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1. Introduction

Let C be a closed convex subset of real Banach space E with the dual space E∗, and let f : C × C →
< be a bifunction, where < is the set of real numbers. The equilibrium problem (for short, (EP)) is to find
u∗ ∈ C such that:

f (u∗, u) ≥ 0 for all u ∈ C.

The solutions set of the problem (EP) is denoted by EP( f ), that is,

EP( f ) = {u∗ ∈ C : f (u∗, u) ≥ 0, u ∈ C}.

It is well known that many problems in physics, optimization, economics and other applied
sciences reduce to find a solution of the problem (EP). Equilibrium problems and variational inequality
problems in Hilbert spaces or Banach spaces have been extensively studied by many authors (see, for
example, [1–8] and the references therein).

In order to model inverse problems in phase retrievals and medical image reconstruction [9],
Censor and Elfving [10] introduced the following split feasibility problem (shortly, (SFP)) in 1994:

Find u∗ such that u∗ ∈ C and g(u∗) ∈ Q,

where C and Q are nonempty closed convex subsets of Hilbert spaces H1 and H2, respectively,
g : H1 → H2 is a bounded linear operator.
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As a matter of fact, many problems appeared in image restoration, computer tomograph and
radiation therapy treatment planing can be formulated as the problem (SFP) [11–13]. For approximating
solutions of the problem (SFP), some methods have been proposed by some authors (see, for
instance [9,14–17].

Further, Moudafi [18] developed the problem (SFP) and proposed the split equality problem
as follows:

Let C, Q be two nonempty closed convex subsets of real Hilbert spacesH1 andH2, respectively,
H3 be a real Hilbert space, g : H1 → H3 and h : H2 → H3 be two bounded linear operators. The split
equality problem (shortly, (SEP)) is as follows:

Find u∗ ∈ C and v∗ ∈ Q such that g(u∗) = h(v∗).

It is easy to see that the problem (SEP) may reduce to the problem (SFP) when H2 = H3 and h
is the identity mapping I on H2. If C and Q are the sets of nonempty fixed points of the mappings
T and S on H1 and H2, respectively, then, the split equality problem is called the split equality fixed
point problem (shortly, (SEFP)) [19]). The set of solutions of the problem (SEFP) on T and S is denoted
as follows:

SEFP(T ,S) = {(u∗, v∗) ∈ C ×Q : u∗ ∈ Fix(T ), v∗ ∈ Fix(S), g(u∗) = h(v∗)}.

Based on the idea of the split feasibility problem, in 2013, Kazmi and Rizvi [20] proposed the split
equilibrium problems in Hilbert spaces.

Assume that f1 : C × C → < and f2 : Q×Q → < are nonlinear bifunctions, where C and Q
are closed convex subsets ofH1 andH2, respectively, and g : H1 → H2 is a bounded linear operator.
The split equilibrium problem (shortly, (SEQP)) is as follows:

Find u∗ ∈ C such that f1(u∗, u) ≥ 0 for all u ∈ C

and such that
v∗ = g(u∗) ∈ Q solves f2(v∗, v) ≥ 0 for all v ∈ Q.

Here, based on the ideas of the problems (SEP) and (SEQP), we consider the following so-called
split equality equilibrium problem in Banach spaces:

Definition 1. Let E1, E2, E3 be three Banach spaces and C, Q be nonempty closed convex subsets of E1, E2,
respectively. Let f1 : E1×E1 → <, f2 : E2×E2 → < be two bifunctions and g : E1 → E3, h : E2 → E3 be two
bounded linear operators. The split equality equilibrium problem (shortly, (SEEP)) is as follows: Find u∗ ∈ C
and v∗ ∈ Q such that

f1(u∗, u) ≥ 0, f2(v∗, v) ≥ 0 for all u ∈ C, v ∈ Q and g(u∗) = h(v∗).

The set of solutions of the problem (SEEP) is denoted by SEEP( f1, f2), that is,

SEEP( f1, f2)

= {(u∗, v∗) ∈ C ×Q : f1(u∗, u) ≥ 0, f2(v∗, v) ≥ 0, u ∈ C, v ∈ Q, g(u∗) = h(v∗)}.

The problems (SFP), (SEQP) and (SEP) in Hilbert spaces have attracted the attention of many
authors. Some iteration algorithms have been proposed for finding a solution of these problems (see, for
instance, ref. [20–23] and the references therein). Especially, the split equality mixed equilibrium problem
was investigated in [24] and the convergence results on solutions were obtained in Hilbert spaces.

The recent research on the probelms (SFP), (SEP), the split common null point problem and the
split common fixed point problem have been developed in Banach spaces by some authors (see, for
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example, ref. [25–27] and the references therein). But, according to the literature, we can not find out
the results on the problems (SEP) and (SEQP) in Banach spaces.

In this paper, motivated and inspired by the recent works in [20,23–27]), we construct a new
algorithm to find a common element of the problem (SEFP) and the problem (SEEP) for nonexpansive
mappings in three Banach spaces. Also, some strong and weak convergence theorems for the proposed
algorithm are proved. Finally, our main results are applied to study the convergence of solutions of
a split equality convex minimization problem.

