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Abstract: In this paper, the hydrodynamic performance of lift-body marine propellers and hydrofoils
is analyzed using a B-spline potential-based panel method. The potential panel method, based on
a combination of two singularity elements, is proposed, and a B-spline curve interpolation method
is integrated with the interpolation of the corner points and collocation points to ensure accuracy
and continuity of the interpolation points. The B-spline interpolation is used for the distribution of
the singularity elements on a complex surface to ensure continuity of the results for the intensity of
the singular points and to reduce the possibility of abrupt changes in the surface velocity potential
to a certain extent. A conventional cubic spline method is also implemented as a comparison of the
proposed method. The surface pressure coefficient and lift the performance of 2-D and 3-D hydrofoils
of sweepback and dihedral type with different aspect ratios are analyzed to verify the rationality
and feasibility of the present method. The surface pressure distribution and coefficients of thrust
and torque are calculated for different marine propellers and compared with the experimental data.
A parametric study on the propeller wake model was carried out. The validated results show that it
is practical to improve the accuracy of hydrodynamic performance prediction using the improved
potential panel method proposed.

Keywords: B-spline scheme; dihedral hydrofoil; hydrodynamics; marine propeller; propeller wake;
sweptback hydrofoil; surface panel method

1. Introduction

The panel method has been widely used as a powerful tool in the aerodynamic and hydrodynamic
fields since the successful work presented by Hess and Smith in 1967 [1]. The velocity potential method
transforms the Laplace equation using the Green formula, which transforms an integral problem into
a surface integral problem of the object, and the velocity potential is used as the unknown quantity.
Brandner [2] and Baltazar et al. [3] first proposed this basic principle and compared the results obtained
using the panel method and the RANS equation method. Moreover, applications of Green’s function
method to the frontier science field and engineering problems include the analysis of the stress gradient
of nanobeams in nanotechnology with a possible loss of symmetry of Green’s function for nonlocal
boundary conditions [4], to predict accurately dynamic behavior of vibroacoustic systems [5], and to
solve transmission loss problems [5,6], radiation, diffraction problems [7,8], etc.

For three-dimensional objects that generate lift, such as hydrofoils and propeller blades, apart
from the basic objective of providing lift, we considered that there should be some attached vortices on
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the blades and that the additional wake vortices are assumed at the wake line, hence, all the vortices
form a closed interval or the equal strength of an infinitely long vortex line. The panel method based on
the velocity potential normally requires the Dirichlet boundary condition (B.C.) to solve the governing
equation matrix, and the Dirichlet boundary condition requires the virtual velocity potential in the
interior region of the object to be constant. Based on the results reported by Belibassakis et al. [9], it was
assumed in the present research that the internal velocity potential of a three-dimensional object is
equal to the perturbation velocity potential at infinity, hence, the intensity distribution of the source on
the surface of the object can be determined, and then the governing equation, i.e., the Laplace equation,
for each collocation point can be solved.

For hydrofoils with a continuous slope, there is no suitable additional condition. Because the slope
at the trailing edge of a two-dimensional hydrofoil is discontinuous, it is possible to find a definite
loop in which the velocity at the trailing edge of the hydrofoil is infinite. This additional constraint is
the Kutta condition [10], i.e., zero velocity at the trailing edge. However, this condition is not directly
suitable for performing numerical calculations. To meet the Kutta condition, Kinnas and Hsin [11]
applied a simplex iterative method. This method can meet the equal pressure at the trailing edge of
the hydrofoil, but it requires several iterative operations to reach convergence. Another approach, the
Newton–Raphson method [12], has been proposed to satisfy the Kutta condition; however, it is difficult
to reach convergence by this method when the pressures at the trailing edge are equal. Therefore,
Srivastava and Roychowdhury [13] presented an improved Newton–Raphson iteration method for
enhanced stability and reliability of the Kutta condition in numerical calculations. With this method,
the computation efficiency is greatly improved.

For a specific problem, the panel method should be used according to the specific conditions.
Mantia and Dabnichki [14] and Eça and Vaz [15] studied two-dimensional wings using the panel
method based on velocity and based on velocity potential, respectively. They found that the panel
method based on velocity and/or velocity potential can be applied to estimate the irrotational
potential flow around 3-D hydrodynamic shapes with a certain thickness. However, for thin objects,
the velocity potential panel method can provide more accurate results. The influence of the source and
doublet combination elements on the velocity potential of the collocation point leads to a lower-order
singularity than the velocity influence coefficient.

For a continuous geometric surface, Kanemaru and Ando [16] applied flat rectangular panels that
are simple and easy to calculate; however, there will always be gaps between adjacent rectangular panels.
Tarafder and Suzuki [17] applied surface modelling with discretized hyperboloid panels, where the gap
between the panels can be narrow. The accuracy of the discretized form directly influences the accuracy
of the calculations. If the difference in the strengths of the adjacent source and doublet is relatively large,
a discontinuous situation will arise, leading to inaccuracy in the velocity potential derivative.

Based on this consideration, the grid meshing method based on the B-spline scheme was adopted
in this study to make the spatial interpolation of the singular point of the panel elements more accurate
and generate a reasonable surface mesh. The B-spline scheme based on the Bezier scheme [18] uses
fewer control vertices to generate the high-order curves and surfaces and enables curve control over local
deformation without affecting the global deformation. Hence, it is considered one of the most important
geometric modelling methods [19]. The B-spline scheme is widely applied in vehicle design [20,21],
aerodynamic optimization [22], submarine guidance systems with path planning [23], etc.

