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Abstract: This research provides second-order approximate Noether symmetries of geodetic
Lagrangian of time-conformal plane symmetric spacetime. A time-conformal factor is of the
form eε f (t) which perturbs the plane symmetric static spacetime, where ε is small a positive
parameter that produces perturbation in the spacetime. By considering the perturbation up to
second-order in ε in plane symmetric spacetime, we find the second order approximate Noether
symmetries for the corresponding Lagrangian. Using Noether theorem, the corresponding second
order approximate conservation laws are investigated for plane symmetric gravitational waves like
spacetimes. This technique tells about the energy content of the gravitational waves.
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1. Introduction

Gravitational waves are ripples in the fabric of space-time produced by some of the most violent and
energetic processes like colliding black holes or closely orbiting black holes and neutron stars (binary
pulsars). These waves travel with the speed of light and depend on their sources [1–5]. The study of
these waves provide us useful information about their sources (black holes and neutron stars).

In 1905, Henri Poincare [6] proposed that gravitational waves are the outcomes of disturbances
or distortions in the fabric of spacetime produced by the accelerated motion of heavy masses like black
holes and neutron stars. Einstein in his famous general theory of relativity [7,8] predicted that this
distortion (ripples in the spacetime fabric) could travel across the universe stretching and squeezing
spacetime as they move through it. The first indirect detection or discovery for gravitational waves
was made by Russell A. Hulse and Joseph H. Taylor, Jr. in 1974, and they were awarded a Nobel prize
in physics in 1993 [9]. The direct detection of gravitational waves was made by the calibration of
advanced LIGO and advanced VIRGO at 2015. It was an important discovery and the three scientists
Rainer Weiss, Kip Thorne and Barry Barish were awarded a Nobel prize in 2017 for their work on direct
detection of gravitational waves [5,10,11]. Moreover, in Refs. [12,13], the authors studied gravitational
waves in de Sitter and asymptotically de Sitter spacetimes. They discussed the energy momentum
tensor using the gravitational Poynting vector [14].

The analysis of these gravitational waves is very difficult because of the low amplitude
and frequency as its intensity decreases gradually until it reaches the earth with estimated frequency
range 10–16 Hz < f < 104 Hz. In fact, these waves are emitted from the sources (accelerated motion
of black holes and neutron stars) and carry energy and momentum from the energy and momentum
of the sources at the formation of these waves at their early stage. Moreover, the gravitational waves
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are disturbances in the fabric of spacetime; therefore, the gravitational wave spacetimes would depend
upon time t. However, Taub [15] had proved that “A spacetime with plane symmetry with Rµν = 0
(gravitational waves spacetime) admits a coordinate system where the line element is independent of time
t, that is static”; therefore, it is not possible to find exact plane symmetric gravitational waves spacetime.

Emmy Noether proved in her famous Noether theorem that there is one to one correspondence
between Noether symmetries and conservation laws [16]. Conservation of energy and momentum
are valid in flat spacetimes, while they are not held in curved spacetimes globally (in general relativity).
This paper reflects the same fact that, if the spacetime is flat, then the approximate Noether symmetries
do not exist, while they do exist in curved spacetime, which means that the conservation of energy
and momentum does not hold in curved spacetimes. The ultimate aim of the approximate Noether
symmetry is to search plane symmetric spacetimes which are gravitational wave like spacetimes and
also re-scale the energy and momentum in the respective spacetimes.

Approximate Noether symmetry [17–22] techniques have been used frequently by the researchers
to re-scale the energy and momentum in gravitational waves like spacetimes for which Rµν → 0
as x → ∞. The authors of [19] have already determined it up to the first order in ε, in plane symmetric
spacetimes. The approximate Noether symmetries and their corresponding approximate conservation
laws will answer the question of energy and momentum imparted by the gravitational waves from
the sources. It will also answer the question of what would be the approximate gravitational waves (or
gravitational waves like) spacetime.

