ψij ≥ 0. Then, by solving (23),
the optimal solutions θij and priority weight vector wi, (i = 1, 2, · · · , n) can be obtained.

Similarly, it is easy to know from Definition 11 that the bigger the value of tij, the higher the degree
of optimism of the decision maker. Therefore, we combine the two extreme attitudes of the decision
maker, the most optimistic and the most pessimistic, and respectively present the following GPM.

max t = ∑i<j tij

s.t.



dij =
w+

i
w+

i +w+
j

,

∑i 6=j w+
i > w+

j − 0.5,

∑i<j tij <
n×(n−1)

2 − 1,

∑n
i=1 w+

i = 1, w+
i ≥ 0,

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(24)

min t = ∑i<j tij
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s.t.



dij =
w−i

w−i +w−j
,

∑i 6=j w−i > w−j − 0.5,

∑i<j tij > 1,

∑n
i=1 w−i = 1, w−i ≥ 0,

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(25)

where w+ = (w+
1 , w+

2 , · · · , w+
n ) represents the most optimistic weight vector and w− =

(w−1 , w−2 , · · · , w−n ) represents the most pessimistic weight vector. It is noted that different from

Model (22), Equations (24) and (25) have added restriction condition ∑i<j tij < n×(n−1)
2 − 1 and

∑i<j tij > 1 respectively, which ensures that the decision maker does not show overly optimistic or
pessimistic judgment information when in a rational state. Similarly, for Model (23), when the feasible
regions of Equations (24) and (25) are empty, we give the expansion model as follows

max t = ∑i<j tij −∑i<j(αij + βij)

s.t.



tij(aij − αij) + (1− tij)(bij + βij) =
w+

i
w+

i +w+
j

,

∑i 6=j w+
i > w+

j − 0.5,

∑i<j tij <
n×(n−1)

2 − 1,

∑n
i=1 w+

i = 1, w+
i ≥ 0, αij, βij ≥ 0.

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(26)

min t = ∑i<j tij + ∑i<j(αij + βij)

s.t.



tij(aij + αij) + (1− tij)(bij − βij) =
w−i

w−i +w−j
,

∑i 6=j w−i > w−j − 0.5,

∑i<j tij > 1,

∑n
i=1 w−i = 1, w−i ≥ 0, αij, βij ≥ 0.

0 ≤ tij ≤ 1, (i, j = 1, 2, · · · , n; i < j)

(27)

where αij and βij are the deviation variables, satisfying αij ≥ 0, βij ≥ 0.
By solving Equations (26) and (27), the optimal weight vectors w+

i and w−i (i = 1, 2, · · · , n) can
be obtained respectively. Combining w+

i with w−i , the compromise weight vector can be obtained
as follows:

w′i = λw+
i + (1− λ)w−i , i = 1, 2, · · · , n (28)

where λ ∈ [0, 1] represents the risk attitude of DMs. If 0 ≤ λ < 0.5, DMs are risk averse; If λ = 0.5,
DMs are risk neutral; If 0.5 < λ ≤ 1, DMs are risk taking.

Considering that the decision maker pays more attention to the final result in the actual decision,
we take the average value of priority weight obtained under the two consistency definitions as the

final ranking weight, namely w̄i =
wi+w′i

2 , i = 1, 2, · · · , n.

Remark 4. Compared with general programming models for solving priority weights, the main advantages of
the programming models presented in this paper are as follows:

(1) At present, most of the programming models proposed in many literatures only consider the principle of
minimum consistency deviation, such as literatures [27,31–34]. In this paper, the consistency of the newly
proposed PULIFPR is considered comprehensively from the three aspects of fuzzy and non-fuzzy uncertain
information and DM’s risk attitude. Therefore, the rationality of decision result is greatly improved.
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(2) Currently, most of the research on PR needs to test its consistency, and some literatures that needs to
test the consistency of acceptable PR fails to provide a reasonable test method, such as the research on
triangular FPR by Wang [35], and the research on interval-valued intuitionistic FPR by Wan et al. [36].
In this paper, the priority weight of consistent PULIFPR can be obtained directly through the proposed
programming models without considering the consistency test, which greatly simplifies the DM process.

4.3. A New Algorithm for Solving GDM with PULIFPR

Summarizing above analyses, a new method for GDM with PULIFPR is developed as follows:
Step 1. Calculate the distance measure d(Ul , Um) and similar measure s(Ul , Um)(l, m =

1, 2, · · · , q, l 6= m) between individual PULIFPRs by Equations (10) and (11).
Step 2. Use Equation (12) to calculate the confidence degree csl and determine the individual

weight wl(l = 1, 2, · · · , q).
Step 3. Aggregating individual PULIFPR U into collective PULIFPR Ũ by Equation (16).
Step 4. When feasible regions of Models (22), (24) and (25) are nonempty, priority weights wi, w+

i
and w−i can be solved respectively. Otherwise, priority weights wi, w+

i and w−i shall be obtained by
solving Equations (23), (26) and (27).