2. Preliminaries

In this paper, we denote the strong convergence and weak convergence of a sequence {xn} to
a point x ∈ E by xn → x and xn ⇀ x, respectively.

Let E be a real normed linear space and C be a nonempty closed convex subset of E . A mapping
T : C → C is said to be nonexpansive if

‖T x− T y‖ ≤ ‖x− y‖ for all x, y ∈ C.

If C is a bounded closed convex subset of a uniformly convex Banach space E and T : C −→ C is
the nonexpansive, then the fixed point set Fix(T ) is nonempty (see [28] for more details).

Let E be a real Banach space with the dual space E∗. The normalized duality mapping J from E to
2E
∗

is defined by
J (x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} for all x ∈ E ,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗.
Note that, by the Hahn-Banach theorem, J (x) is nonempty (see [28] for more details) and,

if E := H is a Hilbert space, then J is the identity mapping on E .

Proposition 1 ([28,29]). Assume that E is a Banach space and J is the normalized duality mapping from E
into E∗. Then

1. If E is reflexive, strictly convex and smooth Banach space, then J is single-valued, one-to-one and surjective,
and J −1 : E∗ → E is the inverse of J .

2. If E is a uniformly smooth Banach spaces, then J is uniformly norm-to-norm continuous on each bounded
subset of E .

The normalized duality mapping J is said to be weakly sequentially continuous if the weak
convergence of a sequence {xn} to x ∈ E implies the weak∗ convergence of {J (xn)} to J (x) in E∗.

Definition 2. Let C be a nonempty closed convex subset of a Banach space E . The mapping A : C → E is said
to be:

1. accretive if
〈Ax−Ay,J (x− y)〉 ≥ 0 for all x, y ∈ C;

2. strongly accretive if there exists a constant c > 0 such that

〈Ax−Ay,J (x− y)〉 ≥ c‖x− y‖2 for all x, y ∈ C;

3. α-inverse strongly accretive if there exists a constant α > 0 such that

〈Ax−Ay,J (x− y)〉 ≥ α‖Ax−Ay‖2 for all x, y ∈ C.

For solving the equilibrium problem, we assume that the bifunction f : C × C → < satisfies the
following conditions:
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(C1) f (x, x) = 0 for all x ∈ C;
(C2) f (x, y) + f (y, x) ≤ 0 for all x, y ∈ C;
(C3) for all x, y, z ∈ C, limt↓0 f (tz + (1− t)x, y) ≤ f (x, y);
(C4) for all x ∈ C, the function y 7−→ f (x, y) is convex and lower semi-continuous.

Lemma 1 ([2]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E and
f : C × C → < be a bifunction satisfying (C1)–(C4). For any r > 0 and x ∈ E , there exists z ∈ C such that

f (z, y) +
1
r
〈y− z,J z−J x〉 ≥ 0 for all y ∈ C.

Lemma 2 ([30]). Let C be a closed convex subset of a smooth, strictly convex and reflexive Banach space E and
f : C × C → < be a bifunction satisfying (C1)–(C4). For any r > 0 and x ∈ E , define a mapping T Fr : C → C
as follows:

T Fr (x) = {z ∈ C : f (z, y) +
1
r
〈y− z,J z−J x〉 ≥ 0, y ∈ C},

Then the following hold:

1. T Fr is a singleton;
2. T Fr is firmly nonexpansive, that is, for all u, v ∈ E,

〈T Fr u− T Fr v,J T Fr u−J T Fr v〉 ≤ 〈T Fr u− T Fr v,J u−J v〉;

3. Fix(T Fr ) = EP( f );
4. EP( f ) is closed and convex.

Lemma 3 ([31]). For any number r > 0, a real Banach space E is uniformly convex if and only if there exists
a continuous strictly increasing function g : [0, ∞)→ [0, ∞) with g(0) = 0 such that

‖tu + (1− t)v‖2 ≤ t‖u‖2 + (1− t)‖v‖2 − t(1− t)g(‖u− v‖)

for all u, v ∈ E with ‖u‖ ≤ r and ‖v‖ ≤ r and t ∈ [0, 1].

Let T : C → C be a mapping with Fix(T ) 6= ∅. T is said to be demi-closed at zero if, for any
{xn} ⊂ C with xn ⇀ x and ‖xn − T xn‖ → 0, then x = T x. A mapping T : C → C is said to be
semi-compact if for any bounded sequence {xn} in C such that ‖xn − T xn‖ → 0, (n→ ∞), there exists
a subsequence {xnj} of {xn} such that {xnj} converges strongly to x∗ ∈ C.

A Banach space E is said to satisfy Opial’s property if, for any sequence {xn} in E with xn ⇀ x,
for any y ∈ E with y 6= x, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

Lemma 4 ([31]). Let E be a 2-uniformly smooth Banach space with the best smoothness constants K > 0.
Then the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y,J x〉+ 2‖Ky‖2 for all x, y ∈ E .

Lemma 5 ([32]). Let C be a nonempty closed subset of a real uniformly convex Banach space E and T : C → C
be a nonexpansive mapping. Then T is demi-closed at zero.