This paper is an extension of the paper [19]. Here, in this article, the second order approximate
Noether symmetries of the Lagrangian of second order perturbed plane symmetric spacetimes are
explored. Using Noether theorem, the second order approximate conservation laws are also calculated.
The paper is arranged in the following order. The first section given in this paper is the Introduction.
The tools for calculating the second order approximate Noether symmetries are given in Section 2.
The definition and explanation of second-order approximate Noether symmetries for the Lagrangian
of time conformal plane symmetric spacetimes are discussed in Section 3. Section 4 contains the main
results of the article. Two classes of time conformal plane symmetric spacetimes are given in the same
section (Section 4) along with second order approximate Noether symmetries and second order
approximate conservation laws. The observations and conclusions are given in Section 5. The system
of 19 determining partial differential equations is shifted to the appendix at the end of the paper.

2. Time Conformal Plane Symmetric Spacetime

The general plane symmetric static spacetime takes the form [23]

ds2
a1 = eν̃(x)dt2 − dx2 − eµ̃(x)(dy2 + dz2), (1)

the Lagrangian corresponding to the spacetime (1) is

La1 = eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2), (2)

the time conformal spacetime can be defined as

ds2 = eε f (t)ds2
a1, (3)

the corresponding time conformal Lagrangian takes the form

L = eε f (t)La1, (4)

the second-order perturbed metric is defined as
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ds2 = eν̃(x)dt2 − dx2 − eµ̃(x)(dy2 + dz2) + ε f (t)
(

eν̃(x)dt2 − dx2 − eµ̃(x)(dy2 + dz2)

)
+ ε2 f 2(t)

2

(
eν̃(x)dt2 − dx2 − eµ̃(x)(dy2 + dz2)

)
, (5)

and the corresponding second-order perturbed Lagrangian is defined as

L = eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2) + ε f (t)
(

eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2)

)
+ ε2 f 2(t)

2

(
eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2)

)
. (6)

The Lagrangian given in Equation (6) can be written as

L = La1 + εLa2 + ε2La3 , (7)

where La1 is the exact part and La2 and La3 are the first and the second order approximate parts
of the Lagrangian, respectively, which are given below in expanded form:

La1 = eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2), (8)

La2 = f (t)
(

eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2)

)
, (9)

La3 =
f 2(t)

2

(
eν̃(x) ṫ2 − ẋ2 − eµ̃(x)(ẏ2 + ż2)

)
. (10)

3. Second-Order Approximate Noether Symmetry Equation

An approximate Noether symmetries generator Y is defined as

Y[1]L+ (Dξ)L = DA, (11)

where Y[1] is known as the first-order prolongation of the second-order approximate Noether symmetry
generator Y = Ya1 + εYa2 + ε2Ya3 , and all of them are given in expanded forms:

Ya1 = ξa1

∂

∂s
+ η0

a1

∂

∂t
+ η1

a1

∂

∂x
+ η2

a1

∂

∂y
+ η3

a1

∂

∂z
, (12)

Ya2 = ξa2

∂

∂s
+ η0

a2

∂

∂t
+ η1

a2

∂

∂x
+ η2

a2

∂

∂y
+ η3

a2

∂

∂z
, (13)

Ya3 = ξa3

∂

∂s
+ η0

a3

∂

∂t
+ η1

a3

∂

∂x
+ η2

a3

∂

∂y
+ η3

a3

∂

∂z
, (14)

and the exact parts of Noether symmetry generator are given in Equation (12), whereas
Equations (13) and (14) are first and second order approximate parts of the Noether symmetry generator Y.
The total differential operator D is defined as

D =
∂

∂s
+ ṫ

∂

∂t
+ ẋ

∂

∂x
+ ẏ

∂

∂y
+ ż

∂

∂z
. (15)
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The gauge function in given in Equation (11) is A = Aa1 + εAa2 + ε2 Aa3 , where Aa1 , Aa2 and Aa3

are exact, first order and second order approximate parts of the gauge function A, respectively.
Equation (11) splits into the following three equations:

ε0 : Ya1La1 + (Dξa1)La1 = DAa1 , (16)

ε1 : Ya1La2 + Ya2La1 + (Dξa1)La2 + (Dξa2)La1 = DAa2 , (17)