Step 5. Determining the risk parameter value λ, and then the compromise weight w′i is obtained
by Equation (28).

Step 6. Combining wi and w′i , the comprehensive weight w̄i =
wi+w′i

2 is obtained.
Step 7. According to the comprehensive weight value to compare the alternatives, the best

alternative has the bigger value.
The graphical process of solving GDM using PULIFPR is shown in Figure 2.

Figure 2. Process of group decision-making (GDM) with PULIFPRs.
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5. Case Application and Comparative Analysis

In order to demonstrate the effectiveness and practicability of the proposed method, this section
is mainly divided into two parts. The first part discusses the application of the proposed method in
the world VR industry conference 2018. The second part gives the comparative analysis between the
proposed method and other methods.

5.1. Application in VR Project Selection

In recent years, virtual reality (VR) technology has received unprecedented attention from all
sectors of society, and it is regarded as the portal of the next generation general computing platform
and Internet along with augmented reality (AR) and mixed reality (MR). In addition, as an important
force leading a new round of industrial reform in the world, it plays an important role in promoting
new economic development. Therefore, in order to explore the key and common problems in the
development of VR, as well as the industrial development trend and solutions, the 2018 world VR
industry conference was successfully held in nanchang, jiangxi province on 19 October. As one of the
important activities of the conference, the industrial counterpart conference was successfully held in
nanchang on 20 October.

However, in order to ensure the successful holding of the industrial docking conference, it is
particularly important for the organizers to have extensive and in-depth communication with the
investors in the early stage of the conference. On the one hand, it can enable investors to have a
deep and sufficient understanding of each VR project in our province so that investors can select the
best cooperation project. On the other hand, it is convenient for every VR industry company in our
province to select the best partner or investor. Finally, the cooperation agreements reached at the
industry conference are guaranteed. Therefore, the communication and mutual selection process is an
important preparation work in the early stage of the conference.

Due to the complexity of VR technology, VR project selection is a very challenging task for
investors. It requires investors to make a comprehensive analysis and judgment on the competitive
advantage, profitability, viability and development potential of VR project from the perspectives of
simulation technology and computer graphics, man-machine interface technology, sensor technology
and network technology,etc. Therefore, the project selection process is often a GDM. Without loss of
generality, in order to demonstrate the GDM process using the proposed method, we take the four
important projects selected by Microsoft as an example. The four projects are Touch display integration
project x1, Optoelectronic project x2, Network security industry center project x3 and Intelligent VR
visual equipment project x4 respectively.

In view of the complexity of VR project, Microsoft sent two investment teams (e1, e2) to inspect
the project content and one technical team (e3) to inspect the company’s technical equipment. Due to
the wide range of knowledge involved in VR project and the complexity of factors to be considered by
DMs, the decision team can only give judgment information from positive and negative aspects based
on the LTS S = {s0: extremely poor, s1: very poor, s2: poor, s3: slightly poor, s4: fair, s5: slightly good,
s6: good, s7: very good, s8: extremely good}.

For example, by analyzing and comparing projects x1 and x2, the decision team e1 gave the
following judgment information:

u(p)12 = {〈([s4, s6], [s1, s1]), 0.45〉, 〈([s3, s5], [s1, s2]), 0.5〉}

where [s4, s6] indicates that the DM’s preference degree for x1 over x2 is between fair and good,
[s1, s1] expresses that the DM’s non-preference degree for x1 over x2 is very poor. The probability 0.45
indicates that 45% of the people in investment teams e1 give interval intuitionistic judgment information
([s4, s6], [s1, s1]). Similarly, PULIFE 〈([s3, s5], [s1, s2]), 0.5〉 indicated that 50% of the people in investment
team e1 gave the interval intuitionistic judgment information as ([s3, s5], [s1, s2]). In addition, 5% of the
people failed to give any judgment information.
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Now, we regard the three teams e1, e2 and e3 sent by Microsoft as three individuals, and take the
four projects of jiangxi province, x1, x2, x3, and x4 as the alternatives. The preference information given
by the three teams in the form of PULIFPR is as follows

