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Abstract: In this paper, by using new-concept pointwise bi-slant immersions, we derive a fundamental
inequality theorem for the squared norm of the mean curvature via isometric warped-product pointwise
bi-slant immersions into complex space forms, involving the constant holomorphic sectional curvature
c, the Laplacian of the well-defined warping function, the squared norm of the warping function,
and pointwise slant functions. Some applications are also given.
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1. Introduction

In the submanifolds theory, creating a relationship between extrinsic and intrinsic invariants
is considered to be one of the most basic problems. Most of these relations play a notable role in
submanifolds geometry. The role of immersibility and non-immersibility in studying the submanifolds
geometry of a Riemannian manifold was affected by the pioneering work of the Nash embedding
theorem [1], where every Riemannian manifold realizes an isometric immersion into a Euclidean
space of sufficiently high codimension. This becomes a very useful object for the submanifolds theory,
and was taken up by several authors (for instance, see [2–15]). Its main purpose was considered to
be how Riemannian manifolds could always be treated as Riemannian submanifolds of Euclidean
spaces. Inspired by this fact, Nolker [16] classified the isometric immersions of a warped product
decomposition of standard spaces. Motivated by these approaches, Chen started one of his programs
of research in order to study the impressibility and non-immersibility of Riemannian warped products
into Riemannian manifolds, especially in Riemannian space forms (see [11,17–19]). Recently, a lot of
solutions have been provided to his problems by many geometers (see [18] and references therein).

The field of study which includes the inequalities for warped products in contact metric manifolds
and the Hermitian manifold is gaining importance. In particular, in [17], Chen observed the strong
isometrically immersed relationship between the warping function f of a warped product M1 × f M2

and the norm of the mean curvature, which isometrically immersed into a real space form.

Theorem 1. Let M̃(c) be a m-dimensional real space form and let ϕ : M = M1 × f M2 be an isometric
immersion of an n-dimensional warped product into M̃(c). Then:

∆ f
f
≤ n2

4n2
||H||2 + n1c, (1)
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where ni = dimMi, i = 1, 2, and ∆ is the Laplacian operator of M1 and H is the mean curvature vector of Mn.
Moreover, the equality holds in (1) if, and only if, ϕ is mixed and totally geodesic and n1H1 = n2H2 such that
H1 and H2 are partially mean curvatures of M1 and M2, respectively.

In [2,5,20–31], the authors discuss the study of Einstein, contact metrics, and warped product
manifolds for the above-mentioned problems. Furthermore, in regard to the collections of such
inequalities, we referred to [12] and references therein. The motivation came from the study of Chen
and Uddin [32], which proved the non-triviality of warped-product pointwise bi-slant submanifolds
of a Kaehler manifold with supporting examples. If the sectional curvature is constant with a
Kaehler metric, then it is called complex space forms. In this paper, we consider the warped-product
pointwise bi-slant submanifolds which isometrically immerse into a complex space form, where
we then obtain a relationship between the squared norm of the mean curvature, constant sectional
curvature, the warping function, and pointwise bi-slant functions. We will announce the main result
of this paper in the following.

Theorem 2. Let M̃2m(c) be the complex space form and let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an
isometric immersion from warped product pointwise bi-slant submanifolds into M̃2m(c). Then, the following
inequality is satisfied:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
− 3c

4n2

(
n1 cos2 θ1 + n2 cos2 θ2

)
, (2)

where θ1 and θ2 are pointwise slant functions along M1 and M2, respectively. Furthermore, ∇ and ∆ are the
gradient and the Laplacian operator on Mn1

1 , respectively, and H is the mean curvature vector of Mn. The equality
case holds in (2) if and only if ϕ is a mixed totally geodesic isometric immersion and the following satisfies

H1

H2
=

n2

n1

where H1 and H2 are the mean curvature vectors along Mn1
1 and Mn2

2 , respectively.

