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Abstract: Egglipse was first explored by Maxwell, but Descartes discovered a way to modify the
pins-and-string construction for ellipses to produce more egg-shaped curves. There are no examples
of serious scientific and practical applications of Three-foci ellipses until now. This situation can
be changed if porcelain and ellipses are combined. In the introduced concept of the egg-ellipse,
unexplored points are observed. The new Three-foci ellipse with an equilateral triangle, a square, and
a circle as “foci” are presented for this application and can be transformed by animation. The new
elliptic-hyperbolic oval is presented. The other two similar curves, hyperbola and parabola, can
be also used to create new porcelain designs. Curves of the order of 3, 4, 5, etc. are interesting
for porcelain decoration. An idea of combining of 3D printer and 2D colour printer in the form of
2.5D Printer for porcelain production and painting is introduced and listings functions in Mathcad
are provided.

Keywords: ellipse; parabola; hyperbola; elliptic-hyperbolic oval; 2.5D Printer; augmented reality;
programming; graphics; animation

1. Introduction

The inventor of European white porcelain is Count Ehrenfried Walther von Tschirnhaus
(1651–1708), who at the turn of the 17th and 18th centuries conducted experiments in Saxony on
the creation of porcelain, and then organized its production in Meissen near Dresden. However, some
historians believe that the real inventor of European white porcelain was not the aristocrat Tschirnhaus,
but the monk-alchemist Johann Friedrich Böttger (1682–1719). Tschirnhaus kept him under arrest
in the fortress. After the death of Tschirnhaus Böttger appropriated the laurels of the inventor of
European porcelain and was locked up because he once tried to sell the secret of making porcelain to
Prussia, however this attempt was suppressed.

Böttger was an alchemist. These medieval “non-chemists” tried, in particular, to get the
philosopher’s stone—a reagent necessary for the transformation of inexpensive metals into gold.
The invention of porcelain somehow realized this dream—porcelain in those years, and even now is a
very expensive commodity made from relatively cheap raw materials (kaolin, quartz, etc.), but bringing
high profits, if it is manufactured with intelligence and talent. Prior to Tschirnhaus and Böttger in
Europe there was only imported Chinese porcelain. Then porcelain was produced in Austria, France,
England, Italy, Russia, the USA and in other countries. However Saxon porcelain is a special porcelain,
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also because of the areola of the European “primogeniture”. Furthermore, European porcelain (hard
porcelain) cannot be considered a replica of Chinese porcelain (soft porcelain).

Tschirnhaus left his mark in mathematics also. In Dresden there is a gymnasium with
a mathematical inclination, which bears the name of Count Tschirnhaus. He, in particular,
explored ellipses with three foci, which in German literature are called: The egg-shaped ellipses
of Tschirnhaus [1]. This ellipse was first explored by James Maxwell in 1846. However, Rene Descartes
discovered an interesting way to modify the pins-and-string construction for ellipses to produce more
egg-shaped curves [2,3]. Fresh ideas for porcelain decoration can be generated due to a combination of
porcelain with ellipses.

At Meissen manufactory, all plates and saucers are only made round. Only large plates are made
oval (elliptical). Other porcelain factories produce plates and saucers not only round, but also oval,
square or triangular with rounded corners and so on. Oval (elongated) plates are usually served
with fish. However, Meissen porcelain is not the porcelain on which something is served at the table.
Meissen porcelain is usually only admired or bragged about before the guests:”Anxious to obliterate
the memory of that emotion, he could think of nothing better than china; and moving with her slowly
from cabinet to cabinet, he kept taking up bits of Dresden and Lowestoft and Chelsea, turning them
round and round with his thin, veined hands, whose skin, faintly freckled, had such an aged look?” [4].

An ellipse is the locus of points on a plane, for each of which the sum of the distances from two
other points, called foci, are constant [5–8]. There is a simple way of drawing an ellipse: Two pins are
fixed into a sheet of paper, a string is attached to them, along which a pencil slides, drawing an ellipse.

If two pins stick to one point (take only one pin), then a circle will be drawn—the locus of
points equidistant from the center of the circle. If one takes three pins and sticks them into three
different points (foci), one can draw an ellipse with three foci—the egg-shaped ellipse investigated by
Tschirnhaus (Figures 1 and 2).
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at point F2 and fixed to point F3. Moving the pencil and thus changing the lengths L1, L2, and L3, but 
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Authors will not use in the further text the 2 before L2. This trick was obtained because the authors 

used a model with a string in Figure 1 with a double string between the second focus and the pencil. 