U1 = (u1(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u1(p)11 = u1(p)22 = u1(p)33 = u1(p)44 = s4;

u1(p)12 = {〈([s1, s3], [s4, s5]), 0.3〉, 〈([s1, s2], [s5, s6]), 0.6〉}
u1(p)13 = {〈([s4, s6], [s0, s1]), 0.8〉, 〈([s5, s6], [s1, s2]), 0.2〉}
u1(p)14 = {〈([s3, s4], [s4, s4]), 0.6〉, 〈([s2, s3], [s4, s5]), 0.2〉}
u1(p)23 = {〈([s0, s2], [s6, s6]), 0.7〉, 〈([s1, s3], [s5, s5]), 0.3〉}
u1(p)24 = {〈([s5, s6], [s0, s1]), 0.2〉, 〈([s6, s7], [s0, s1]), 0.8〉}
u1(p)34 = {〈([s0, s1], [s5, s6]), 0.9〉, 〈([s0, s1], [s7, s7]), 0.1〉}

U2 = (u2(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u2(p)11 = u2(p)22 = u2(p)33 = u2(p)44 = s4;

u2(p)12 = {〈([s2, s3], [s4, s4]), 0.4〉, 〈([s3, s4], [s4, s5]), 0.6〉}
u2(p)13 = {〈([s1, s2], [s5, s5]), 0.3〉, 〈([s2, s3], [s4, s5]), 0.5〉}
u2(p)14 = {〈([s5, s6], [s1, s1]), 0.3〉, 〈([s6, s6], [s1, s2]), 0.6〉}
u2(p)23 = {〈([s6, s7], [s1, s1]), 0.4〉, 〈([s5, s6], [s1, s2]), 0.5〉}
u2(p)24 = {〈([s0, s2], [s5, s6]), 0.7〉, 〈([s1, s2], [s6, s6]), 0.3〉}
u2(p)34 = {〈([s3, s5], [s2, s2]), 0.4〉, 〈([s2, s5], [s1, s2]), 0.4〉}

U3 = (u3(p)ij)4×4, (i, j = 1, 2, 3, 4)
where

u3(p)11 = u1(p)22 = u1(p)33 = u1(p)44 = s4;

u3(p)12 = {〈([s2, s4], [s3, s4]), 0.2〉, 〈([s4, s5], [s3, s3]), 0.5〉}
u3(p)13 = {〈([s1, s2], [s5, s6]), 0.8〉, 〈([s2, s3], [s5, s5]), 0.2〉}
u3(p)14 = {〈([s7, s8], [s0, s0]), 0.3〉, 〈([s6, s7], [s1, s1]), 0.6〉}
u3(p)23 = {〈([s0, s1], [s6, s6]), 0.6〉, 〈([s1, s1], [s6, s7]), 0.3〉}
u3(p)24 = {〈([s4, s5], [s1, s2]), 0.7〉, 〈([s5, s5], [s2, s3]), 0.3〉}
u3(p)34 = {〈([s7, s7], [s0, s1]), 0.3〉, 〈([s5, s6], [s1, s2]), 0.6〉}

Since the upper triangle of PULIFPR has a one-to-one correspondence with the lower triangle,
we only give the upper triangle of the preference relation. According to Section 4.3, we can solve the
GDM problem about project selection as follows:

Step 1: According to Equation (10), the distance measure between U1 and U2 is d(U1, U2) =
1

4×3 (| f 1
12 − f 2

12|+ |g1
12 − g2

12|+ | f 1
13 − f 2

13|+ |g1
13 − g2

13|+ | f 1
14 − f 2

14|+ |g1
14 − g2

14|+ | f 1
23 − f 2

23|+ |g1
23 −

g2
23|+ | f 1

24 − f 2
24|+ |g1

24 − g2
24|+ | f 1

34 − f 2
34|+ |g1

34 − g2
34|) = 1

12 (|0.2531− 0.425|+ |0.775− 0.2719|+
|0.3563− 0.7031|+ |0.225− 0.7125|+ |0.8625− 0.2188|+ |0.1781− 0.5|+ |0.1313− 0.075|+ |0.275−
0.1188| + |0.0625− 0.0938| + |0.125− 0.0875| + |0.15− 0.15| + |0.2313− 0.25|) = 0.2313, Similarly,
we can calculate d(U1, U3) = 0.1930 and d(U2, U3) = 0.1398 respectively, so the corresponding
similarity degree is s(U1, U2) = 0.7687, s(U1, U3) = 0.8070 and s(U2, U3) = 0.8602 respectively.

Step 2: According to Equation (12), the confidence degree of the three teams can be calculated as
cs1 = s(U1, U2) + s(U1, U3) = 1.5758, cs2 = 1.6289 and cs3 = 1.6672, so the weight of each team can be
further determined as w1 = cs1

cs1+cs2+cs3
= 0.3234, w2 = 0.3344, and w3 = 0.3422.

