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Abstract: A computational technique for impulsive fractional differential equations is proposed
in this paper. Adomian decomposition method plays an efficient role for approximate analytical
solutions for ordinary or fractional calculus. Semi-analytical method is proposed by use of the
Adomian polynomials. The method successively updates the initial values and gives the numerical
solutions on different impulsive intervals. As one of the numerical examples, an impulsive fractional
logistic differential equation is given to illustrate the method.
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1. Introduction

Fractional calculus appears frequently in various applied topics [1–7] and pure mathematics [8–12].
They are employed to depict the long-interaction of different statues of the systems. The fractional
order controls the amount of dependence on past information and shows the quantity of the memory.
On the other hand, as a result, it holds both quantitative and qualitative aspects. It shows some features
that are not present in other tools. This is the main reason for the popularity of the fractional calculus
as a modeling tool for the memory process.

Impulse theory is often used in control methods of differential equations. The impulsive point
changes dynamics of continuous time systems locally. Then, the solution has a jump and becomes
a piecewise continuous function on the whole interval, and impulsive points are the endpoints of
each short interval. A differential equation containing impulses is also called a system with a jump.
Hence, the impulsive differential equation is not a continuous time system but the one combining
both continuous and discrete point information. It depicts the impact of external conditions which
may be negative or positive. Impulsive fractional differential equations have received much attention
recently [13–19]. It can illustrate totally distinct dynamics in comparison to standard fractional systems,
and this property has often been adopted in fractional impulsive control. Many analytical methods
have been efficiently developed for differential equations [20–27]. However, the less numerical method
and analytical method were developed for impulsive fractional differential equations. In this study,
our main purpose is to extend methods from the integer order to the fractional order.

The Adomian decomposition method (ADM) has been applied in various nonlinear problems,
and the Adomian polynomials play a crucial role in the treatment of the nonlinear terms in fractional
differential equations. Recently, Duan et al. proposed a new way to calculate the polynomials which
can derive the same results but greatly improve computational speed and save time in comparison
with the classical one. Hence, various novel algorithms based on the new Adomian polynomials can be
considered now. It was successfully used in fractional differential equations [28] where a semi-analytical
method was developed.
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In this paper, a novel computational technique is proposed for the following equation by use of
new Adomian polynomials [21–23]:
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The Adomian polynomials are used in fractional differential equations. However, to the best
of our knowledge, we did not find any work on semi-analytical solutions for impulsive fractional
differential equations. This paper combines both analytical and numerical solutions’ features to develop
a semi-analytical method.

2. Preliminaries

2.1. Definitions and Properties of Fractional Calculus

The fractional calculus is defined as the following:

Definition 1 [1]. The Riemann–Liouville (R-L) integral of α order is defined by

t0 Iα
t f (t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1 f (τ) dτ, 0 < t, 0 < α. (2)

Definition 2 [1]. The R–L derivative is defined as

t0
Dα

t f = 1
Γ(m−α)

dm

dtm

∫ t
t0

1
(t−τ)α−m+1 f (τ) dτ,

t0 < t, 0 < α, m= [α] + 1,
(3)

where Γ is the Gamma function.

Definition 3 [1]. The Caputo derivative is defined as

C
t0

Dα
t f = t0

Dα
t ( f (t)−

m−1
∑

k=0

(t−t0)
k

k! f (k)(t0)),

0 < t, 0 < α, m= [α] + 1.
(4)

Remarks: For Definition 3, the Caputo derivative of a constant is zero;

If f (t) ∈ Cm([t0, ∞), R), then the Caputo derivative can be rewritten as

C
t0

Dα
t f =

1
Γ(m− α)

∫ t

t0

1

(t− τ)α−m+1
dm

dτm f (τ) dτ. (5)

In Definition 3, the function f (t) can be discrete if it is integrable such that the fractional impulsive
equation makes sense at the impulsive point.

In the sequel, we all use the definition of the Caputo derivative. We need the integral transform
so that the fractional differential equation can be reduced to an integral one and the integral methods
can be applied straightforward.
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Property 1. The Leibniz integral law holds

t0 Iα
t

C
t0

Dα
t f (t) = f (t)− f (t0),

t0 ≤ t, 0 < α ≤ 1.
(6)

Lemma 1 [14]. The impulsive fractional differential Equation (1) is equivalent to the following integral equation
of fractional order 

x(t) = x0 + t0
Iα
t F(t, x), t ∈ [t0, tN1 ],

x(t) = x0 + y1 + t0
Iα
t F(t, x), t ∈ (tN1 , tN2 ],

x(t) = x0 + y1 + y2 + t0
Iα
t F(t, x), t ∈ (tN2 , tN3 ],

...

x(t) = x0 +
k
∑

j=1
yj + t0

Iα
t F(t, x), t ∈ (tNk , tNk+1 ],

...

x(t) = x0 +
M
∑

j=1
yj + t0

Iα
t F(t, x), t ∈ (tNM , T], 1 < NM.

(7)

2.2. Adomian Polynomials

Considering a nonlinear equation

x(t) = G(x(t)) (8)

for the nonlinear term G(x(t)), the Adomian polynomial named after G. Adomian [29] can be
obtained by

An =
1
n!