Prediction of hydrodynamic performance of hydrofoil and marine propeller using B-spline
high-order panel method has been studied in the literature [24–27]. The lower number of panels and
high computational efficiency were experienced in the high-order panel methods. However, the effect
of the singularity war [28,29] on numerical instability is still difficult to overcome in the high-order
methods whereas the low-order panel method [2,9,11,28,30,31], i.e., the constant potential strength
with an equal singularity density on a panel, is more stable to numerical computation for the analysis
of a smooth hydrodynamic shape [25]. To improve the accuracy of high- or low-order panel method,
the integrated trailing wake surface shall be an improved wake modelling [24,30,32].
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In this study, we propose a method by integrating the B-spline geometry representation with the
low-order panel method so as to obtain a smoother and continuous discretized surface integrated with
an analyzed trailing wake model for the purpose of enhancing the accuracy and numerical stability in
the hydrodynamic analysis. Extending the earlier research work [21], the surface pressure coefficient
and lift forces on a hydrofoil and propeller were calculated and analyzed using the cubic B-spline
low-order panel method.

The potential panel method based on a combination of two singularity elements was proposed
and a B-spline curve interpolation method was integrated with the interpolation of the corner points
and collocation points to ensure the accuracy and continuity of the interpolation points. The B-spline
interpolation was used for distribution of the singularity elements on a complex surface to ensure
continuity of the results of the intensity of the singular points and to reduce the possibility of abrupt
changes in the surface velocity potential to a certain extent.

Control polygon and control points of the B-spline interpolation were inversely calculated by the
basis function for fitting and smoothing 3-D hydrofoil and propeller discreted panels integrated with
a low-order panel method for efficient and effective hydrodynamic prediction improved in this study.
The hydrodynamic performance of the 3-D hydrofoil, sweepback hydrofoil, and dihedral hydrofoil
with different aspect ratios was analyzed to verify the rationality and feasibility of the method. Finally,
the results of pressure distribution and the coefficients of thrust and torque for different 3-D screw
propellers were obtained and compared with the experimental data. The comparison results were
found to be satisfactory. National Advisory Committee for Aeronautics (NACA) airfoils [33–35]
and David Taylor Model Basin (DTMB) propellers [2,36–38] have been extensively adopted for the
validation of the numerical schemes thanks to the availability of the experimental data for several
different foil profiles and propeller models.

2. Methodology

2.1. Surface Panel Method

Panel methods involve numerical models based on simplified assumptions regarding inviscid and
incompressible flow problems. In principle, if a problem can be solved by distributing the unknown
quantities on the boundary surface surrounding a foil under simplified potential flow, the characteristic
coefficients of the foil can be obtained. Under these assumptions, the velocity vector that describes the
flow field can be represented as the gradient of a scalar velocity potential. A statement of conservation
of mass in the flow field leads to Laplace’s equation as the governing equation for the velocity potential.
If the flow in the fluid region is considered to be incompressible and irrotational, the continuity
equation can be expressed as follows [1]:

∇2 ϕ = 0 (1)

where ∇2 is the Laplacian and φ is the velocity potential. The solution of Equation (1) is based on
the Green formula, a well-known function method, which can be derived from Gauss’s law and
the divergence theorem. For a finite fluid domain V, the Green formula can be obtained using the
divergence theorem [9]:

x

S

(
φ

∂ϕ

∂n
− ϕ

∂φ

∂n

)
dS =

y

V

(
φ∇2 ϕ− ϕ∇2φ

)
dV (2)

where ϕ(x, y, z) and φ(x, y, z) can represent any function in the finite field that has a continuous
first-order partial derivative. The velocity field function in the fluid domain is represented in the
calculation of the surface element, where S represents the outer boundary of the volume V and n is the
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outer normal vector of the boundary. By Green’s third formula for hydrofoil and propeller problems,
the velocity potential at point P(x, y, z) can be expressed as [32]:

4πEφ(P) =
x

S

[
φ(Q)

∂

∂n

(
1
R

)
− 1

R
∂φ(Q)

∂n

]
dS, E =


0 P /∈ V

1/2 P ∈ S
1 P ∈ V

(3)

where Q represents the singularity point in the field and R is the distance between the collocation point
P and the singularity point Q. Hence, the basic assumptions of the potential panel method for a lifting
body can be illustrated as in Figure 1.
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In the nonpenetrating and perturbation velocity potential attenuation conditions, the integral
equation for the surface of the object can be expressed as [28,29]

2πφ(P)−
s

SB

φ(Q) ∂
∂n

(
1
R

)
dS−

s

SW

∆φ(Q) ∂
∂n

(
1
R

)
dS

= −
s

SB

∂φ(Q)
∂n

(
1
R

)
dS = −

s

SB

n·∆φ(Q)
R dS

(4)

where ∆ϕ represents the distribution of the doublet of the object’s wake surface SW and n · ∇ϕ(q)
represents the distribution of the source of the object surface SB. Equation (4) is the Fredholm integral
equation of the second kind, and the velocity potential ϕ can be obtained from this equation. The doublet
strength on the wake surface can be determined by the Kutta condition and the wake surface, and the
perturbation velocity potential of the object surface can then be obtained. The perturbation velocity
can be obtained by differentiating the perturbation velocity potential, and then the hydrodynamic
performance can be obtained. So far, the main symbolic relationship of the above-mentioned potential
flow theory is shown in Figure 1.