ε2 : Ya1La3 + Ya2La2 + Ya3La1 + (Dξa3)La1 + (Dξa2)La2 + (Dξa1)La3 = DAa3 , (18)

where ξa1 , ξa2 , ξa3 , ηi
a1

, ηi
a2

, ηi
a3

, Aa1 , Aa2 , Aa3 all are functions of s, t, x, y and z; moreover, η̇i
a1

, η̇i
a2

and η̇i
a3

are functions of s, t, x, y, z, ṫ, ẋ, ẏ, ż, and the “˙” represent derivative with respect to the arc
length parameter ”s”. The solutions of Equations (16) and (17) are given in Ref. [18]. The solution of
Equation (18) is the goal of this research work, which provide us plane symmetric spacetimes which
admit time conformal factor up to the second order in ε without losing any exact Noether symmetry.
The Noether symmetries come with approximate parts. We listed the second order approximate
Noether symmetries corresponding to the second order Lagrangians of second order time conformal
plane symmetric spacetimes, along with second order approximate conservation laws in Section 4.

4. Second-Order Approximate Noether Symmetries and Conservation Laws along with Second
Order Time Conformal Plane Symmetric Spacetimes

4.1. Five Noether Symmetries and the Corresponding Conservation Laws

The following second order perturbed metric of the plane symmetric spacetime is one of the
solutions which admit five Noether symmetries without losing any exact Noether symmetry

ds2 = e(
x
α )

2
dt2 − dx2 − e(

x
α )(dy2 + dz2) +

εt
α

(
e(

x
α )

2
dt2 − dx2 − e(

x
α )(dy2 + dz2)

)
+

ε2t2

2α2

(
e(

x
α )

2
dt2 − dx2 − e(

x
α )(dy2 + dz2)

)
, a 6= 0, 2 and α 6= 0.

(19)

The exact Noether symmetries are

Z0 =
∂

∂s
, Y1 =

∂

∂y
, Y2 =

∂

∂z
, Y3 = y

∂

∂z
− z

∂

∂y
,

and the first and second order approximate Noether symmetries are

Y4 =
∂

∂t
+

εs
α

∂

∂s
,

Y0 = ε
∂

∂t
+

ε2s
α

∂

∂s
.

Y4 and Y0 are the first and second order approximate Noether symmetries corresponds to the energy
content in the spacetime given in Equation (19). The conservation law (energy) or first integral related to
first order approximate symmetry Y4 and second order approximate symmetry Y0 are given respectively as

E1 =

[
e(

x
α )

2
ṫ +

ε

α

(
tṫe(

x
α )

2
+
Ls
2

)]
,

E2 = ε

[
e(

x
α )

2
ṫ +

ε

α

(
tṫe(

x
α )

2
+
Ls
2

)]
.
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However, energy of the particle for spacetime (19), for ε = 0, is E0 =
( x2

α2

)
ṫ. Thus, the first order

correction to the energy of a particle is

E1 = E0 +
εt
α

(
E0 +

√
1− v2

2
L
)
, (20)

the second order correction to the energy is

E2 = ε

(
E0 +

εt
α

(
E0 +

√
1− v2

2
L
))

, (21)

and the total energy up to second order in ε is

ET = E1 + E2 = E0 +
εt
α

(
E0 +

√
1− v2

2
L
)
+ ε

(
E0 +

εt
α

(
E0 +

√
1− v2

2
L
))

. (22)

The approximate Lie algebra of the five Noether symmetries generators is

[Y1, Y3] = Y2, [Y2, Y3] = −Y1, [Y0, Z0] = −
ε2

α
Z0,

[Yi, Yj] = 0, [Yi, Z0] = 0, otherwise.

4.2. Six Noether Symmetries and the Corresponding Conservation Laws

Metric of the plane symmetric spacetime that admits the second order time conformal perturbation
and have five Noether symmetries is

ds2 =
( x

α

)2
dt2 − dx2 −

( x
α

)a
(dy2 + dz2) +

εt
α

(( x
α

)2
dt2 − dx2 −

( x
α

)a
(dy2 + dz2)

)
+

ε2t2

2α2

(( x
α

)2
dt2 − dx2 −

( x
α

)a
(dy2 + dz2)

)
, a 6= 0, 2 and α 6= 0.