3. Main Results

Throughout the rest of this paper, we always assume the following conditions are satisfied:
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(A) E1, E2 are real uniformly convex and 2-uniformly smooth Banach spaces satisfying Opial’s
condition and with the best smoothness constant k satisfying 0 < k ≤ 1√

2
;

(B) E3 is a smooth, reflexive and strictly convex Banach space;
(C) f1 : E1 × E1 → < and f2 : E2 × E2 → < are the bifunctions satisfying the conditions (C1)–(C4);
(D) T : E1 → E1, S : E2 → E2 are two nonexpansive mappings with Fix(T ) 6= ∅ and Fix(S) 6= ∅;
(E) g : E1 → E3, h : E2 → E3 are two bounded linear operators with adjoints g∗, h∗, respectively.

Theorem 1. Let E1, E2, E3 f1, f2, T , S , g and h be the same as above. Let {(xn, yn)} be the iteration scheme
in E1 × E2 defined as follows: for any (x1, y1) ∈ E1 × E2,

f1(un, u) + 1
r 〈u− un,J1un −J1xn〉 ≥ 0, ∀u ∈ E1,

f2(vn, v) + 1
r 〈v− vn,J2vn −J2yn〉 ≥ 0, ∀v ∈ E2,

xn+1 = αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn))),

yn+1 = αnyn + (1− αn)S(vn + ρJ −1
2 h∗J3(g(un)− h(vn))), ∀n ≥ 1,

(1)

where r ∈ (0, ∞), (‖h‖2 + ‖g‖2)−1 < ρ < 2(‖h‖2 + ‖g‖2)−1 and {αn} is a sequence in [a, b] for some
a, b ∈ (0, 1).

If Γ := SEFP(T ,S)⋂ SEEP( f1, f2) 6= ∅, then we have the following:

1. {(xn, yn)}⇀ (p, q) ∈ Γ;
2. Furthermore, if S and T are semi-compact, then {(xn, yn)} → (p, q) ∈ Γ.

Proof. Since E1, E2 are real uniformly convex and 2-uniformly smooth Banach spaces, E3 is a smooth,
reflexive and strictly convex Banach space, by the properties of the the normalized duality mapping J ,
we know that the iteration scheme (1) is well defined.

1. For 1, we divide the proof of the Conclusion 1 into four steps as follows:

Step 1. Show that the limit of the sequence {‖xn+1 − x‖2 + ‖yn+1 − y‖}2 exists for any (x, y) ∈ Γ.
In fact, taking (x, y) ∈ Γ, from Lemma 2, we know that x = T f1

r x and y = T f2
r y. Furthermore, we have

‖un − x‖ = ‖T f1
r xn − T f1

r x‖ ≤ ‖xn − x‖ (2)

and
‖vn − y‖ = ‖T f2

r yn − T f2
r y‖ ≤ ‖yn − y‖. (3)
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Because of the nonexpansiveness of S and T , using (2), (3), Lemma 3 and Lemma 4, we have

‖xn+1 − x‖2 = ‖αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))− x‖2

≤ αn‖xn − x‖2 + (1− αn)‖T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))− x‖2

− αn(1− αn)g1(‖xn − T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))‖)

≤ αn‖xn − x‖2 + (1− αn)‖un − ρJ −1
1 g∗J3(g(un)− h(vn))− x‖2

− αn(1− αn)g1(‖xn − T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))‖)

≤ αn‖xn − x‖2 + (1− αn)[‖ρJ −1
1 g∗J3(g(un)− h(vn))‖2

+ 2ρ〈x− un,J1J −1
1 g∗J3(g(un)− h(vn))〉+ 2k2‖un − x‖2]

− αn(1− αn)g1(‖xn − T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))‖)

≤ αn‖xn − x‖2 + (1− αn)[ρ
2‖g‖2‖g(un)− h(vn)‖2

+ 2ρ〈g(x)− g(un),J3(g(un)− h(vn))〉+ 2k2‖un − x‖2]

− αn(1− αn)g1(‖xn − T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))‖)

≤ [αn + 2k2(1− αn)]‖xn − x‖2 + (1− αn)ρ
2‖g‖2‖g(un)− h(vn)‖2

+ 2(1− αn)ρ〈g(x)− g(un),J3(g(un)− h(vn))〉
− αn(1− αn)g1(‖xn − T (un − ρJ −1

1 g∗J3(g(un)− h(vn)))‖)
≤ ‖xn − x‖2 + (1− αn)ρ

2‖g‖2‖g(un)− h(vn)‖2

+ 2(1− αn)ρ〈g(x)− g(un),J3(g(un)− h(vn))〉 − αn(1− αn)g1(‖xn − T zn‖),

(4)

where zn = un − ρJ −1
1 g∗J3(g(un)− h(vn)). Setting en = vn + ρJ −1

2 h∗J3(g(un)− h(vn)), it follows
from (1) that

‖yn+1 − y‖2 ≤ ‖yn − y‖2 + (1− αn)ρ
2‖h‖2‖g(un)− h(vn)‖2

+ 2(1− αn)ρ〈h(vn)− h(y),J3(g(un)− h(vn))〉 − αn(1− αn)g2(‖yn − Sen‖).
(5)

Since (x, y) ∈ Γ, we know that g(x) = h(y) and so, by (4) and (5),

‖xn+1 − x‖2 + ‖yn+1 − y‖2

≤ (‖xn − x‖2 + ‖yn − y‖2) + (1− αn)ρ
2(‖g‖2 + ‖h‖2)‖g(un)− h(vn)‖2

+ 2(1− αn)ρ〈h(vn)− g(un),J3(g(un)− h(vn))〉
− αn(1− αn)[g1(‖un − T zn‖) + g2(‖vn − Sen‖)]
≤ (‖xn − x‖2 + ‖yn − y‖2)− (1− αn)ρ[2− (‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

− αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)].