2.2. B-Spline Model Scheme

The motivation for using B-splines is to ensure that the B-spline curved panels have at least C2

continuity and the B-splines can be provided with local control, i.e., changing a single point does not
affect the entire curve. While natural cubic splines provide that level of continuity, they are also subject
to global control, i.e., changing a single point affects the entire curve.

The B-spline curve method inherits the advantages of the Bezier curve method, preserving the
basic modelling features such as defining the vertices of curves and surfaces. The B-spline curve uses
a set of basic functions that is different from the one used in the Bezier curve.
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The B-spline curve is expressed as follows [19]:

p(u) =
n

∑
i=0

di Ni,k(u) (5)

where di(i = 0, 1, 2, · · · , n) is the de Boor point, which is the control point of the curve. The polygon
defined by all of the control vertices is defined as the control polygon, for instance, a control polygon
covering the NACA4410 hydrofoil geometry [33] can be calculated to generate a discreted cubic
B-Spline curve or surface as shown in Figure 2.Symmetry 2019, 11, 196 5 of 30 
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In Equation (5), Ni,k(u)(i = 0, 1, 2, · · · , m) is a base function of order k. Every base function is
a polynomial of order k, consisting of increasing vector nodes u. The base function can be expressed
using the de Boor–Cox recursive formula [19,24] as follows:

Ni,0(u) =

{
1, ui ≤ u ≤ ui+1
0, else

(6)

Ni,k(u) =
u− ui
ui+k−1

Ni,k−1(u) +
ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u) (7)

d
du

Ni,k(u) = k
[

Ni,k−1(u)
ui+k − ui

−
Ni+1,k−1(u)

ui+k+1 − ui+1

]
(8)

In practice, the calculation of the entire curve is rarely performed in the application of the B-spline
curve. To calculate a series of normalized B-spline basis function from Equations (6)–(8), a B-spline
function of a specific order can be obtained; some of the curves are shown in Figure 3.
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(b) second-order base function; (c) third-order base function; (d) fourth-order base function.
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The number of control vertices di,j(i = 0, 1, 2, · · · , m; j = 0, 1, 2, · · · , n) is (m + 1)× (n + 1), and
all the control vertices constitute the control surface grid. The order of u is k, and that of v is l. The
corresponding node vectors are U =

[
u0, u1, · · · , um+k+1

]
and V =

[
v0, v1, · · · , vn+l+1

]
.

The k× l order tensor product B-spline surface can be expressed as [19]:

p(u, v) =
m
∑

i=0

n
∑

j=0
di,jNi,k(u)Nj,l(v)

uk ≤ u ≤ um+1, vl ≤ v ≤ un+1

(9)

where the basic functions Ni,k(u)(i = 0, 1, 2, · · · , m) and Nj,l(v)(i = 0, 1, 2, · · · , m) are determined by

the de Boor–Cox recursion formula corresponding to the node vectors U =
[

u0, u1, · · · , um+k+1

]
and V =

[
v0, v1, · · · , vn+l+1

]
. For the surface problem, the inverse solution process involves

calculating the inverse of the tensor product. Therefore, the inverse of the surface can be expressed by 2
inverse curves. The B-spline surface equation that needs to be inversed can be expressed as follows [19]:

p(u, v) =
m

∑
i=0

[
n

∑
j=0

di,jNj,l(v)

]
Ni,k(u) (10)

where an equation similar to the curve equation [19] is constructed as given below:

p(u, v) =
m

∑
i=0

ci(v)Ni,k(u) (11)

The inverse of the applied base function is used to obtain the control vertices on the isoparametric
lines. The B-spline curve is defined by the resulting control vertices. The control vertices of the required
curves can be solved using the control vertices obtained as the initial points.

2.3. Numerical Representation of Surface Panel Method

The numerical calculation process for a surface panel method is shown in Figure 4. First,
the hydrodynamic surface is defined to generate grid coordinates and points to discretize the
hydrodynamic surface into N panels. Second, the number and type of singularities (solutions of
the Laplace equation), such as the source, doublet, and vortex, are chosen. Third, the collocation
points are placed on the curved panels to satisfy the surface-tangency condition by using the cubic
B-spline interpolation scheme. Fourth, the Kutta condition is imposed and the influence of all of the
singularities and the freestream at a fixed collocation point is summed. Fifth, solving the singularity
strength from the system of equations generated by step 4, i.e., the zero normal flow boundary
condition on each of the collocation points resulting in the set of algebraic equations as shown in
Equations (12)–(14), is carried out. Finally, the estimated performance to be improved or satisfied is
determined, including pressure, velocity, and load. The related numerical representation of the panel
method can be referenced in Appendix A.
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Modelling of 3-D Hydrofoil

The Dirichlet boundary condition is used for a hydrofoil with a certain thickness. The governing
equation can be expressed as follows (the internal disturbance potential of the object is equal to zero) [28]:

N

∑
k=1

ckµk +
NW

∑
l=1

clµl +
N

∑
k=1

bkσk = 0 (12)

Equation (12) is applied to every collocation point P. In the equation, l and k are the count
numbers of the singularity elements. The geometry of the hydrofoil is shown in Figure 5. The influence
coefficients of the doublets ck, the wake doublets cl , and the source bk can be calculated. The Kutta
condition is expressed by the relationship between the strength of the doublets on the upper and lower
surfaces and the doublet strength on the wake surface [28,32]:

(µ1 − µN) + µW = 0 (13)

The matrix equation under the Kutta condition can be expressed as follows:

N=1

∑
i=1

N=1

∑
j=1

cijµj =


c11 c12 · · · · · · c1N c1W
c21 c22 · · · · · · c2N c2W
· · · · · · · · · · · · · · · · · ·
cN1 cN2 · · · · · · cNN cNW
1 0 0 · · · −1 1




µ1

µ2

· · ·
µN
µW

 (14)

In this case, µw is replaced with µN – µ1. Therefore, the order will be reduced to N. Only the first
and the Nth columns will change because of the term ±ciw. Hence, the influence of the doublet can be
expressed as follows: 

aij = cij j 6= 1, N
ai1 = ci1 − ciW j = 1
aiN = ciN + ciW j = N

(15)
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Figure 5. The discrete panels on the hydrofoil surface: (a) definitions of collocation point P and panel k
for calculation of the influence coefficient of panel k on collocation point P; (b) cosine distribution of
singularity on the upper surface (red line denoted with square points) and on the lower surface (blue
line with circular points) and collocation point (green triangle points); (c) resolution of panels.

After the known matrix multiplication is moved to the right-hand side (RHS) of this equation,
the RHS vector can be obtained. Based on the theory of the panel method shown above, a program
based on MATLAB was developed to calculate the strength of the singularities. Then, the coefficient
of pressure on the surface of the foil can be obtained. The external potential φu can be represented
as the internal potential φi plus the doublet strength µ. Then, the local external tangential velocity
component at each collocation point can be expressed by the following equations:

φu = φi + µ (16)

Qt =
∂φu

∂l
(17)
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Cpj = 1−
Q2

tj

Q∞
(18)

where l is the distance between 2 adjacent collocation points.

2.4. Numerical Modelling of 3-D Propeller

For geometric boundary discretization and the motion of the propeller, 2 sets of coordinate systems
are established to describe the propeller geometry accurately. The rectangular coordinate system and
the cylindrical coordinate system are defined as shown in Figure 6. The conversion between the 2 sets
of coordinate systems is as follows [32]: 

x = x
y = r cos θ

z = r sin θ

, (19)
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Figure 6. The cartesian coordinate system and the cylindrical coordinate system.

The key point in this step is the definition of the propeller coordinates. The Cartesian and
cylindrical coordinates of a point on the camber surface with radial coordinate r and chordwise
coordinate s can be expressed in terms of the skew (θs), rake (xm), chord (c), and camber ( f ) [29].
With this definition, the coordinates of a point on the camber surface of the key blade can be written
as [29,36]: 

xc = xm + c(s− 1/2) sin φ− f cos φ

θc = θm + c(s− 1/2) cos φ
r + f sin φ

r
yc = r cos θc

zc = r sin θc

, (20)

The above equation expresses the coordinates of any point on the camber surface of the
propeller blade. If we use f ± 1/2t to replace f in the equation, we can obtain the numerical expression
for the upper and lower surfaces of the propeller blade. Figure 7 shows the 3-D propeller generation
process for the surface panel method.

The surface of the propeller blade is discretized using hyperbolic quadrilateral panels.
Each propeller blade is divided into NR × 2MC panels; NR is the number of radial panels and MC is
the number of spanwise panels. This method of discretization is called the cosine-clustering method.
The coordinates of the corner points of the panels can be expressed as [39]:

rm = 1
2

[(
1 + rh − δr1

4

)
−
(

1− rh − δr1
4

)
cos(α+βm)

cos α

]
α =

arcsin
(

δr1
δrmax

)
NR− π

2
NR

β = (π−2α)(m−1)
NR

, m = 1, 2, 3 . . . NR + 1

, (21)
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where δrmax and δr1 are the radial distribution of the panel with a maximum radial dimension
and the first panel, respectively. At any given radius r, the propeller blade is discretized in the
chordwise direction using the cosine-clustering method. From the leading edge to the trailing edge,
the coordinates of the corner points are expressed as [39]:

sn = 1
2

(
1− cos(α+βm)

cos α

)
α =

arcsin
(

δs1
δsmax

)
(MC+1)− π

2
MC+1

β = (π−2α)(m−1)
MC

, m = 1, 2, 3 . . . MC + 1

, (22)

where δsmax and δs1 are the spanwise dimensions of the panel with the maximum spanwise dimension
and the first panel, respectively. The cosine-clustering method was adopted to optimize the sparse
density of the discrete surfaces of the propeller panels.
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Propeller Wake Model

The propeller wake model has an influence on the perturbation velocity potential flow of the
propeller. The helical spiral surface can be used to model the wake surface of a propeller. The propeller
pitch angle can be expressed by a linear combination of the blade pitch angle and that based on lift-line
theory. Greeley and Kerwin [36] proposed a model of radial shrinkage in the wake region and achieved
good results. In this wake model, the radius of the wake surface decreases and eventually shrinks into
2 vortices, the hub vortex and the tip vortex. Kanemaru and Ando [16] improved the geometry of the
wake surface by making it more refined, combining Gaschler’s experimental results [40] on the wake
surface into the modelling.