(23)

The exact Noether symmetries are

Z0 =
∂

∂s
, Y1 =

∂

∂y
, Y2 =

∂

∂z
, Y3 = y

∂

∂z
− z

∂

∂y
,

Z1 = s
∂

∂s
+

x
2

∂

∂x
+

2− a
4

y
∂

∂y
+

2− a
4

z
∂

∂z
.

The first order approximate Noether symmetry is given below

Y4 =
∂

∂t
− ε

4α

(
2x

∂

∂x
+ (2− a)y

∂

∂y
+ (2− a)z

∂

∂z

)
,

and the second order approximate Noether symmetry is

Y0 = ε
∂

∂t
− ε2

4α

(
2x

∂

∂x
+ (2− a)y

∂

∂y
+ (2− a)z

∂

∂z

)
.

The conservation laws or first integrals related to the first order approximate symmetry Y4

and second order approximate symmetry Y0 are

E1 =

[( x
α

)2
ṫ +

ε

α

(
tṫ
( x

α

)2
+

xẋ
2

+ (2− a)
yẏ
4

( x
α

)a
+ (2− a)

zż
4

( x
α

)a
)]

, (24)
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E2 = ε

[( x
α

)2
ṫ +

ε

α

(
tṫ
( x

α

)2
+

xẋ
2

+ (2− a)
yẏ
4

( x
α

)a
+ (2− a)

zż
4

( x
α

)a
)]

, (25)

from the first and second approximate conservation laws, we can write

E2 = εE1, ET = E1 + E2 = E1 + εE1, (26)

where ET is the total energy. Furthermore, we conjecture that the third approximation will be
of the form

E3 = εE2 = ε2E1, ET = E1 + E2 + E3 = E1 + εE1 + ε2E1, (27)

and the nth order approximation will takes the form

En = εEn−1 = ε2En−2... = εn−1E1, (28)

ET = E1 + E2.. + En = E1 + εE1 + ε2E1.. + εn−1E1. (29)

The approximate Lie algebra related to the six Noether symmetries generators is

[Y1, Y3] = Y2, [Y2, Y3] = −Y1, [Y1, Z1] =
2− a

4
Y1,

[Y2, Z1] =
2− a

4
Y2, [Z0, Z1] = Z0, [Y1, Y0] =

ε2(a− 2)
4α

Y1,

[Y2, Y0] =
ε2(a− 2)

4α
Y2, [Yi, Yj] = 0, [Yi, Zj] = 0, otherwise.

5. Conclusions and Observations

Gravitational waves are ripples in the fabric of space-time caused by some of the most violent
and energetic processes in the universe, like two black holes or neutrons orbiting each other closely
on the fabric of spacetime. These violent and energetic motions produce gravitational waves with
very high frequencies which can be detected on earth. These waves are rich sources of information
about the black holes and neutron stars. Recently, LIGO and VERGO calibration announced that they
directly detected these types of waves [10,11].

In this paper, we find the second order approximation to the energy content imparted
by the gravitational wave from the sources (Black hole and Neutron stars). The radiation emitted
from the black holes is a part of the energy and mass of the black holes [24]. The information related
to the formation of black hole are encoded in the gravitational waves emitted from the black hole and
neutron stars.

We find second order approximation to the energy content of the gravitational waves
in two classes of time conformal plane symmetric spacetimes. These spacetimes behave like
approximate gravitational waves spacetimes. Our calculations for second order approximation
to energy and momentum shows that, during the formation and propagation of gravitational
waves, the energy and momentum of the black hole are re-scaled continuously. We claim that the
exact part of the conservation law is the energy of the source that created the gravitational waves
and the approximate part corresponds to the energy imparted by the gravitational waves from
the source. We observed the following facts in our calculations:

• Second order approximation appears in the classes of five and six Noether symmetries
for the perturbed Lagrangian of plane symmetric spacetimes, which are given in
Sections 4.1 and 4.2, respectively.
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• Second order approximate Noether symmetries exist for the components of metric of the form

gµν = e
(

x
α

)γ

for the five Noether symmetries and gµν =
( x

α

)γ for six Noether symmetries,
which are evident from the plane symmetric metrics given in Equations (19) and (23).

• Flat spacetimes do not admit second order approximation (second-order perturbation) as well as
first-order approximation/first-order perturbation); for example, Minkowski spacetime does not
admit approximate Noether symmetries. Therefore, the conservation laws do not hold in general
relativity globally and they hold in special relativity.