As an application of Theorem 2 in a compact orientated Riemannian manifold with a free boundary
condition, we prove that:

Theorem 3. Let Mn = Mn1
1 × f Mn2

2 be a compact, orientate warped product pointwise bi-slant submanifold
in a complex space form M̃2m(c) such that Mn1

1 is a n1-dimensional and Mn2
2 is a n2-dimensional pointwise

slant submanifold M̃2m(c). Then, Mn is simply a Riemannian product if, and only if:

‖H‖2 ≥ c
n2

(
3n1 cos2 θ1 + 3n2 cos2 θ2 − n1n2

)
, (3)

where H is the mean curvature vector of Mn. Moreover, θ1 and θ2 are pointwise slant functions.

By using classifications of pointwise bi-slant submanifolds which were defined in [32], we derived
similar inequalities for warped product pointwise pseudo-slant submanifolds [33], warped product
pointwise semi-slant submanifolds [34], and CR-warped product submanifolds [17] in a complex space
form as well.

2. Preliminaries and Notations

An almost complex structure J and a Riemannian metric g, such that J2 = −I and g(JX, JY) =
g(X, Y), for X, Y ∈ X(M̃), where I denotes the identity map and X(M̃) is the space containing vector
fields tangent to M̃, then (M, J, g) is an almost Hermitian manifold. If the almost complex structure
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satisfied (∇̃U J)V = 0, for any U, V ∈ X(M̃) and ∇̃ is a Levi-Cevita connection M̃. In this case, M̃ is
called the Kaehler manifold. A complex space form of constant holomorphic sectional curvature c is
denoted by M̃2m(c), and its curvature tensor R̃ can be expressed as:

R̃
(
U, V, Z, W

)
=

c
4

(
g(U, Z)g(V, W)− g(V, Z)g(U, W) + g(U, JZ)g(JV, W)

− g(V, JZ)g(U, JW) + 2g(U, JV)g(JZ, W)

)
, (4)

for every U, V, Z, W ∈ X(M̃2m(c)). A Riemannian manifold M̃m and its submanifold M, the Gauss and
Weingarten formulas are defined by ∇̃UV = ∇UV + h(U, V), and ∇̃Uξ = −AξU +∇⊥Uξ, respectively
for each U, V ∈ X(M) and for the normal vector field ξ of M, where h and Aξ are denoted as the
second fundamental form and shape operator. They are related as g(h(U, V), N) = g(ANU, V). Now,
for any U ∈ X(M) and for the normal vector field ξ of M, we have:

(i) JU = PU + FU, (ii) Jξ = tξ + f ξ, (5)

where PU(tξ) and FU( f ξ) are tangential to M and normal to M, respectively. Similarly, the equations
of Gauss are given by:

R(U, V, Z, W) = R̃(U, V, Z, W)+g
(
h(U, W), h(V, Z)

)
− g
(
h(U, Z), h(V, W)

)
. (6)

for all U, V, Z, W are tangent M, where R and R̃ are defined as the curvature tensor of M̃m and Mn,
respectively.

The mean curvature H of Riemannian submanifold Mn is given by

H =
1
n

trace(h).

A submanifold Mn of Riemannian manifold M̃m is said to be totally umbilical and totally geodesic
if h(U, V) = g(U, V)H and h(U, V) = 0, for any U, V ∈ X(M), respectively, where H is the mean
curvature vector of Mn. Furthermore, if H = 0, them Mn is minimal in M̃m.

A new class called a “pointwise slant submanifold” has been studied in almost Hermitian
manifolds by Chen-Gray [35]. They provided the following definitions of these submanifolds:

Definition 1. [35] A submanifold Mn of an almost Hermitian manifold M̃2m is a pointwise slant if, for any
non-zero vector X ∈ X(Tx M) and each given point x ∈ Mn, the angle θ(X) between JX and tangent space
Tx M is free from the choice of the nonzero vector X. In this case, the Wirtinger angle become a real-valued
function and it is non-constant along Mn, which is defined on T∗M such that θ : T∗M→ R.

Chen-Gray in [35] derived a characterization for the pointwise slant submanifold, where Mn is a
pointwise slant submanifold if, and only if, there exists a constant λ ∈ [0, 1] such that P2 = − cos2 θ I,
where P is a (1,1) tensor field and I is an identity map. For more classifications, we referred to [35].