(6)

Let Γn(x, y) := ‖xn − x‖2 + ‖yn − y‖2. Then, by (6), we have

Γn+1(x, y) ≤ Γn(x, y)− (1− αn)ρ[2− (‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

− αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)]
(7)

Since 0 < k ≤ 1√
2

and (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1, we have 0 < 2− ρ(‖g‖2 + ‖h‖2) < 1

and so, from (7), it follows that Γn(x, y) = ‖xn − x‖2 + ‖yn − y‖2 is decreasing. So, limn→∞ Γn(x, y)
exists. Further, it is easy to see that {xn} and {yn} are bounded.

Step 2. Show that

lim
n→∞

‖g(un)− h(vn)‖ = 0, lim
n→∞

‖xn − un‖ = 0, lim
n→∞

‖yn − vn‖ = 0.
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In fact, it follows from (7) that

(1− αn)ρ[2−(‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

+ αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)]
≤ Γn(x, y)− Γn+1(x, y).

(8)

Since (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1 and {αn} is a sequence in [a, b] for some a, b ∈ (0, 1),
by (8), we have

lim
n→∞

g1(‖xn − T zn‖) = 0, lim
n→∞

g2(‖yn − Sen‖) = 0 (9)

and
lim

n→∞
‖g(un)− h(vn)‖ = 0. (10)

Applying the properties of g1, g2, (9) and Lemma 3, we have

lim
n→∞

‖xn − T zn‖ = 0, lim
n→∞

‖yn − Sen‖ = 0. (11)

Since
‖un − zn‖ = ‖J1(un − zn)‖ = ‖ρg∗J3(g(un)− h(vn))‖ ≤ ρ‖g‖‖g(un)− h(vn)‖

and
‖vn − en‖ = ‖J2(vn − en)‖ = ‖ρh∗J3(g(un)− h(vn))‖ ≤ ρ‖h‖‖g(un)− h(vn)‖,

it follows from (10) that
lim

n→∞
‖un − zn‖ = 0, lim

n→∞
‖vn − en‖ = 0.

In addition, since

‖xn+1 − xn‖ = ‖αnxn + (1− αn)T zn − xn‖ = (1− αn)‖T zn − xn‖,

by (11), we have
lim

n→∞
‖xn+1 − xn‖ = 0. (12)

Similarly, we obtain
lim

n→∞
‖yn+1 − yn‖ = 0. (13)

Again, since
‖un+1 − un‖ = ‖T f1

r xn+1 − T
f1

r xn‖ ≤ ‖xn+1 − xn‖

and
‖vn+1 − vn‖ = ‖T f2

r yn+1 − T
f2

r yn‖ ≤ ‖yn+1 − yn‖,

by (12) and (13), it follows that

lim
n→∞

‖un+1 − un‖ = 0, lim
n→∞

‖vn+1 − vn‖ = 0. (14)
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Since (x, y) ∈ Γ, we have x = T f1
r x and y = T f2

r y. In addition, it follows from Lemma 2 that Tr is
firmly nonexpansive. Further, we have

‖un − x‖2 = ‖T f1
r xn − T f1

r x‖2

= 〈T f1
r xn − T f1

r x,J (T f1
r xn − T f1

r x)〉

≤ ‖un − x‖‖T f1
r xn − T f1

r x‖
≤ ‖un − x‖‖xn − x‖

≤ 1
2
(‖xn − x‖2 + ‖un − x‖2 − ‖xn − un‖2)

(15)

and
‖vn − y‖2 = ‖T f2

r yn − T f2
r y‖2

≤ 1
2
(‖yn − y‖2 + ‖vn − y‖2 − ‖yn − vn‖2).

(16)

So, it follows from (15) and (16) that

‖un − x‖2 ≤ ‖xn − x‖2 − ‖xn − un‖2, ‖vn − y‖2 ≤ ‖yn − y‖2 − ‖yn − vn‖2. (17)

Also, it follows from (1) and Lemma 4 that

‖xn+1 − x‖2 = ‖αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn)))− x‖2

≤ αn‖xn − x‖2 + (1− αn)[ρ
2‖g‖2‖g(un)− h(vn)‖2

+ 2ρ〈g(x)− g(un),J3(g(un)− h(vn))〉
+ 2k2‖un − x‖2]− αn(1− αn)g1(‖xn − T zn‖)
≤ αn‖xn − x‖2 + (1− αn)[ρ