Step 3: By using Equation (16), the collective PULIFPR Ũ can be obtained as follows
Ũ = (ũ(p)ij)4×4, (i, j = 1, 2, 3, 4)
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where

ũ(p)11 = ũ(p)22 = ũ(p)33 = ũ(p)44 = s4;

ũ(p)12 = {〈([s1.6766, s3.3442], [s3.6578, s4.3234]), 0.3〉, 〈([s2.6953, s3.6953], [s3.0717, s4.6390]), 0.5667〉};
ũ(p)13 = {〈([s1.9703, s3.2938], [s3.3828, s4.0484]), 0.6333〉, 〈([s2.9703, s3.9703], [s3.3719, s4.0297]), 0.3〉};
ũ(p)14 = {〈([s5.0375, s6.0375], [s1.6281, s1.6281]), 0.4〉, 〈([s4.7062, s5.3719], [s1.9703, s2.6281]), 0.4667〉};
ũ(p)23 = {〈([s2.0061, s3.3295], [s4.3283, s4.3283]), 0.5667〉, 〈([s2.3374, s3.3186], [s4.0048, s4.6814]), 0.3667〉};
ũ(p)24 = {〈([s2.9860, s4.3204], [s2.0140, s3.0140]), 0.5333〉, 〈([s3.9860, s4.6438], [s2.6905, s3.3562]), 0.4667〉};
ũ(p)34 = {〈([s3.3985, s4.3906], [s2.2859, s2.9516]), 0.5333〉, 〈([s2.3797, s4.0484], [s2.9407, s3.6172]), 0.3667〉}.

Step 4: The non-fuzzy uncertain information values fij(i, j = 1, 2, 3, 4, i < j) and the fuzzy
uncertain information values gij(i, j = 1, 2, 3, 4, i < j) of PULIFPR Ũ are calculated respectively.
By substituting them into Equation (22), the following model can be obtained

max θ = θ12 + θ13 + θ14 + θ23 + θ24 + θ34

s.t.



[0.3822θ12 + 0.1235(1− θ12)](w1 + w2)− w1 = 0,

[0.4195θ13 + 0.1619(1− θ13)](w1 + w3)− w1 = 0,

[0.6110θ14 + 0.0803(1− θ14)](w1 + w4)− w1 = 0,

[0.3731θ23 + 0.1091(1− θ23)](w2 + w3)− w2 = 0,

[0.5756θ24 + 0.1608(1− θ24)](w2 + w4)− w2 = 0,

[0.4910θ34 + 0.1682(1− θ34)](w3 + w4)− w3 = 0,

w1 + w2 + w3 > w4 − 0.5, w1 + w2 + w4 > w3 − 0.5,

w1 + w3 + w4 > w2 − 0.5, w2 + w3 + w4 > w1 − 0.5,

w1 + w2 + w3 + w4 = 1, w1, w2, w3, w4 ≥ 0,

0 ≤ θ12, θ13, θ14, θ23, θ24, θ34 ≤ 1.

(29)

By solving this model, priority weights and parameter values can be obtained as w1 =

0.1227, w2 = 0.1984, w3 = 0.3333, w4 = 0.3456, θ13 = 0.4162, θ14 = 0.3425, θ24 = 0.4916, θ12 = θ23 =

θ34 = 1.

Step 5: By calculating the optimistic judgment values aij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ and

pessimistic judgment values bij = ∑
#u(p)
k=1 pk ×

I(s
uk

ij
)−I(s

vk
ij
)+2τ

4τ , (i, j = 1, 2, 3, 4, i < j) and substituting
them into Equations (24) and (25) respectively to solve the weight. But their feasible regions are all
empty. Therefore, substitute the values of aij and bij into Equations (26) and (27) respectively, then the
priority weights can be obtained as follows
w+

1 = 0.2149, w+
2 = 0.2631, w+

3 = 0.3700, w+
4 = 0.1520,

w−1 = 0.1395, w−2 = 0.3034, w−3 = 0.2432, w−4 = 0.3139.
Without loss of generality, assume that the value of risk parameter λ determined by Microsoft

is 0.5. Then the priority weights can be obtained as w′1 = 0.5w+
1 + (1− 0.5)w−1 = 0.1783, w′2 =

0.2823, w′3 = 0.3058, w′4 = 0.2336.
Step 6: Combining the results obtained in steps 4 and 5, the comprehensive ranking weight of Ũ

can be obtained as w̄1 = 0.1505, w̄2 = 0.2404, w̄3 = 0.3195, w̄4 = 0.2896. Therefore, the final ranking
result is w̄3 > w̄4 > w̄2 > w̄1 , namely, x3 is the best candidate partner of Microsoft.

In addition, the sorting results for different risk parameter values λ are shown in Table 2.
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Table 2. Ranking orders of alternatives with different parameter values λ.