Following the above concept, a pointwise bi-slant immersion was defined by Chen-Uddin in [18],
where they defined it as follows:

Definition 2. A submanifold Mn of an almost Hermitian manifold M̃2m is said to be a pointwise bi-slant
submanifold if there exists a pair of orthogonal distributions Dθ1 and Dθ2 , such that:

(i) TMn = Dθ1 ⊕Dθ2 ;
(ii) JDθ1 ⊥ Dθ2 and JDθ2 ⊥ Dθ1 ;
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(iii) Each distribution Dθi is a pointwise slant with a slant function θi : T∗M→ R f or i = 1, 2.

Remark 1. A pointwise bi-slant submanifold is a bi-slant submanifold if each slant functions θi : T∗M →
R f or i = 1, 2. are constant along Mn (see [13]).

Remark 2. If θ1 = π
2 or θ2 = π

2 , then Mn is called a pointwise pseudo-slant submanifold (see [33]).

Remark 3. If θ1 = 0 or θ2 = 0, in this case, Mn is a coinciding pointwise semi-slant submanifold (see [14,34]).

Remark 4. If θ2 = π
2 and θ1 = 0, then Mn is CR-submanifold of the almost Hermitian manifold.

In this context, we shall define another important Riemannian intrinsic invariant called the scalar
curvature of M̃m, and denoted at τ̃(Tx M̃m), which, at some x in M̃m, is given:

τ̃(Tx M̃m) = ∑
1≤α<β≤m

K̃αβ, (7)

where K̃αβ = K̃
(
eα ∧ eβ

)
. It is clear that the first equality (7) is congruent to the following equation,

which will be frequently used in subsequent proof:

2τ̃(Tx M̃m) = ∑
1≤α<β≤m

K̃αβ, 1 ≤ α, β ≤ n. (8)

Similarly, scalar curvature τ̃(Lx) of L-plan is given by:

τ̃(Lx) = ∑
1≤α<β≤m

K̃αβ, (9)

An orthonormal basis of the tangent space Tx M is {e1, · · · en} such that er = (en+1, · · · em) belong
to the normal space T⊥M. Then, we have:

hr
αβ = g(h(eα, eβ), er),

||h||2 =
n

∑
α,β=1

g
(
h(eα, eβ), h(eα, eβ

)
. (10)

Let Kαβ and K̃αβ be the sectional curvatures of the plane section spanned by eα and eβ at x in a
submanifold Mn and a Riemannian manifold M̃m, respectively. Thus, Kαβ and K̃αβ are the intrinsic and
extrinsic sectional curvatures of the span {eα, eβ} at x. Thus, from the Gauss Equation (6)(i), we have:

2τ(Tx Mn) = Kαβ = 2τ̃(Tx Mn) +
m

∑
r=n+1

(
hr

ααhr
ββ − (hr

αβ)
2
)

= K̃αβ +
m

∑
r=n+1

(
hr

ααhr
ββ − (hr

αβ)
2
)

. (11)

The following consequences come from (6) and (11), as:

τ(Tx Mn1
1 ) =

m

∑
r=n+1

∑
1≤i<j≤n1

(
hr

iih
r
jj − (hr

ij)
2
)
+ τ̃(Tx Mn1

1 ). (12)
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Similarly, we have:

τ(Tx Mn2
2 ) =

m

∑
r=n+1

∑
n1+1≤a<b≤n

(
hr

aahr
bb − (hr

ab)
2
)
+ τ̃(Tx Mn2

2 ). (13)

Assume that Mn1
1 and Mn2

2 are two Riemannian manifolds with their Riemannian metrics g1 and
g2, respectively. Let f be a smooth function defined on Mn1

1 . Then, the warped product manifold
Mn = Mn1

1 × f Mn2
2 is the manifold Mn1

1 ×Mn2
2 furnished by the Riemannian metric g = g1 + f 2g2,

which defined in [36]. When considering that the Mn = Mn1
1 × f Mn2

2 is the warped product manifold,
then for any X ∈ X(M1) and Z ∈ X(M2), we find that:

∇ZX = ∇XZ = (X ln f )Z. (14)

Let {e1, · · · en} be an orthonormal frame for Mn; then, summing up the vector fields such that:

n1

∑
i=1

n2

∑
j=1

K(eα ∧ eβ) =
n1

∑
α=1

n2

∑
β=1

((
∇eα eα

)
ln f − eα

(
eβ ln f

)
−
(
eα ln f

)2
)

.