2‖g‖2‖g(un)− h(vn)‖2

+ 2ρ〈g(x)− g(un),J3(g(un)− h(vn))〉
+ 2k2(‖xn − x‖2 − ‖xn − un‖2)]− αn(1− αn)g1(‖xn − T zn‖)

(18)

and
‖yn+1 − y‖2 ≤ αn‖yn − y‖2 + (1− αn)[ρ

2‖h‖2‖g(un)− h(vn)‖2

+ 2ρ〈h(vn)− h(y),J3(g(un)− h(vn))〉
+ 2k2‖vn − y‖2]− αn(1− αn)g2(‖yn − Sen‖)
≤ αn‖yn − y‖2 + (1− αn)[ρ

2‖h‖2‖g(un)− h(vn)‖2

+ 2ρ〈h(vn)− h(y),J3(g(un)− h(vn))〉
+ 2k2(‖yn − y‖2 − ‖yn − vn‖2)]− αn(1− αn)g2(‖yn − Sen‖).

(19)

Adding the inequalities (18), (19) and taking into account the fact that g(x) = h(y), we obtain

‖xn+1 − x‖2 + ‖yn+1 − y‖2

≤ [αn + (1− αn)2k2][‖xn − x‖2 + ‖yn − y‖2]

− (1− αn)ρ[2− (‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

− (1− αn)2k2[‖un − xn‖2 + ‖vn − yn‖2]

− αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)]
≤ ‖xn − x‖2 + ‖yn − y‖2 − (1− αn)ρ[2− (‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

− (1− αn)2k2[‖un − xn‖2 + ‖vn − yn‖2]

− αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)],
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and so
(1− αn)2k2‖xn − un‖2 + (1− αn)2k2‖yn − vn‖2

≤ Γn(x, y)− Γn+1(x, y)− (1− αn)ρ[2− (‖g‖2 + ‖h‖2)ρ]‖g(un)− h(vn)‖2

− αn(1− αn)[g1(‖xn − T zn‖) + g2(‖yn − Sen‖)]
≤ Γn(x, y)− Γn+1(x, y).

(20)

Since limn→∞ Γn(x, y) exists, by (20), we have

lim
n→∞

‖xn − un‖ = 0, lim
n→∞

‖yn − vn‖ = 0. (21)

Step 3. Show that limn→∞ ‖xn − T xn‖ = 0 and limn→∞ ‖yn − Syn‖ = 0. In fact, using the
nonexpansiveness of T and S , we have

‖un − T un‖ = ‖un − xn+1 + xn+1 − T un‖
≤ ‖un − xn+1‖+ ‖xn+1 − T un‖
= ‖un − un+1 − un+1 − xn+1‖
+ ‖αnun + (1− αn)T (xn − ρJ −1

1 g∗J3(g(un)− h(vn)))− T un‖
≤ ‖un − un+1‖+ ‖un+1 − xn+1‖+ αn‖un − T un‖
+ (1− αn)‖T (xn − ρJ −1

1 g∗J3(g(un)− h(vn)))− T un‖
≤ ‖un − un+1‖+ ‖un+1 − xn+1‖+ αn‖un − T un‖
+ (1− αn)‖xn − un‖+ (1− αn)‖ − ρJ −1

1 g∗J3(g(un)− h(vn)))‖

and, further,

(1− αn)‖un − T un‖ ≤ ‖un − un+1‖+ ‖un+1 − xn+1‖+ (1− αn)‖xn − un‖
+ (1− αn)‖ − ρJ −1

1 g∗J3(g(un)− h(vn)))‖.
(22)

By (14), (21) and (22), we have
lim

n→∞
‖T un − un‖ = 0. (23)

Similarly, we have
lim

n→∞
‖Svn − vn‖ = 0. (24)

Since
‖xn − T xn‖ = ‖xn − un + un − T un + T un − T xn‖

≤ ‖xn − un‖+ ‖un − T un‖+ ‖T un − T xn‖
≤ 2‖xn − un‖+ ‖un − T un‖,

it follows from (21) and (23) that
lim

n→∞
‖xn − T xn‖ = 0. (25)

In addition, we have

‖yn − Syn‖ ≤ ‖yn − vn‖+ ‖vn − Svn‖+ ‖Svn − Syn‖
≤ 2‖yn − vn‖+ ‖vn − Svn‖,

and so it follows from (21) and (24) that

lim
n→∞

‖yn − Syn‖ = 0. (26)
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Step 4. Show that {(xn, yn)} has the unique weak cluster points (x∗, y∗) ∈ Γ. In fact, since E1 and
E2 are reflexive, {xn} and {yn} are bounded, we may assume that {(xn, yn)} has a weak cluster points
(x∗, y∗). Since S and T are nonespansive, T and S are demiclosed and so, from Lemma 5, (25) and
(26), it follows that x∗ ∈ F(T ) and y∗ ∈ F(S).

Now, we show that x∗ ∈ EP( f1) and y∗ ∈ EP( f2). Without loss of generality, we may suppose
that the subsequence {(xni , yni )} of {(xn, yn)} converges weakly to (x∗, y∗). Also, by (21), we know
that {(un, vn)} converges weakly to (x∗, y∗). Using the uniformly norm-to-norm continuity of J1,
it follows from (21) that

lim
n→∞

‖J1xn −J1un‖ = 0.