λ w̄1 w̄2 w̄3 w̄4 Ranking Order

0.1 0.1350 0.2488 0.2945 0.3217 x4 > x3 > x2 > x1
0.2 0.1388 0.2467 0.3008 0.3137 x4 > x3 > x2 > x1
0.3 0.1427 0.2446 0.3070 0.3057 x3 > x4 > x2 > x1
0.4 0.1466 0.2425 0.3133 0.2976 x3 > x4 > x2 > x1
0.5 0.1505 0.2404 0.3195 0.2896 x3 > x4 > x2 > x1
0.6 0.1544 0.2382 0.3258 0.2816 x3 > x4 > x2 > x1
0.7 0.1583 0.2361 0.3321 0.2735 x3 > x4 > x2 > x1
0.8 0.1622 0.2340 0.3383 0.2655 x3 > x4 > x2 > x1
0.9 0.1660 0.2319 0.3446 0.2575 x3 > x4 > x2 > x1

It can be seen from Table 2 that different sorting results may occur for different risk parameter
values λ. When 0 < λ < 0.3, the sorting result is x4 > x3 > x2 > x1, and when 0.3 ≤ λ ≤ 0.9,
the sorting result is x3 > x4 > x2 > x1. This fully demonstrates the importance of DM’s risk attitude
in GDM and the rationality of the method proposed in this paper. In addition, to further reflect the
impact of risk parameter value λ on GDM. We give the variation trend diagram of the compromise
weight w′i and the comprehensive weight w̄ (see Figure 3).

Figure 3. The variation trend of weights w′i and w̄i based on different parameter values λ.

It can be seen intuitively from Figure 3 that the variation trend of the compromise weight w′i
and the comprehensive weight w̄i with the increase of λ. Furthermore, by comparing w′i and w̄i ,
it is easy to see that project x4 is greatly influenced by λ when only taking into account DM’s risk
attitude (as the value of λ increases, the value of w′4 decreases from the maximum to the minimum),
while its comprehensive weight w̄4 is less affected by λ. This further illustrates the necessity and
rationality of comprehensive consideration of risk attitude, fuzzy and non-fuzzy uncertain information
in GDM problems.

5.2. Comparison Analyses

As a new preference relation, PULIFPR expands the application scope of qualitative information
in fuzzy theory and improves the applicability of linguistic terms in GDM. Moreover, as an extension
form of LPR, it can be transformed into various LPRs through corresponding changes. Therefore,
the method proposed in this paper is also applicable to other types of preference relations, and its
specific advantages compared with existing series methods are shown in Table 3.
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Table 3. Comparison of different methods.

Methods Preference
Relations

Considering the
Non-Preference
Information

Considering the
Probability
Distribution

Considering the
Fuzzy Uncertainty
(Ignorance
Information)

Determining the
Individual
Weight

Avoiding
Consistency
Checks
and Corrections

Considering
the Risk Attitudes
of DMs

The proposed method PULIFPRs Yes Yes Yes Yes Yes Yes
Meng et al.’s method [27] LIFPRs Yes No No No No No
Xie et al.’s method [37] PULPRs No Yes No No No No
Zhang et al.’s method [38] PLPRs No Yes No No No No
Wan et al.’s method [36] IVIFPRs Yes No Yes Yes No Yes
Liao et al.’s method [39] IFPRs Yes No No No No No
Wan et al.’s method [32] IVFPRs No No No Yes No Yes
Zhao et al.’s method [40] LPRs No No Yes Yes No No
Meng et al.’s method [31] IVIFPRs Yes No No Yes No No
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It is easy to see from Table 3 that compared with other methods, the methods proposed in this
paper have many advantages, which not only make up for the deficiencies of current methods, but also
avoid the detection and correction of consistency in GDM problems. Specifically speaking, compared
with the model proposed by the existing methods, the specific advantages of the model proposed in
this paper are as follows

(1) Compared with models M-1 and M-3 in method [27], the model proposed in this paper can
directly obtain the priority weight of preference relation without consistency test and correction.

(2) Compared with Algorithms 1 and 2 in method [37], the algorithm proposed in this paper
provides a method to determine the individual weight, and the consensus collective preference
relation can be obtained directly without iterative calculation.

(3) Compared with the model proposed by wan et al. [36], the model proposed in this paper
considers the probability distribution of uncertain information, which is more suitable for
large-scale GDM problems in complex environments and can ensure the consistency of collective
preference relations.

(4) Compared with the GPM proposed by liao et al. [39], the model proposed in this paper considers
both the risk attitude of DMs and the information that they fail to grasp, which improves the
rationality and accuracy of decision-making results.

In addition, PULIFS proposed in this paper is a comprehensive extension of the LTS, which can be
converted into other sets according to the practical needs of decision problems. Therefore, PULIFS is
more general and representative than many existing fuzzy sets, and it is more flexible in the application
of decision problem. Furthermore, we classify the information expressed by PULIFPR as fuzzy and
non-fuzzy uncertain information to fully consider the preferences, non-preferences and unknown
information of the decision-maker. Thus, the method proposed in this paper comprehensively reflects
the subjective hesitation, uncertainty and objective randomness existing in actual decision-making
problems, and thus ensures the rationality of the DM results.