From (Equation (3.3) in [11]), the above equation implies that:

n1

∑
α=1

n2

∑
β=1

K(eα ∧ eβ) = n2

(
∆(ln f )− ||∇(ln f )||2

)
=

n2∆ f
f

. (15)

Remark 5. A warped product manifold Mn = Mn1
1 × f Mn2

2 is said to be trivial or a simple Riemannian
product manifold if the warping function f is constant.

3. Main Inequality for Warped Product Pointwise Bi-Slant Submanifolds

To obtain similar inequalities like Theorem 1, for warped product pointwise bi-slant submanifolds
of complex space forms, we need to recall the following lemma.

Lemma 1. [10] Let a1, a2, . . . an, an+1 be n + 1 be real numbers with

(
n

∑
i=1

ai)
2 = (n− 1)(

n

∑
i=1

a2
i + an+1), n ≥ 2.

Then 2a1.a2 ≥ a3 holds if and only if a1 + a2 = a3 = · · · = ak.

Proof of Theorem 2. If substitute X = Z = eα and Y = W = eβ for 1 ≤ α, β ≤ n in (4), and (6), taking
summing up then

n

∑
α,β=1

R̃(eα, eβ, eα, eβ) =
c
4

(
n(n− 1) + 3

n

∑
α,β=1

g2(Jeα, eβ)

)
. (16)

As Mn is a pointwise bi-slant submanifold, we defined an adapted orthonormal frame as
n = 2d1 + 2d2 follows

{
e1, e2 = sec θ1Pe1, . . . , e2d1−1, e2d1 = sec θ1Pe2d1−1, . . . , e2d1+1, e2d1+2 =

sec θ2Pe2d1+1, . . . , e2d1+2d2−1, e2d1+2d2 = sec θ2Pe2d1+2d2−1
}

. Thus, we defined it such that g(e1, Je2) =

−g(Je1, e2) = g(Je1, sec θ1Pe1), which implies that g(e1, Je2) = − sec θ1g(Pe1, Pe1).
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Following ((2.8) in [32]), we get g(e1, Je2) = cos θ1g(e1, e2). Therefore, we easily obtained the
following relation:

g2(eα, Jeβ) =

{
cos2 θ1, f or each α = 1, . . . , 2d1 − 1,
cos2 θ2, f or each β = 2d1 + 1, . . . , 2d1 + 2d1 − 1.

Hence, we have:

n

∑
α,β=1

g2(Jeα, eβ) =
(
n1 cos2 θ + n2 cos2 θ

)
. (17)

Following from (17), (16), and (6), we find that:

2τ =
c
4

n(n− 1) +
c
4

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
+ n2||H||2 − ||h||2. (18)

Let us assume that:

δ = 2τ − c
4

n(n− 1)− c
4

(
3n1 cos2 θ1 + 3n2 cos2 θ2

)
− n2

2
||H||2. (19)

Then, from (19), and (18), we get:

n2||H||2 = 2
(
δ + ||h||2

)
. (20)

Thus, from an orthogonal frame {e1, e2, · · · en}, the proceeding equation takes the new form:(
2m

∑
r=n+1

n

∑
i=1

hr
AA

)2

= 2

(
δ +

2m

∑
r=n+1

n

∑
i=1

(hr
AA)

2 +
2m+1

∑
r=n+1

n

∑
i<j=1

(hr
AB)

2

+
2m

∑
r=n+1

n

∑
A,B=1

(hr
AB)

2

)
. (21)

This can be expressed in more detail, such as:

1
2

(
hn+1

11 +
n1

∑
A=2

hn+1
AA +

n

∑
l=n1+1

hn+1
ll

)2

= δ + (hn+1
11 )2 +

n1

∑
A=2

(hn+1
AA )2 +

n

∑
l=n1+1

(hn+1
ll )2

− ∑
2≤B 6=q≤n1

hn+1
BB hn+1

qq − ∑
n1+1≤l 6=s≤n

hn+1
ll hn+1

ss

+
n

∑
A<B=1

(hn+1
AB )2 +

2m

∑
r=n+1

n

∑
A,B=1

(hr
AB)