In this study, a wake shrinkage model was applied to improve the prediction of the performance
of a propeller in which the pitch of the wake surface changes with shrinkage (Figure 8). To obtain
a more reasonable panel distribution on the wake surface, the discrete coordinates of the wake surface
can be calculated using Equations (21)–(25). Specifically, when a downstream coordinate is given,
the region from the blade to the downstream coordinate θw is the near-wake region, and the region
farther than the downstream coordinate θw is the far-wake region. The distance from the angular
coordinate θTE of the trailing edge to the downstream coordinate θw is defined by s, and the radius of
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the wake is contracted to rw at s = 1. It is assumed that the wake radius of the central part changes
smoothly, and that the pitch angle of the wake surface changes smoothly in the direction of the blade
radius and wake flow. The radius of the far-wake region at s > 1 does not shrink, while the pitch angle
does not change in the direction of the wake flow. The geometric parameters of the wake surface are
defined as follows:
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Figure 8. The wake surface model of a propeller: (a) experimental results [38], (b) numerical model. 
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Figure 8. The wake surface model of a propeller: (a) experimental results [38], (b) numerical model.

(1) Tip vortex radius [39]:

rtip(s) =

{
rTE + (rw − rTE) ·

(
3s− 3s2 + s3) 0 ≤ s ≤ 1

rrw s > 1
(23)

(2) Wake radius at other locations [41]:

r(s) =


√

r2
h +

(
r2

TE − r2
h
)
·
(

r2
tip(s)−r2

h

r2
tip(s)−r2

h

)
0 ≤ s ≤ 1

Crw = 0.625 + 0.05θs/90◦ s > 1

(24)

where rTE represents the blade radius at the trailing edge, rh represents the radius of the propeller hub,
and rw represents the radius of the shrinking tip vortex and satisfies the following conditions [29,31]: rw = Crw + J

P0.7R/D

(
0.475− 0.255 J

P0.7R/D

)
Crw = 0.625 + 0.05θs/90◦

(25)

The pitch angle of the wake surface changes as the following equation [39,42]:

βw(s) =

{
βw(0) + (βw(1)− βw(0)) ·

(
3s− 3s2 + s3) 0 ≤ s ≤ 1

βw(1) = βG(r) s > 1
(26)

Figure 9 shows discrete panels on a propeller and wake surface for the surface panel method.
The geometric model of the wake surface can be constructed accurately using the characteristic
quantities of the wake surface. Because the influence of the panels at the trailing edge is greater,
the cosine-clustering method was applied for the wake surface at a given radial profile. The corner
point coordinates of the panels in the wake transition region were determined using the following
equation [37]:  θ(s) = θTE + s(i) · (θw − θTE)

s(i) = 1
2

(
1− cos i−1

Nw
π
)

, i = 1, 2, · · · , Nw + 1
(27)
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Figure 9. The discrete panels on the DTMB4381 propeller surface: (a) definitions of collocation point
and panel for calculation of the influence coefficient of the panel on collocation point P; (b) cosine
distribution of singularity, collocation point, and propeller wake chordwise and spanwise.

3. Results

3.1. Validation of the Panel Method Using 2-D Hydrofoil Performance

To validate the two-dimensional hydrofoil panel method, the hydrofoil profiles NACA0012,
NACA2410, NACA6412, and NACA4418 [33] were selected for calculation. The lift coefficient of
NACA0012 was calculated at different angles of attack using the two-dimensional hydrofoil panel
method and compared with the experimental data; the results are shown in Figure 10a–d.

Figure 10a–d show that the calculated results are in good agreement with the experimental
data [33], and the average error using the B-spline panel method is within 6.3% whereas the average
error was 7.1% using the cubic spline panel method. The results for NACA0012 and NACA2410
have the highest degree of agreement. There are some differences between the calculated results and
experimental data for NACA6412 and NACA4418, but the trend of the pressure coefficient curve
obtained through calculation is in good agreement with the experimental data [33]. The higher the
degree of the camber line, the greater the effect on the calculation accuracy; the number of panels also
has some influence on the calculation results. For the two-dimensional hydrofoil, the number of panels
should be controlled in the range of 40–80. A lower grid density would lead to less accuracy. Figure 11
shows a comparison of the calculated and experimental results of lift coefficient for NACA0012 at
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different angles of attack using the B-spline and cubic spline panel methods. The calculated results
using the B-spline panel method show a higher degree of agreement with the experimental data.
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Figure 10. The comparison of calculated and experimental results of the surface pressure coefficient at
a 5◦ angle of attack for (a) NACA0012, (b) NACA2410, (c) NACA6412, (d) NACA4418.
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at different angles of attack.

3.2. Validation of the Panel Method Using 3-D Hydrofoil Performance

In this study, a three-dimensional rectangular hydrofoil was selected for calculation using the
panel method. The hydrofoil type selected was NACA0012 [33]. The aspect ratio was set to 10,
the angle of attack was set to 5◦, and the number of panels was 180. The surface pressure distribution
on the hydrofoil is shown in Figure 12.
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Figure 12. The NACA0012 3-D hydrofoil surface pressure coefficient distribution.