The last observation confirms that the conservation laws hold in flat spacetime locally as well
as globally, while they do not hold in curved spacetimes globally. The reason behind this fact is that
the gravity creates curvature in the spacetime, which is an extremely nonlinear phenomenon, and
exact measurement of physical quantities is not possible in such a nonlinear phenomenon globally.

Author Contributions: All authors contributed equally.

Funding: There is no funding agency for this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Equation (18) is expanded by using Y[1]
a1 , Y[1]

a2 , Y[1]
a3 , La1 , La2 , La3 , D and Aa3 , and we obtain a system

of 19 partial differential equations as follows:

ft(t)
(

η0
a2
+ η0

a1
f (t)

)
+

(
η1

a3
+ η1

a2
f (t) + η1

a1

f 2(t)
2

)
ν̃
′
(x) +

(
2η0

a3t + 2η0
a2t f (t) + η0

a1t f 2(t)
)

− ξa3s − ξa2s f (t)− ξa1s
f 2(t)

2
= 0,

ft(t)
(

η0
a2
+ η0

a1
f (t)

)
+

(
2η1

a3x + 2η1
a2x f (t) + η1

a1x f 2(t)
)
− ξa3s − ξa2s f (t)

− ξa1s
f 2(t)

2
= 0,

ft(t)
(

η0
a2
+ η0

a1
f (t)

)
+

(
η1

a3
+ η1

a2
f (t) + η1

a1

f 2(t)
2

)
µ̃
′
(x) +

(
2η2

a3y + 2η2
a2y f (t) + η2

a1y f 2(t)
)

− ξa3s − ξa2s f (t)− ξa1s
f 2(t)

2
= 0,

ft(t)
(

η0
a2
+ η0

a1
f (t)

)
+

(
η1

a3
+ η1

a2
f (t) + η1

a1

f 2(t)
2

)
µ̃
′
(x) +

(
2η3

a3z + 2η3
a2z f (t) + η3

a1z f 2(t)
)

− ξa3s − ξa2s f (t)− ξa1s
f 2(t)

2
= 0,(

2η0
a3s + 2η0

a2s f (t) + η0
a1s f 2(t)

)
eν̃(x) − Aa3t = 0,(

2η1
a3t + 2η1

a2t f (t) + η1
a1t f 2(t)

)
−

(
2η0

a3x + 2η0
a2x f (t) + η0

a1x f 2(t)
)

eν̃(x) = 0,(
2η0

a3y + 2η0
a2y f (t) + η0

a1y f 2(t)
)

eν̃(x) −
(

2η2
a3t + 2η2

a2t f (t) + η2
a1t f 2(t)

)
eµ̃(x) = 0,(

2η0
a3z + 2η0

a2z f (t) + η0
a1z f 2(t)

)
eν̃(x) −

(
2η3

a3t + 2η3
a2t f (t) + η3

a1t f 2(t)
)

eµ̃(x) = 0,

2η1
a3s + 2η1

a2s f (t) + η1
a1s f 2(t) + Aa3x = 0,(

2η2
a3s + 2η2

a2s f (t) + η2
a1s f 2(t)

)
eµ̃(x) + Aa3y = 0,(

2η2
a3z + 2η2

a2z f (t) + η2
a1z f 2(t)

)
+

(
2η3

a3y + 2η3
a2y f (t) + η3

a1y f 2(t)
)
= 0,(

2η3
a3s + 2η3

a2s f (t) + η3
a1s f 2(t)

)
eµ̃(x) + Aa3z = 0,(

2η1
a3y + 2η1

a2y f (t) + η1
a1y f 2(t)

)
+

(
2η2

a3x + 2η2
a2x f (t) + η2

a1x f 2(t)
)

eµ̃(x) = 0,(
2η1

a3z + 2η1
a2z f (t) + η1

a1z f 2(t)
)
+

(
2η3

a3x + 2η3
a2x f (t) + η3

a1x f 2(t)
)

eµ̃(x) = 0,

Aa3s = 0, ξa3t = 0, ξa3x = 0, ξa3y = 0, ξa3z = 0.

(30)
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