2. (22)

Assume that a1 = hn+1
11 , a2 = ∑n1

A=2 hn+1
AA , and a3 = ∑n

l=n1+1 hn+1
ll . Then, applying Lemma 1

in (22), we derive:

δ

2
+

n

∑
A<B=1

(hn+1
AB )2 +

1
2

2m

∑
r=n+1

n

∑
A,B=1

(hr
AB)

2 ≤ ∑
2≤B 6=q≤n1

hn+1
BB hn+1

qq

+ ∑
n1+1≤l 6=s≤n

hn+1
ll hn+1

ss . (23)
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with equality holds in (23) if and only if

n1

∑
A=2

hn+1
AA =

n

∑
B=n1+1

hn+1
BB . (24)

On the other hand, from (15), we have:

n2∆ f
f

= τ − ∑
1≤A<B≤n1

K(eA ∧ eB)− ∑
n1+1≤l<q≤n

K(el ∧ eq). (25)

Then from (6) and the scalar curvature for the complex space form (11), we get:

n2
∆ f
f

= τ − n1(n1 − 1)c
8

− 3n1c
4

cos2 θ1 −
2m

∑
r=n+1

∑
1≤A 6=B≤n1

(hr
AAhr

BB − (hr
AB)

2)

− n2(n2 − 1)c
8

− 3n2c
4

cos2 θ2 −
2m

∑
r=n+1

∑
n1+1≤l 6=q≤n

(hr
llh

r
qq − (hr

lq)
2). (26)

Now from (23) and (26), we have:

n2
∆ f
f
≤ ρ− n(n− 1)c

8
+

n1n2c
4
− 3n1c

4
cos2 θ1 −

δ

2
− 3n2c

4
cos2 θ2. (27)

Using (19) in the above equation and relation ∆ f
f = ∆(ln f )− ||∇ ln f ||2, we derive:

n2

(
∆(ln f )− ||∇ ln f ||2

)
≤ n2

4
||H||2 + c

4

(
n1n2 + 3n1 cos2 θ1 + 3n2 cos2 θ2

)
. (28)

which implies inequality. The equality sign holds in (2) if, and only if, the leaving terms in (23) and (24)
imply that:

2m

∑
r=n+2

n1

∑
B=1

hr
BB =

2m

∑
r=n+2

n1

∑
A=n1+1

hr
AA = 0, (29)

and n1H1 = n2H2, where H1 and H2 are partially mean curvature vectors on Mn1
1 and Mn2

2 , respectively.
Moreover, also from (23), we find that

hr
AB = 0, f or each 1 ≤ A ≤ n1

n1 + 1 ≤ B ≤ n

n + 1 ≤ r ≤ 2m. (30)

This shows that ϕ is a mixed, totally geodesic immersion. The converse part of (30) is true in
a warped product pointwise bi-slant into the complex space form. Thus, we reached our promised
result.

Consequences of Theorem 2

Inspired by the research in [6,34] and using the Remark 3 in Theorem 2 for pointwise semi-slant
warped product submanifolds, we obtained:
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Corollary 1. Let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an isometric immersion from the warped product
pointwise semi-slant submanifold into a complex space form M̃2m(c), where Mn1

1 is the holomorphic and Mn2
2 is

the pointwise slant submanifolds of M̃2m(c). Then, we have the following inequality:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
− 3c

4n2

(
n1 + n2 cos2 θ

)
, (31)

where ni = dimMi, i = 1, 2. Furthermore, ∇ and ∆ are the gradient and the Laplacian operator on Mn1
1 ,

respectively, and H is the mean curvature vector of Mn. The equality sign holds in (31) if, and only if,
n1H1 = n2H2, where H1 and H2 are the mean curvature vectors along Mn1

1 and Mn2
2 , respectively, and ϕ is a

mixed, totally geodesic immersion.