The surface pressure distribution of the hydrofoil can be directly compared with the experimental
data reported by Lee and Jang [34]. In the present study, the number of chordwise panels per section
is 18, and the number of spanwise panels per section is 10. With this discretization method, it is
possible that some regions of the panel shape become relatively slender, resulting in a lower calculation
accuracy. It is necessary to develop some algorithm to judge the size of the panels to ensure that they
are not very slender. The results obtained using the hydrofoil panel method are compared with the
experimental results for the sections defined by a span fraction (s) to the wing span (S) as s/S = 0.25,
0.5, 0.65, and 0.85 as shown in Figure 13a–d, respectively.
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3.3. Hydrodynamic Analysis of Sweptback and Sweptforward Hydrofoils

Compared with the straight rectangular hydrofoil, the sweptback hydrofoil can effectively reduce
the impact force of the flow and improve the hydrodynamic performance. To test the adaptability
and stability of the panel method, rectangular hydrofoils with different sweptback and sweptforward
angles were selected for analysis. The hydrodynamic performance was calculated with different
sweepback angles at a limited angle of attack using the panel method. Discretization of the hydrofoil
was performed using the cosine-clustering method. The aspect ratio was set to 6 and the angle of attack
was set to 5◦. A comparison of the calculation results and the experimental data of the sweptback
hydrofoil performance [41] is given in Figure 14. The experimental data considered the ground
effect on the sweptback hydrofoils whereas the prediction of the sweptback hydrofoil performance
in the present panel method did not consider the ground effect, hence, the value of the experimental
lift coefficient at the zero sweptback angle is greater than those of the panel methods as shown in
Figure 14a.
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Figure 14a–c show that the lift coefficients, induced drag coefficients, and moment coefficients
calculated by the B-spline and cubic spline panel methods are in good agreement with the experimental
data. The average error based on the cubic B-spline method is within 4% whereas the cubic spline one
is 5.9%. The calculated results using the B-spline panel method show a higher degree of agreement
with the experimental data. Hence, a better superiority was experienced in the cubic B-spline panel
method compared to the cubic spline one. The lift coefficient and induced drag coefficient of the
hydrofoil reach the maximum value when the sweptback angle is near zero and decrease with the
increased sweep angle. A comparison of the calculation results of hydrofoil performance with different
aspect ratios based on the cubic B-spline panel method is given in Figures 13 and 15.
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Figure 15a–d show that the lift coefficient and the lift-to-drag ratio increase with the increased aspect
ratio of the sweptback hydrofoil, while the induced drag coefficient and moment coefficient decrease.

3.4. Hydrodynamic Analysis of Dihedral Hydrofoils

The stability of the hydrofoil can be improved by using a dihedral hydrofoil as shown in Figure 16.
The calculation results of the hydrodynamic performance of the dihedral hydrofoil with different
aspect ratios based on the cubic B-spline panel method are shown in Figure 17.
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Figure 17. The comparison of dihedral hydrofoil with different aspect ratios and dihedral angles: (a)
lift coefficient, (b) induced drag coefficient, (c) lift-to-drag ratio, (d) pitch moment coefficient.

Figure 17a–d show that with the increased dihedral angle, the lift coefficient, lift-to-drag ratio,
and moment coefficient decrease, and the induced drag coefficient changes with the aspect ratio.

For low-speed hydrofoils, the hydrodynamic performance can be improved by increasing the lift
coefficient and the lift-to-drag ratio; in this case, it is possible to increase the hydrofoil aspect ratio, reduce
the sweptback angle, and keep the hydrofoil as straight as possible. At higher speeds, the hydrofoil must
not only have a good hydrodynamic performance, but it may also be resistant to stress fatigue; hence,
it is not appropriate to reduce the aspect ratio and increase the sweptback angle.
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3.5. Results of Propeller Performance

In this study, the DTMB series propellers with different values of rake and skew were selected for
calculation of hydrodynamic performance using the panel methods with the present method and the
conventional cubic spline scheme. The selected propellers were DTMB4119, DTMB4497, DTMB4498,
DTMB4381, DTMB4382, DTMB4383, and DTMB4384.

3.5.1. Validation of the Panel Method Using DTMB4119 Propeller Performance

DTMB4119 was approved by the 20th International Towing Tank Conference as a standard propeller
to verify the accuracy of the panel method. The geometric parameters of the propeller and the experimental
data pertaining to DTMB4119 were taken from the conference reports [2,37], and the corresponding details
for the other propellers were taken from previously published documents [29,36,43].

The propeller blade surface was discretized in the chordwise direction using the cosine-clustering
method. The DTMB4119 propeller panel discretization model is shown below (Figure 18) and the
relative characteristics of the DTMB4119 are shown in Table 1 [37].
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Figure 18. The DTMB4119 propeller panel discretization model.

Table 1. The geometric parameters of propeller DTMB4119 [37].

Number of blades, Z: 3
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.321 1.105 0 0 0.200 0.014
0.250 0.343 1.103 0 0 0.180 0.019
0.300 0.361 1.102 0 0 0.161 0.023
0.400 0.405 1.098 0 0 0.113 0.023
0.500 0.443 1.093 0 0 0.093 0.021
0.600 0.463 1.087 0 0 0.074 0.020
0.700 0.465 1.083 0 0 0.052 0.020
0.800 0.436 1.081 0 0 0.043 0.019
0.900 0.363 1.078 0 0 0.032 0.018
0.950 0.286 1.077 0 0 0.034 0.016
1.000 0.031 1.075 0 0 0.001 0

The literature [2,37] offers the experimental data of the pressure coefficient distribution for
DTMB4119 at different sections at a speed factor of J = 0.833. A comparison of the pressure coefficients
obtained from the experimental data and the calculated results is shown in Figure 19a–d.
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Based on the cosine clustering method together with cubic B-spline interpolation, these panels were 

clustered more tightly and smoothly near leading and trailing edges of 3-D propeller hydrofoils 

placed on the propeller helix lines for the best results. 