Since un = T f1
r xn, we have

f1(un, u) +
1
r
< u− un,J1xn −J1un >≥ 0 for all u ∈ E1.

From the condition (C2), we obtain

‖u− un‖
‖J1xn −J1un‖

r
≥ 1

r
〈u− un,J1xn −J1un〉 ≥ − f1(un, u) ≥ f1(u, un)

for all u ∈ E1. Taking the limit as n→ ∞ in the inequality above , it follows from the condition (C4)
and un ⇀ x∗ that f1(u, x∗) ≤ 0 for all u ∈ E1. Put zt = tu + (1− t)x∗ for all t ∈ (0, 1] and u ∈ E1. Thus
we have zt ∈ E1 and f1(zt, x∗) ≤ 0. Applying the conditions (C1) and (C4), it follows that

0 = f1(zt, zt) ≤ t f1(zt, u) + (1− t) f1(zt, x∗) ≤ t f1(zt, u),

that is, f1(zt, u) ≥ 0. As t→ 0, from the condition (C3), it follows that

f1(x∗, u) ≥ 0

for all u ∈ E1. This means that x∗ ∈ EP( f1). Following the same argument above, we also have
y∗ ∈ EP( f2). Since g and h are bounded linear operators, the point g(x∗)− h(y∗) is a weak cluster
point of {g(un)− h(vn)}. Again, applying the weakly lower semi-continuous property of the norm
and (10), we obtain

‖g(x∗)− h(y∗)‖ ≤ lim inf
n→∞

‖g(un)− h(vn)‖ = 0

and so g(x∗) = h(y∗). Therefore, we have (x∗, y∗) ∈ Γ.
Now, we show that (x∗, y∗) is the unique weak cluster point of {(xn, yn)}. Suppose that there

exists another subsequence {(xnk , ynk )} of {(xn, yn)} such that {(xnk , ynk )} converges weakly to a point
(p, q) with (p, q) 6= (x∗, y∗). It is easy to see that (p, q) ∈ Γ. By Opial’s properties of E1 and E2, we obtain

lim inf
i→∞

‖xni − p‖ < lim inf
i→∞

‖xni − x∗‖ = lim
n→∞

‖xn − x∗‖

= lim inf
k→∞

‖xnk − x∗‖ < lim inf
k→∞

‖xnk − p‖

= lim
n→∞

‖xn − p‖ = lim inf
i→∞

‖xni − p‖

and
lim inf

i→∞
‖yni − q‖ < lim inf

i→∞
‖yni − y∗‖ = lim

n→∞
‖yn − y∗‖

= lim inf
k→∞

‖ynk − y∗‖ < lim inf
k→∞

‖ynk − q‖

= lim
n→∞

‖yn − q‖ = lim inf
i→∞

‖yni − q‖,

which are contradictions and so (p, q) = (x∗, y∗). This completes the proof of the Conclusion 1.
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2. Now, we prove the Conclusion 2. In fact, since S and T are semi-compact, {(xn, yn)} is bounded,
limn→∞ ||xn − T xn|| = 0 and limn→∞ ||yn − T yn|| = 0, there exists a subsequence {(xnj , ynj)} of
{(xn, yn)} such that {(xnj , ynj)} → (u∗, v∗). Since {(xn, yn)}⇀ (x∗, y∗), we know that (u∗, v∗) =
(x∗, y∗).

On the other hand, since limn→∞ Γn(x, y) exists for any (x, y) ∈ Γ and xnj → x∗, ynj ⇀ y∗, we know
that limj→∞ Γnj(x∗, y∗) = 0. From the conclusion 1, we know that limn→∞ Γn(x∗, y∗) exists and so
limn→∞ Γn(x∗, y∗) = 0. Due to 0 ≤ ‖xn − x∗‖2 ≤ Γn(x∗, y∗) and 0 ≤ ‖yn − y∗‖2 ≤ Γn(x∗, y∗), we can
obtain that

lim
n→∞

‖xn − x∗‖ = 0, lim
n→∞

‖yn − y∗‖ = 0.

This completes the proof.

Let φ : E1 → < be a proper lower semi-continuous and convex functions, ψ : E1 → E∗1 be a
continuous and β-inverse strongly accretive mapping. Define

H(ξ, y) = f (ξ, y) + 〈ψξ, y− ξ〉+ φ(y)− φ(ξ) for all ξ ∈ E1.

We can see that H(ξ, y) also satisfies the conditions (C1)–(C4) if f satisfies the conditions
(C1)–(C4). So, the problem (EP) reduces to the problem: Find ξ∗ ∈ E1 such that

f (ξ∗, y) + 〈ψξ∗, y− ξ∗〉+ φ(y)− φ(ξ∗) ≥ 0 for all y ∈ E1,

which is also called the generalized mixed equilibrium problem (shortly, (GMEP)).
The set of solutions of the problem (GMEP) is denoted by GMEP( f , ψ, φ).

If ψ = 0 in the problem (GMEP), then the problem (GMEP) reduces to the following problem:
Find ξ∗ ∈ E1 such that

f (ξ∗, y) + φ(y)− φ(ξ∗) ≥ 0 for all y ∈ E1,

which is also called the mixed equilibrium problem (shortly, (MEP)). The set of solutions of the problem
(MEP) is denoted by MEP( f , φ).