From the motivation studied in [14,34], we present the following consequence of Theorem 2 by
using the Remark 2 for a nontrivial warped product pointwise pseudo-slant submanifold of a complex
space, such that:

Corollary 2. Let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an isometric immersion from a warped product
pointwise pseudo-slant submanifold into a complex space form M̃2m(c), such that Mn1

1 is a totally real and Mn2
2

is a pointwise slant submanifold of M̃2m(c). Then, we have the following inequality:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
− 3c

4
cos2 θ, (32)

where ni = dimMi, i = 1, 2. Furthermore, ∇ and ∆ are the gradient and the Laplacian operator on Mn1
1 ,

respectively, and H is the mean curvature vector of Mn. The equality condition holds in (32) if, and only if,
the following satisfies

H1

H2
=

n2

n1

: where H1 and H2 are the mean curvature vectors along Mn1
1 and Mn2

2 , respectively, and ϕ is a mixed, totally
geodesic isometric immersion.

Corollary 3. Let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an isometric immersion from a warped product
pointwise pseudo-slant submanifold into a complex space form M̃2m(c), such that Mn1

1 is a pointwise slant and
Mn2

2 is a totally real submanifold of M̃2m(c). Then, we have the following:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
− 3n1c

4n2
cos2 θ, (33)

where ni = dimMi, i = 1, 2. Furthermore, ∇ and ∆ are the gradient and the Laplacian operator on Mn1
1 ,

respectively, and H is the mean curvature vector of Mn. This equally holds in (33) if, and only if, ϕ is a mixed,
totally geodesic isometric immersion and the following satisfies

H1

H2
=

n2

n1
,

, where H1 and H2 are the mean curvature vectors along Mn1
1 and Mn2

2 , respectively.

Similarly, using Remark 4 and from [17], we got the following result from Theorem 2:
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Corollary 4. Let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an isometric immersion from a CR-warped product
into a complex space form M̃2m(c), such that Mn1

1 is a holomorphic submanifold and Mn2
2 is a totally real

submanifold of M̃2m(c). Then, we get the following:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
− 3n1c

4n2
, (34)

where ni = dimMi, i = 1, 2. Furthermore, ∇ and ∆ are the gradient and the Laplacian operator on Mn1
1 ,

respectively, and H is the mean curvature vector of Mn. The same holds in (34) if, and only if, ϕ is mixed
and totally geodesic, and n1H1 = n2H2, where H1 and H2 are the mean curvature vectors on Mn1

1 and Mn2
2 ,

respectively.

In particular, if both pointwise slant functions θ1 = θ2 = π
2 , then Mn is becomes a totally real

warped product submanifold—thus, we obtain:

Corollary 5. Let ϕ : Mn = Mn1
1 × f Mn2

2 → M̃2m(c) be an isometric immersion from an n-dimensional,
totally real warped product submanifold into a 2m-dimensional complex space form M̃2m(c), where Mn1

1 and
Mn2

2 are totally real submanifolds of M̃2m(c). Then, we have the following:

∆(ln f ) ≤ ||∇ ln f ||2 + n2

4n2
||H||2 + n1c

4
, (35)

where ni = dimMi, i = 1, 2 and ∆ is the Laplacian operator on Mn1
1 . The same holds in (35) if, and only if, ϕ is

mixed and totally geodesic, and the following satisfies

H1

H2
=

n2

n1
,

where H1 and H2 are the mean curvature vectors on Mn1
1 and Mn2

2 , respectively.

Proof of Theorem 3. In this direction, we consider the warped product pointwise bi-slant submanifolds
as a compact oriented Riemannian manifold without boundary. If the inequality (2) holds:

∆(ln f )− ||∇ ln f ||2 ≤ n2

4n2
||H||2 + c

4n2

(
n1n2 − 3n1 cos2 θ1 − 3n2 cos2 θ2

)
. (36)

Since Mn is a compact oriented Riemannian submanifold without boundary, then we have
following formula with respect to the volume element:∫

Mn
∆ f dV = 0. (37)

From the hypothesis of the theorem, Mn is a compact warped product submanifold; then from (37),
we derive:

∫
M

(
c

4n2

(
3n1 cos2 θ1 + 3n2 cos2 θ2 − n1n2

)
− 1

4n2

n

∑
i=1

(hn+1
ii )2

)
dV ≤

∫
M
(||∇ ln f ||2)dV. (38)

Now, we assume that Mn is a Riemannian product, and the warping function f must be constant
on Mn. Then, from (38), we get the inequality (3).
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Conversely, let the inequality (3) hold; then from (38), we derive:

0 ≤
∫

Mn
(||∇ ln f ||2) ≤ 0.