To sum up, the advantages of the proposed method in practical application can be summarized
as follows

(1) Compared with the general preference relation, the PULIFPR proposed in this paper can express
both individual preference and group preference, which is more suitable for the increasingly
complex decision-making environment. Therefore, the decision-making method proposed in
this paper has a broad application prospect. Such as the selection of investment projects, the
formulation of enterprise marketing plans, the introduction of talents in institutions, etc.

(2) The method proposed in this paper comprehensively considers the risk attitude and fuzzy
uncertain information of DMs, which is more in line with the actual decision-making situation
and is easily accepted and adopted by DMs.

(3) The proposed model can guarantee the consistency of the collective preference relation without
checking and revising, so it is more simple and accurate in practical application.

However, although the method proposed in this paper has many advantages, it also has some
limitations. On the one hand, this paper considers the risk attitude of decision makers, but fails to
give a method to determine the value of risk parameters; on the other hand, this paper does not
consider the group decision-making problem in the context of incomplete information. Therefore,
the method of determining the risk parameter value and extending the proposed method to an
incomplete environment will be the future research direction.

6. Conclusions

This paper first briefly summarizes the development history of LTS and puts forward PULIFS,
which extends the application of LT in fuzzy theory and promotes the application of qualitative
information in GDM. Secondly, the definition of PULIFPR is proposed, which can fully express
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the subjective hesitation of the decision-maker in the DM problem as well as the uncertainty and
randomness of the objective existence. We then defined the distance measure between PULIFSs and
used it to determine the individual objective weight, thus increasing the accuracy of information
aggregation. Subsequently, a series of GPMs for solving priority weights were established, which not
only fully considered the fuzziness of information and DM’s risk attitude, but also avoided the test
and correction of consistency in GDM. Moreover, we take the project selection of world VR industry
conference 2018 as an example demonstrates the effectiveness and practicality of the proposed method.

It is worth noting that this paper only discusses the application of qualitative information in
GDM, so it will be an interesting research direction to apply the method proposed in this paper to
the quantitative decision-making field, such as IVIFS [41] or PIVIHFS [28], and the decision problem
in heterogeneous environment (both qualitative and quantitative information should be considered).
In addition, since this paper studies the uncertain problem in a complex environment, it will be a
worthy research direction to combine the proposed method with the complex network with fuzzy
logic units [42].

Author Contributions: All authors contributed equally.

Funding: This work was supported by National Natural Science Foundation of China (Grant No. 11661053,
11771198) and the Provincial Natural Science Foundation of Jiangxi, China (Grant No. 20181BAB201003).

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their insightful
and constructive commendations that have lead to an improved version of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975,
8, 199–249. [CrossRef]

2. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—II. Inf. Sci.
1975, 8, 301–357. [CrossRef]

3. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—III. Inf. Sci.
1975, 9, 43–80. [CrossRef]

4. Yager, R.R. A new methodology for ordinal multiobjective decisions based on fuzzy sets. Decis. Sci. 1981, 12,
589–600. [CrossRef]

5. Degadni, R.; Bortolan, G. The problem of linguistic approximation in clinical decision making. Int. J.
Approx. Reason. 1988, 2, 143–162. [CrossRef]

6. Delgado, M.; Verdegay, J.L.; Vila, M.A. On aggregation operations of linguistic labels. Int. J. Intell. Syst. 1993,
8, 351-370. [CrossRef]

7. Herrera, F.; Martinez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans.
Fuzzy Syst. 2000, 8, 746–752.

8. Xu, Z.S. A method based on linguistic aggregation operators for group decision making with linguistic
preference relations. Inf. Sci. 2004, 166, 19–30. [CrossRef]

9. Xu, Z.S. Uncertain linguistic aggregation operators based approach to multiple attribute group decision
making under uncertain linguistic environment. Inf. Sci. 2004, 168, 171–184. [CrossRef]

10. Rodriguez, R.M.; Martinez, L.; Herrera, F. Hesitant Fuzzy Linguistic Term Sets for Decision Making.
IEEE Trans. Fuzzy Syst. 2012, 20, 109–119. [CrossRef]

11. Meng, F.; Chen, X.; Zhang, Q. Multi-attribute decision analysis under a linguistic hesitant fuzzy environment.
Inf. Sci. 2014, 267, 287–305. [CrossRef]

12. Zhang, H.M. Linguistic Intuitionistic Fuzzy Sets and Application in MAGDM. J. Appl. Math. 2014, 1–11.
[CrossRef]

13. Ye, J. An extended TOPSIS method for multiple attribute group decision making based on single valued
neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2015, 28, 247–255.