Definition 3. Let E1, E2, E3 be three Banach spaces, f1 : E1 × E1 → <, f2 : E2 × E2 → < be two nonlinear
bifunctions, ψ1 : E1 → E∗1 , ψ2 : E2 → E∗2 be continuous and βi-inverse strongly accretive mapping (i = 1, 2),
φ : E1 → < ∪ {+∞}, ϕ : E2 → < ∪ {+∞} be proper lower semi-continuous and convex functions and
g : E1 → E3, h : E2 → E3 be two bounded linear operators. Then the split equality generalized mixed
equilibrium problem (shortly, (SEGMEP)) is as follows: Find ξ∗ ∈ E1 and y∗ ∈ E2 such that

f1(ξ
∗, ξ) + 〈ψ1ξ∗, ξ − ξ∗〉+ φ(ξ)− φ(ξ∗) ≥ 0, ∀ξ ∈ E1,

f2(y∗, y) + 〈ψ2y∗, y− y∗〉+ ϕ(y)− ϕ(y∗) ≥ 0, ∀y ∈ E2,

g(ξ∗) = h(y∗).

The set of solutions of the problem (SEGMEP) is denoted by SEGMEP( f1, f2, ψ1, ψ2, φ, ϕ), that is,

SEGMEP( f1, f2, ψ1, ψ2, φ, ϕ)

={(ξ∗, y∗) ∈ E1 × E2 : f1(ξ
∗, ξ) + 〈ψ1ξ∗, ξ − ξ∗〉+ φ(ξ)− φ(ξ∗) ≥ 0, ξ ∈ E1,

f2(y∗, y) + 〈ψ2y∗, y− y∗〉+ ϕ(y)− ϕ(y∗) ≥ 0, y ∈ E2, g(ξ∗) = h(y∗)}.

Taking
H1(ξ, u) = f1(ξ, u) + 〈ψ1ξ, u− ξ〉+ φ(u)− φ(ξ) for all u ∈ E1

and
H2(y, v) = f2(y, v) + 〈ψ2y, v− y〉+ ϕ(v)− ϕ(y) for all v ∈ E2,
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we can directly obtain the following result from Theorem 1 when f1 and f2 satisfy the conditions
(C1)–(C4):

Corollary 1. Let E1, E2, E3 f1, f2, T , S , g and h be the same as above. Let ψ1, ψ2, φ and ϕ be the same as in
Definition 3. Let iteration scheme {(xn, yn)} be defined as follows: for any (x1, y1) ∈ E1 × E2,

f1(un, u) + 〈ψ1un, u− un〉+ φ(u)− φ(un) +
1
r 〈u− un,J1un −J1xn〉 ≥ 0, ∀u ∈ E1,

f2(vn, v) + 〈ψ2vn, v− vn〉+ ϕ(v)− ϕ(vn) +
1
r 〈v− vn,J2vn −J2yn〉 ≥ 0, ∀v ∈ E2,

xn+1 = αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn))),

yn+1 = αnyn + (1− αn)S(vn + ρJ −1
2 h∗J3(g(un)− h(vn))), ∀n ≥ 1,

where r ∈ (0, ∞), (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1 and {αn} is a sequence in [a, b] for some
a, b ∈ (0, 1).

If Γ := SEFP(T ,S)⋂ SEGMEP( f1, f2, ψ1, ψ2, φ, ϕ) 6= ∅, then we have the following:

1. {(xn, yn)}⇀ (p, q) ∈ Γ;
2. Furthermore, if S and T are semi-compact, then {(xn, yn)} → (p, q) ∈ Γ.

In Definition 3, if ψ1 = 0 and ψ2 = 0, then the problem (SEGEMP) reduces to the following
so called the split equality mixed equilibrium problem (shortly, (SEMEP)) as follows: Find ξ∗ ∈ E1 and
y∗ ∈ E2 such that 

f1(ξ
∗, ξ) + φ(ξ)− φ(ξ∗) ≥ 0, ∀ξ ∈ E1,

f2(y∗, y) + ϕ(y)− ϕ(y∗) ≥ 0, ∀y ∈ E2,

g(x∗) = h(y∗).

The set of solutions of the problem (SEMEP) is denoted by SEMEP( f1, f2, φ, ϕ), that is,

SEMEP( f1, f2, φ, ϕ) = {(ξ∗, y∗) ∈ E1 × E2 : f1(ξ
∗, ξ) + φ(ξ)− φ(ξ∗) ≥ 0, ξ ∈ E1,

f2(y∗, y) + ϕ(y)− ϕ(y∗) ≥ 0, y ∈ E2, g(ξ∗) = h(y∗)}.