Figure 19. The comparison of the calculated and experimental results of the surface pressure coefficient
of DTMB4119. The propeller at different radius fractions using the cubic B-spline and cubic spline
panel methods: (a) r/R = 0.3, (b) r/R = 0.5, (c) r/R = 0.7, (d) r/R = 0.9.
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In general, the calculated results of the surface pressure coefficient of the DTMB4119 propeller
blade are in agreement with the experimental results [2,37], and the average error is within 7.3%.
The selection of the wake model has some influence on the calculation results. The model selected in
this study is the empirical wake model, which is different from the actual wake. Therefore, the wake
model is not the main factor in the calculation results.

3.5.2. Results of Propeller Thrust and Toque

A comparison of the hydrodynamic coefficients for the propellers obtained from the calculation
results and experimental results [2,36,38] is shown in Figure 20a–f. The number of panels is 280.
Based on the cosine clustering method together with cubic B-spline interpolation, these panels were
clustered more tightly and smoothly near leading and trailing edges of 3-D propeller hydrofoils placed
on the propeller helix lines for the best results.Symmetry 2019, 11, 196 23 of 30 
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Figure 20. The comparison of the calculated and experimental results of hydrodynamic coefficients for
different marine propeller types using the cubic B-spline and cubic spline panel methods: (a) DTMB4119
propeller, (b) DTMB4381 propeller, (c) DTMB4382 propeller, (d) DTMB4383 propeller, (e) DTMB4384
propeller, (f) DTMB4497 propeller.

Figure 20a–f show that the hydrodynamic performance of the propellers is in good agreement with
the experimental data, and the average error is within 7.3% based on the cubic B-spline panel method
whereas the average error 8.2% using the conventional cubic spline panel method. Especially for the
DTMB4119 propeller, the accuracy of the hydrodynamic performance calculation is high, and the
average error is within 6% based on the proposed method.

4. Conclusions

A computational technique using the B-spline panel method and the cubic spline panel method
to predict the performance of a hydrofoil and propeller is presented in this paper. The surface
pressure coefficient and lift performance of a two-dimensional hydrofoil are calculated and analyzed
by the above numerical methods. The results are compared with the experimental data. In addition,
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the hydrodynamic performance of a three-dimensional hydrofoil and of a sweepback hydrofoil and
a dihedral hydrofoil with different aspect ratios are analyzed, and the average error is within 4% in
the present method, whereas it is 5.9% of the cubic spline method. The results confirm the rationality
and feasibility of the method. The surface pressure distribution and the coefficients of thrust and
torque of different propellers are calculated and compared with the experimental data, and the
average error is within 7.3% in the present method whereas it is 8.2% using the conventional method.
The comparison results are found satisfactory. In conclusion, the validity of all the calculated results
from the cases studied in this paper was proved by comparing them to the available studies in the
literature. Additionally, the calculated results using the proposed B-spline panel method show a higher
degree of agreement with the experimental data than the cubic spline one. In the future, the panel
method can be used for the inverse design based on the required load and modelling predictions of
hydrofoil cavitation.
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Appendix A

A1. Numerical Representation of Panel Method

Numerical Modelling of the Integral Equation for Propellers

The doublet and source are distributed on the panels, and the surface integral equation (Equation (4))
is satisfied at the collocation point of every panel. The second type of Fredholm integral equation can be
discretized as [28]

N

∑
j = 1
i 6= j

(δij − Cij)φj −
NR

∑
j=1

Wij∆φj =
N

∑
j=1

Bij(−VI · nj) (A1)

where δij represents the Kronecker number and N represents the total number of panels on a single
propeller blade. Bij, Cij, and Wij are the influence coefficients of the singularity points, which can be
calculated using the following equation [1]:

Cij =
K
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[
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2π

s
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∂nj
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1

Rijk

)
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[
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∂nl

(
1

Rilk

)
dSl

] (A2)

where Rilk and Rijk are the distances between the collocation points and panels Sl and Sj, respectively.
The influence coefficient of the singularity element on the collocation point is the key part of
the calculation in the panel method. The doublet and source are distributed at the corners of
the hyperboloid panels, and then the integral of the influence coefficient can be calculated after
discretization. Calculating the influence coefficient requires establishing the panel coordinate system
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(ξ1, ξ2). By considering the coordinates of the four corner points of the panel as Qi(i = 1 ∼ 4),
any vector in the panel coordinate system can be expressed as follows [43]:

Q(ξ1, ξ2) = ω1Q1 + ω2Q2 + ω3Q3 + ω4Q4 (A3)

where ωi(i = 1 ∼ 4) represents the interpolation function, and the values of the interpolation function
are given as follows [43]: 

ω1 = 1
4 (1 + ξ1)(1 + ξ2)

ω2 = 1
4 (1 + ξ1)(1− ξ2)

ω3 = 1
4 (1− ξ1)(1 + ξ2)

ω4 = 1
4 (1− ξ1)(1− ξ2)

(A4)

The tangent vector of the panels can be expressed as a1(ξ1, ξ2) =
∂Q
∂ξ1

a2(ξ1, ξ2) =
∂Q
∂ξ2

(A5)

The unit normal vector of the panels can be expressed as

n(ξ1, ξ2) =
a1 × a2

|a1 × a2|
(A6)

The surface of the panels can be expressed as follows:

dSj = |a1 × a2|dξ1dξ2 (A7)

The integral of the influence coefficient can be expressed as follows [24]:

I =
∫ 1

−1

∫ 1

−1
f (ξ1, ξ2)dξ1dξ2 (A8)

The integral function f(ξ1, ξ2) in the above equation can be expressed as

f(ξ1, ξ2) =
∂2F(ξ1, ξ2)

∂ξ1∂ξ2
(A9)