14. Pang, Q.; Wang, H.; Xu, Z.S. Probabilistic linguistic term sets in multi-attribute group decision making. Inf. Sci.
2016, 369, 128–143. [CrossRef]

http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/0020-0255(75)90046-8
http://dx.doi.org/10.1016/0020-0255(75)90017-1
http://dx.doi.org/10.1111/j.1540-5915.1981.tb00111.x
http://dx.doi.org/10.1016/0888-613X(88)90105-3
http://dx.doi.org/10.1002/int.4550080303
http://dx.doi.org/10.1016/j.ins.2003.10.006
http://dx.doi.org/10.1016/j.ins.2004.02.003
http://dx.doi.org/10.1109/TFUZZ.2011.2170076
http://dx.doi.org/10.1016/j.ins.2014.02.012
http://dx.doi.org/10.1155/2014/432092
http://dx.doi.org/10.1016/j.ins.2016.06.021


Symmetry 2019, 11, 234 21 of 22

15. Lin, M.W.; Xu, Z.S.; Zhai, Y.L.; Yao, Z.Q. Multi-attribute group decision-making under probabilistic uncertain
linguistic environment. J. Oper. Res. Soc. 2017, 22, 1–15. [CrossRef]

16. Bai, C.; Zhang, R.; Shen, S.; Huang, C.; Fan, X. Interval valued probabilistic linguistic term sets in multi-criteria
group decision making. Int. J. Intell. Syst. 2018, 33, 1301–1321. [CrossRef]

17. Zhang, R.C.; Li, Z.M.; Liao, H.C. Multiple-attribute decision-making method based on the correlation
coefficient between dual hesitant fuzzy linguistic term sets. Knowl.-Based Syst. 2018, 159, 186–192. [CrossRef]

18. Pamucar, D.; Badi, I.; Sanja, K.; Obradovic, R. A Novel Approach for the Selection of Power-Generation
Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya. Energies 2018, 11, 2489.
[CrossRef]

19. Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service
provider: A single valued neutrosophic DEMATEL multicriteria model. Decision Mak. Appl. Manag. Eng.
2018, 1, 121–130. [CrossRef]

20. Orlorski, S.A. Decision making with a fuzzy preference relation. Fuzzy Sets Syst. 1978, 3, 155–167.
21. Saaty, T.L. The Analytical Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980.
22. Herrera, F.; Herrera-Viedma, E.; Verdegay, J.L. A model of consensus in group decision making under

linguistic assessments. Fuzzy Sets Syst. 1996, 78, 73–87. [CrossRef]
23. Xu, Z.S. On compatibility of interval fuzzy preference relations. Fuzzy Optim. Decis. Mak. 2004, 3, 217–225.

[CrossRef]
24. Saaty, T.L.; Vargas, L.G. Uncertainty and rank order in the analytic hierarchy process. Eur. J. Oper. Res. 1987,

32, 107–117. [CrossRef]
25. Xu, Z.S. Intuitionistic preference relations and their apllication in group decision making. Inf. Sci. 2007, 177,

2363–2379. [CrossRef]
26. Xia, M.M.; Xu, Z.S.; Liao, H.C. Preference relations based on intuitionistic multiplicative information.

IEEE Trans. Fuzzy Syst. 2013, 21, 113–133.
27. Meng, F.Y.; Tang, J.; Fujita, H. Linguistic intuitionistic fuzzy preference relations and their application to

multi-criteria decision making. Inf. Fusion 2019, 46, 77–90. [CrossRef]
28. Zhai, Y.L.; Xu, Z.S.; Liao, H.C. Measures of Probabilistic Interval-Valued Intuitionistic Hesitant Fuzzy Sets and

the Application in Reducing Excessive Medical Examinations. IEEE Trans. Fuzzy Syst. 2018, 26, 1651–1670.
[CrossRef]

29. Tanino, T. Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 1984, 12, 117–131. [CrossRef]
30. Chiclana, F.; Herrera-Viedma, E.; Alonso, S.; Herrera, F. Cardinal consistency of reciprocal preference relations:

A characterization of mulitiplicative transitivity. IEEE Trans. Fuzzy Syst. 2009, 17, 14–23. [CrossRef]
31. Meng, F.Y.; Tang, J.; Wang, P.; Chen, X.H. A programming-based algorithm for interval-valued intuitionistic

fuzzy group decision making. Knowl.-Based Syst. 2018, 144, 122–143. [CrossRef]
32. Wan, S.P.; Wang, F.; Dong, J.Y. A group decision making method with interval valued fuzzy preference

relations based on the geometric consistency. Inf. Fusion 2018, 40, 87–100. [CrossRef]
33. Wu, J.; Chiclana, F.; Liao, H.C. Isomorphic Multiplicative Transitivity for Intuitionistic and Interval-Valued