Taking ψ1 = 0 and ψ2 = 0 in Corollary 1, we can obtain the following result:

Corollary 2. Let E1, E2, E3 f1, f2, T , S , g and h be the same as above. Let φ and ϕ be the same as in Definition
3. Let {(xn, yn)} be the iteration scheme in E1 × E2 defined as follows: for any (x1, y1) ∈ E1 × E2,

f1(un, u) + φ(u)− φ(un) +
1
r 〈u− un,J1un −J1xn〉 ≥ 0, ∀u ∈ E1,

f2(vn, v) + ϕ(v)− ϕ(vn) +
1
r 〈v− vn,J2vn −J2yn〉 ≥ 0, ∀v ∈ E2,

xn+1 = αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn))),

yn+1 = αnyn + (1− αn)S(vn + ρJ −1
2 h∗J3(g(un)− h(vn))), ∀n ≥ 1,

where r ∈ (0, ∞), (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1 and {αn} is a sequence in [a, b] for some
a, b ∈ (0, 1).

If Γ := SEFP(T ,S)⋂ SEMEP( f1, f2, φ, ϕ) 6= ∅, then we have the following:

1. {(xn, yn)}⇀ (p, q) ∈ Γ;
2. Furthermore, if S and T are semi-compact, then {(xn, yn)} → (p, q) ∈ Γ.

In Theorem 1, putting B = I , E2 = E3 and J2 = J3, then, by the similar proof in Theorem 1, the
following result is obtained.



Symmetry 2019, 11, 194 13 of 15

Corollary 3. Let E1, E2, f1, f2, T , S and g be the same as above. Let {(xn, yn)} be the iteration scheme in
E1 × E2 defined as follows: for any (x1, y1) ∈ E1 × E2,

f1(un, u) + 1
r 〈u− un,J1un −J1xn〉 ≥ 0, ∀u ∈ E1,

f2(vn, v) + 1
r 〈v− vn,J2vn −J2yn〉 ≥ 0, ∀v ∈ E2,

xn+1 = αnxn + (1− αn)T (un − ρJ −1
1 g∗J2(g(un)− vn)),

yn+1 = αnyn + (1− αn)S(vn + ρ(g(un)− vn)), ∀n ≥ 1,

where r ∈ (0, ∞), (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1, {αn} is a sequence in [a, b] for some
a, b ∈ (0, 1).

If Γ := SEFP(T ,S)⋂ SEP( f1, f2) 6= ∅, then we have the following:

1. {(xn, yn)}⇀ (p, q) ∈ Γ;
2. Furthermore, if S and T are semi-compact, then {(xn, yn)} → (p, q) ∈ Γ.

4. Applications to the Split Equality Convex Minimization Problem

If f = 0 in the problem (MEP), then the mixed equilibrium problem reduces to the following
convex minimization problem (shortly, (CMP)):

Find x∗ ∈ E1 such that φ(y) ≥ φ(x∗) for all y ∈ E1.

The solution set of the problem (CMP) is denoted by CMP(φ).

In the problem (SEMEP), if f1 = 0, f2 = 0, then the problem (SEMEP) reduces to the following
split equality convex minimization problem (shortly, (SECMP)), which is formulated as follows: Find
x∗ ∈ E1 and y∗ ∈ E2 such that

φ(x) ≥ φ(x∗), ϕ(y) ≥ ϕ(y∗) for all x ∈ E1, y ∈ E2 and gx∗ = hy∗.

The solution set of the problem (SECMP) is denoted by SECMP(φ, ϕ), that is,

SECMP(φ, ϕ) = {(x∗, y∗) ∈ E1 × E2 : φ(x) ≥ φ(x∗), ϕ(y) ≥ ϕ(y∗), x ∈ E1, y ∈ E2, gx∗ = hy∗}.

Therefore, Corollary 2 can be used to solve the problem (SECMP) and the following result can be
directly deduced from Corollary 2.

Theorem 2. Let E1, E2, E3, f1, f2, T , S , g and h be the same as above. Let φ and ϕ be the same as in
Definition 3. Let iteration scheme {(xn, yn)} be defined as follows: for any (x1, y1) ∈ E1 × E2,

φ(u)− φ(un) +
1
r 〈u− un,J1un −J1xn〉 ≥ 0, ∀u ∈ E1,

ϕ(v)− ϕ(vn) +
1
r 〈v− vn,J2vn −J2yn〉 ≥ 0, ∀v ∈ E2,

xn+1 = αnxn + (1− αn)T (un − ρJ −1
1 g∗J3(g(un)− h(vn))),

yn+1 = αnyn + (1− αn)S(vn + ρJ −1
2 h∗J3(g(un)− h(vn))), ∀n ≥ 1,

where r ∈ (0, ∞), (‖g‖2 + ‖h‖2)−1 < ρ < 2(‖g‖2 + ‖h‖2)−1 and {αn} is a sequence in [a, b] for some
a, b ∈ (0, 1).

If Γ := SEFP(T ,S)⋂ SECMP(φ, ϕ) 6= ∅, then we have the following:

1. {(xn, yn)}⇀ (p, q) ∈ Γ;
2. Furthermore, if S and T are semi-compact, then {(xn, yn)} → (p, q) ∈ Γ.

Remark 1. In Theorem 2, if we take B = I , J2 = J3 and E2 = E3, then, from Theorem 2, we can obtain some
more convergence theorems to approximate a common element of the solution set of the split feasibility problem
(SFP) and the solution set of the split convex minimization problem (SCMP).
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