The following equation is obtained as follows [24]:

I = F(1, 1)− F(1,−1)− F(−1, 1) + F(−1,−1) (A10)

The influence coefficients Cij and Bij can be expressed as follows [25]:{
Cij = ID(1, 1)− ID(1,−1)− ID(−1, 1) + ID − (1,−1)
Bij = IS(1, 1)− IS(1,−1)− IS(−1, 1) + IS − (1,−1)

(A11)

where the influence coefficients can be expressed as follows [25]:

ID(ξ, η) = 1
2π tan−1

(
(R×a1)·(R×a2)
|R|R·(a1×a2)

)
IS(ξ, η) = − 1

2π

 −
(R×a1)·nC
|a1|

sinh−1
(

R×a1
|R×a1|

)
+ (R×a2)·nC

|a2|
+

R · nC tan−1
(
(R×a1)·(R×a2)
|R|R·(a1×a2)

)


R = Q(ξ, η)− P

, (A12)
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where nC is a normal vector on the collocation point and P is the coordinate of the collocation point.
Thus, the governing equation can be solved.

A2. The Geometric Parameters of the Propeller for Surface Panel Code (see Tables A1–A5)

Table A1. The geometric parameters of propeller DTMB4381 [36].

Number of blades, Z: 5
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.174 1.332 0 0 0.043 0.035

0.250 0.202 1.338 0 0 0.039 0.036

0.300 0.229 1.345 0 0 0.035 0.036

0.400 0.275 1.358 0 0 0.029 0.034

0.500 0.312 1.336 0 0 0.024 0.030

0.600 0.337 1.280 0 0 0.019 0.024

0.700 0.347 1.210 0 0 0.014 0.019

0.800 0.334 1.137 0 0 0.010 0.014

0.900 0.280 1.066 0 0 0.006 0.012

0.950 0.210 1.031 0 0 0.004 0.007

1.000 0 0.995 0 0 0.003 0

Table A2. The geometric parameters of propeller DTMB4382 [36].

Number of blades, Z: 5
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.167 1.451 0 0 0.041 0.046

0.250 0.205 1.441 2.328 0.008 0.033 0.039

0.300 0.221 1.436 4.655 0.025 0.031 0.035

0.400 0.286 1.423 9.363 0.038 0.024 0.032

0.500 0.314 1.352 13.948 0.048 0.021 0.030

0.600 0.334 1.281 18.378 0.067 0.017 0.025

0.700 0.352 1.185 22.747 0.078 0.012 0.018

0.800 0.334 1.112 27.145 0.081 0.010 0.016

0.900 0.282 1.024 31.575 0.090 0.007 0.014

0.950 0.216 0.973 33.788 0.093 0.005 0.012

1.000 0 0.938 35.000 0.094 0.004 0
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Table A3. The geometric parameters of propeller DTMB4383 [36].

Number of blades, Z: 5
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.174 1.566 0 0 0.043 0.040

0.250 0.202 1.539 4.647 0.019 0.039 0.040

0.300 0.229 1.512 9.293 0.039 0.035 0.041

0.400 0.275 1.459 18.816 0.076 0.029 0.038

0.500 0.312 1.386 27.991 0.107 0.024 0.034

0.600 0.337 1.296 36.770 0.132 0.019 0.028

0.700 0.347 1.198 45.453 0.151 0.014 0.023

0.800 0.334 1.096 54.254 0.165 0.010 0.018

0.900 0.280 0.996 63.102 0.174 0.006 0.015

0.950 0.210 0.945 67.531 0.177 0.004 0.016

1.000 0 0.895 72.000 0.179 0.003 0

Table A4. The geometric parameters of propeller DTMB4384 [36].

Number of blades, Z: 5
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.174 1.675 0 0 0.043 0.054

0.250 0.202 1.629 6.961 0.031 0.039 0.050

0.300 0.229 1.584 13.921 0.061 0.035 0.047

0.400 0.275 1.496 28.426 0.118 0.029 0.045

0.500 0.312 1.406 42.152 0.164 0.024 0.040

0.600 0.337 1.305 55.199 0.200 0.019 0.033

0.700 0.347 1.199 68.098 0.226 0.014 0.027

0.800 0.334 1.086 81.283 0.245 0.010 0.023

0.900 0.280 0.973 94.624 0.255 0.006 0.019

0.950 0.210 0.916 101.300 0.257 0.004 0.020

1.000 0 0.859 108.000 0.257 0.003 0
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Table A5. The geometric parameters of propeller DTMB4497 [44].

Number of blades, Z: 5
Hub diameter ratio: 0.2
Expanded area ratio: 0.6
Section mean line: NACA a = 0.8
Section thickness distribution: NACA66 (modified)
Design advance coefficient, J = 0.833

r/R c/D P/D θs xm/D t/D f0/c

0.200 0.178 1.450 0 0 0.043 0.042

0.250 0.217 1.445 2.272 0 0.036 0.037

0.300 0.242 1.432 4.675 0 0.032 0.034

0.400 0.298 1.427 9.312 0 0.024 0.031

0.500 0.314 1.365 13.941 0 0.021 0.029

0.600 0.332 1.291 18.732 0 0.016 0.022

0.700 0.351 1.182 22.578 0 0.014 0.017

0.800 0.329 1.119 27.533 0 0.012 0.015

0.900 0.279 1.015 31.534 0 0.009 0.012

0.950 0.209 0.969 34.783 0 0.007 0.010

1.000 0 0.917 36.000 0 0.005 0
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