Fuzzy Preference Relations and Its Application in Deriving Their Priority Vectors. IEEE Trans. Fuzzy Syst.
2018, 26, 193–202. [CrossRef]

34. Zhou, W.; Xu, Z.S. Probability Calculation and Element Optimization of Probabilistic Hesitant Fuzzy
Preference Relations Based on Expected Consistency. IEEE Trans. Fuzzy Syst. 2018, 26, 1367–1378. [CrossRef]

35. Wang, Z.J. A Goal Programming Based Heuristic Approach to Deriving Fuzzy Weights in Analytic Form
from Triangular Fuzzy Preference Relations. IEEE Trans. Fuzzy Syst. 2018. [CrossRef]

36. Wan, S.P.; Wang, F.; Dong, J.Y. Three-Phase Method for Group Decision Making With Interval-Valued
Intuitionistic Fuzzy Preference Relations. IEEE Trans. Fuzzy Syst. 2018, 26, 998–1010. [CrossRef]

37. Xie, W.Y.; Ren, Z.L.; Xu, Z.S.; Wang, H. The consensus of probabilistic uncertain linguistic preference relations
and the application on the virtual reality industry. Knowl.-Based Syst. 2018, 162, 14–28. [CrossRef]

38. Zhang, Y.X.; Xu, Z.S.; Liao, H.C. A consensus process for group decision making with probabilistic linguistic
preference relations. Inf. Sci. 2017, 414, 260–275. [CrossRef]

39. Liao, H.C.; Xu, Z.; Zeng, X.J.; Merigó, J.M. Framework of group decision making with intuitionistic fuzzy
preference information. IEEE Trans. Fuzzy Syst. 2015, 23, 1211–1227. [CrossRef]

http://dx.doi.org/10.1057/s41274-017-0182-y
http://dx.doi.org/10.1002/int.21983
http://dx.doi.org/10.1016/j.knosys.2018.07.014
http://dx.doi.org/10.3390/en11092489
http://dx.doi.org/10.31181/dmame1802128l
http://dx.doi.org/10.1016/0165-0114(95)00107-7
http://dx.doi.org/10.1023/B:FODM.0000036864.33950.1b
http://dx.doi.org/10.1016/0377-2217(87)90275-X
http://dx.doi.org/10.1016/j.ins.2006.12.019
http://dx.doi.org/10.1016/j.inffus.2018.05.001
http://dx.doi.org/10.1109/TFUZZ.2017.2740201
http://dx.doi.org/10.1016/0165-0114(84)90032-0
http://dx.doi.org/10.1109/TFUZZ.2008.2008028
http://dx.doi.org/10.1016/j.knosys.2017.12.033
http://dx.doi.org/10.1016/j.inffus.2017.06.003
http://dx.doi.org/10.1109/TFUZZ.2016.2646749
http://dx.doi.org/10.1109/TFUZZ.2017.2723349
http://dx.doi.org/10.1109/TFUZZ.2018.2852307
http://dx.doi.org/10.1109/TFUZZ.2017.2701324
http://dx.doi.org/10.1016/j.knosys.2018.07.016
http://dx.doi.org/10.1016/j.ins.2017.06.006
http://dx.doi.org/10.1109/TFUZZ.2014.2348013


Symmetry 2019, 11, 234 22 of 22

40. Zhao, M.; Ma, X.Y.; Wei, D.W. A method considering and adjusting individual consistency and group
consensus for group decision making with incomplete linguistic preference relations. Appl. Soft Comput. 2017,
54, 322–346. [CrossRef]

41. Atanassov, K.; Gargov, G. Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349.
[CrossRef]

42. Bucolo, M.; Fortuna, L.; La Rosa, M. Complex dynamics through fuzzy chains. IEEE Trans. Fuzzy Syst. 2004,
12, 289–295. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.asoc.2017.01.010
http://dx.doi.org/10.1016/0165-0114(89)90205-4
http://dx.doi.org/10.1109/TFUZZ.2004.825969
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	PLTS and PULTS
	LIFS

	PULIFS and PULIFPR
	PULIFS
	PULIFPR
	The Distance Measure of PULIFSs
	Deriving Individual Weights and Aggregating Individual PULIFPRs

	Consistency Analysis of PULIFPR and Acquisition of Its Priority Weight
	Consistency Analysis of PULIFPR
	Determine the Priority Weights of PULIFPR through the GPM
	A New Algorithm for Solving GDM with PULIFPR

	Case Application and Comparative Analysis
	Application in VR Project Selection
	Comparison Analyses

	Conclusions
	References