∂n

∂λn (G[
∞

∑
k=0

xkλk])|λ=0. (9)

With the known values of x0, · · · , xn, we can successively obtain An.
Duan [21–23] newly proposed a fast Adomian polynomial as the following

An =
1
n

n−1

∑
k=0

(k + 1)xk+1
∂An−1−k

∂x0
, A0 = G(x0) (10)

Generally, the one of the z-variable is calculated by

An =
1
n

z

∑
i=1

n−1

∑
k=0

(k + 1)xi,k+1
∂An−1−k

∂xi,0
, i = 1, . . . , z. (11)

Although both lead to the same analytical solution, the new one is given in a more concise form
and saves computational time. This is very important for solutions of the fractional calculus since the
fractional derivative has the memory effects and can possess a large storage space.

3. Semi-Analytical Method Based on Adomian Polynomials

Consider the following fractional system with impulse (1). Using the idea by Duan [21], we give
steps of a novel algorithm for impulsive fractional differential equations.
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• Assume the solution in a series form as

x(t) =
∞

∑
i=0

ci(t− t0)
iα (12)

and xn is assumed as
n
∑

i=0
ci(t− t0)

iα accordingly.

• Substituting (12) into (8), with Adomian polynomials, the coefficients of ci are obtained as
cn+1 = Γ(1+nα)

Γ(1+(n+1)α)
An[c0, c1, . . . , cn], 0 ≤ n,

c0 = x0 +
k
∑

j=1
y j.

(13)

• xn can be obtained as

xn = ψ(c0, t0,
k

∑
j=1

y j, t), t ∈ (tNk , tNk+1 ]. (14)

• Set t ∈ [t0, T], t = ih, H = T
N , h = H

K , i = 0, 1, . . . , NK and let x∗i = ψ(x∗i−1, ti−1,
k
∑

j=1
yj, ti), where

x∗0 = c0. We can obtain the numerical solutions x∗0 , . . . , x∗i .

4. Numerical Solutions based on Adomian Polynomials

In this section, we consider an application of the method to Caputo fractional differential equations
with impulses 

C
t0

Dα
t x(t) = µx(t)(1− x(t)),

t ∈ J′ := J\[tN1 , . . . , tNM ], J := [t0, T]
∆xk = yk, xk = x(tk), yk = 0.1
x(t0) = x0 = 0.2, t0 = 0.

(15)

By use of Lemma 1, we have an integral equation as

x(t) = x0 + µt0 Iα
t x(t)(1− x(t)), t ∈ [t0, tN1 ],

x(t) = x0 + y1 + µt0 Iα
t x(t)(1− x(t)), t ∈ (tN1 , tN2 ],

x(t) = x0 + y1 + y2 + µt0 Iα
t x(t)(1− x(t)), t ∈ (tN2 , tN3 ],

...

x(t) = x0 +
k
∑

j=1
yj + µt0 Iα

t x(t)(1− x(t)), t ∈ (tNk , tNk+1 ],

...

x(t) = x0 +
M
∑

j=1
yj + µt0 Iα

t x(t)(1− x(t)), t ∈ (tNM , T], 1 < NM.

(16)

Adopt the semi-analytical method in Section 3. We have the recurrence relationship of the
coefficients as 

cn+1 = Γ(1+nα)
Γ(1+(n+1)α)

An[c0, c1, . . . , cn], 0 ≤ n,

c0 = x0 +
k
∑

j=1
yk, 1 ≤ k ≤ M.

(17)
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We give the first few coefficients here

c1 =
Γ(1)

Γ(1 + α)
(µc0 − µc2

0),

c2 =
Γ(1 + α)

Γ(1 + 2α)
(µ2c0 − 3µ2c2

0+2µ2c3
0),

c3 =
Γ(1 + 2α)
Γ(1 + 3α)

(−6µ3c2
0 + 10µ3c3

0 − 5µ3c4
0 + µ3c0),

...

(18)

such that we determine the approximate analytical expression of series solutions.
We vary the parameters α and M to observe the behavior. In Figure 1, the fractional order α = 0.9

and the number of impulsive points is set to 5. We can see that, with the increase in M (See Figures 2
and 3), the solutions’ values also increase if all of the impulse is positive. Figure 4 illustrates the stable
solution without an impulse in the same fractional case. From all of the figures, we can observe that
our semi-analytical solutions are plotted on the interval [0,10] which holds a longer time domain than
the standard one.
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5. Conclusions

Impulsive fractional differential equation has recently become an important topic, but less work
has focused on numerical or analytical methods. In this paper, we develop an efficient method
for nonlinear equations. New Adomian polynomials are adopted to treat the nonlinear terms,
and a semi-analytical method is developed. Firstly, the impulsive fractional differential equation
is given equivalently in an integral equation. Fractional Taylor series is implemented to derive
a recurrence relationship. Since there is no differential or integral calculus, it becomes very quick and
saves computational time to derive the analytical or numerical solutions in comparison with classical
ADM. The semi-analytical solution shows that the method is very efficient. However, there are still
some difficulties that we need to overcome in future. The following topics are also disadvantages that
we will try to address:

1. It is still challenging work to do error analysis. For many nonlinear cases, the exact solution is
unknown and numerical errors cannot be obtained. We will pay attention to this topic in the
near future;

2. In this method, we generally adopt a fractional series expansion which is a fractional analogy of
the Taylor series. What about other expansions which satisfy the features of the new polynomials?
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For example, how can series solutions be found for boundary value problems? Hence, it is very
important to develop new ideas for this topic.
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