The above condition implies that ||∇ ln f ||2 = 0, where this means that f is a constant function
on Mn. Hence, Mn is simply a Riemannian product of Mn1

1 and Mn2
2 , respectively. Thus, the theorem is

proved. We give some other important corollaries as consequences of Theorem 2, as follows:

Corollary 6. Let Mn = Mn1
1 × f Mn2

2 be a warped product pointwise bi-slant submanifold of a complex space
form M̃2m(c) with warping function f , such that n1 = dimM1 and n2 = dimM2. If ϕ is an isometrically
minimal immersion from warped product Mn into M̃2m(c), then we obtain:

∆(ln f ) ≤ ||∇ ln f ||2 + c
4n2

(
n1n2 − 3n1 cos2 θ1 − 3n2 cos2 θ2

)
. (39)

Corollary 7. Let Mn = Mn1
1 × f Mn2

2 be a warped product pointwise bi-slant submanifold of a complex space
form M̃2m(c) with warping function f , such that n1 = dimM1 and n2 = dimMθ . Then, there is no existing
minimal isometric immersion ϕ from warped product Mn into M̃2m(c) with:

∆(ln f ) > ||∇ ln f ||2 + c
4n2

(
n1n2 − 3n1 cos2 θ1 − 3n2 cos2 θ2

)
. (40)
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31. Zhang, P.; Zhang, L. Casorati inequalities for submanifolds in a Riemannian manifold of quasi-constant

curvature with a semi-symmetric metric connection. Symmetry 2016, 8, 19. [CrossRef]
32. Chen, B.-Y.; Uddin, S. Warped product pointwise bi-slant submanifolds of Kaehler manifolds. Publ. Math. Debrecen

2018, 92, 183–199. [CrossRef]
33. Srivastava, S.K.; Sharma, A. Pointwise pseudo-slant warped product submanifolds in a Kaehler Manifold.

Mediterr. J. Math. 2017, 14, 20. [CrossRef]
34. Sahin, B. Warped product pointwise semi-slant submanifolds of Kaehler manifolds. Port. Math. 2013, 70,

252–268. [CrossRef]
35. Chen, B.-Y.; Gray, O.J. Pointwise slant submanifolds in almost Hermitian manifolds. Turk. J. Math. 2012, 79,

630–640.
36. Bishop, R.L.; Neil, B.O. Manifolds of negative curvature. Trans. Am. Math. Soc. 1969, 145, 1–9. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1017/S001309150100075X
http://dx.doi.org/10.1007/s00009-017-0896-8
http://dx.doi.org/10.2298/FIL1801035U
http://dx.doi.org/10.1007/s00009-018-1238-1
http://dx.doi.org/10.1016/0926-2245(96)00004-6
http://dx.doi.org/10.1007/s006050170019
http://dx.doi.org/10.5486/PMD.2017.7640
http://dx.doi.org/10.1007/s00025-016-0581-4
http://dx.doi.org/10.2298/FIL1802423A
http://dx.doi.org/10.3792/pjaa.79.89
http://dx.doi.org/10.3390/e20070529
http://dx.doi.org/10.3390/sym8110113
http://dx.doi.org/10.1186/s13660-016-1177-y
http://dx.doi.org/10.3390/sym9070112
http://dx.doi.org/10.3390/sym8040019
http://dx.doi.org/10.5486/PMD.2018.7882
http://dx.doi.org/10.1007/s00009-016-0832-3
http://dx.doi.org/10.4171/PM/1934
http://dx.doi.org/10.1090/S0002-9947-1969-0251664-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries and Notations
	Main Inequality for Warped Product Pointwise Bi-Slant Submanifolds
	References