Two-foci ellipses have important scientific applications—many natural and artificial celestial 

objects (planets and their satellites) move in elliptical orbits or in orbits close to circular ones. Three-

foci ellipses, as mentioned in the introduction, do not have any serious scientific and practical 

application. This situation can be fixed, if you think that the mathematician Tschirnhaus attended the 
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Figure 2 shows a sketch of a porcelain plate with two blue Three-foci ellipses of Tschirnhaus. 

The plate itself is made in the form of such an ellipse (black contour of the plate) [9]. 

Figure 1. Drawing a three-foci ellipse, L1 + 2L2 + L3 = const.

The rope is fixed with a pin to point F1, then the pencil lead is tossed over through the pin stuck
at point F2 and fixed to point F3. Moving the pencil and thus changing the lengths L1, L2, and L3, but
keeping the sum of L1 + 2L2 + L3 constant, it is possible to draw the closed curves shown in Figure 2.
Authors will not use in the further text the 2 before L2. This trick was obtained because the authors
used a model with a string in Figure 1 with a double string between the second focus and the pencil.

Two-foci ellipses have important scientific applications—many natural and artificial celestial
objects (planets and their satellites) move in elliptical orbits or in orbits close to circular ones. Three-foci
ellipses, as mentioned in the introduction, do not have any serious scientific and practical application.
This situation can be fixed, if you think that the mathematician Tschirnhaus attended the creation of
European porcelain.

Figure 2 shows a sketch of a porcelain plate with two blue Three-foci ellipses of Tschirnhaus. The
plate itself is made in the form of such an ellipse (black contour of the plate) [9].
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The second idea of the article was to provide the scanning method for the generation of 

geometric objects, which is optimally correlated with the currently widely used 2D and 3D printing 

technology. The authors introduced a concept of a 2.5D printer.  

The inventors and researchers of new curves used as a rule, the analytical method for solving 

the problems. This significantly limits the search capabilities and is very time consuming. Numerical 

methods, one of which is proposed by the authors, opens new possibilities in this search, but does 

not deny analytical methods. 

In Figure 2, three foci are marked, not by points, but by small circles. And this is 

understandable—the point in its mathematical representation will not be visible on the plate. In this 

connection, there was an idea which broadens the notion of an ellipse. What if, in constructing 
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Two, three, four or more circles are drawn on the plane, and then a curve is drawn, the sum of the 

distances from the curve points to the circles-foci (guiding circles) are constant. This is a directrix 

Figure 2. Sketch of a porcelain plate with two blue three-foci ellipses of Tschirnhaus.

Three foci f1, f2, f3, are drawn on the plate, as well as a trace of a stretched rope, the length of
which remains constant when drawing the outer large ellipse of Tschirnhaus, on which one point is
marked. To draw the same internal ellipse, the rope was shortened. The distances from the foci to one
of the points of the outer ellipse are denoted by L1, L2 and L3. These parameters can be estimated in
this way:

L1 =
√
(x− xf1)

2 + (y− yf1)
2 = 24.59 cm,

L2 =
√
(x− xf2)

2 + (y− yf2)
2 = 9.35 cm,

L3 =
√
(x− xf3)

2 +
(
y− yf3

)2
= 16.06 cm,

L1 + L2 + L3 = const = 50 cm.

The sum of these distances remains constant. For the outer ellipse, this distance is 50 cm, for the
inner ellipse it is 33 cm, and for the edge of the plate it is 52.5 cm.

2. Materials and Methods

The first idea of the article was to show a scanning method, which uses one flat rectangular
area and allows generation of new unusual and interesting curves with very simple properties.
The traditional mathematical methods for analysis, based on the symbolic solution of equations and
equation systems, cannot always provide the solution method to generate curves with given properties.
The method proposed by the author is applicable for the generation of not only curves, but also
geometric figures, i.e., if not equations, but inequalities are considered. This method is also applicable
for the generation of geometrical bodies with given properties.

The second idea of the article was to provide the scanning method for the generation of geometric
objects, which is optimally correlated with the currently widely used 2D and 3D printing technology.
The authors introduced a concept of a 2.5D printer.

The inventors and researchers of new curves used as a rule, the analytical method for solving
the problems. This significantly limits the search capabilities and is very time consuming. Numerical
methods, one of which is proposed by the authors, opens new possibilities in this search, but does not
deny analytical methods.

In Figure 2, three foci are marked, not by points, but by small circles. And this is
understandable—the point in its mathematical representation will not be visible on the plate. In this
connection, there was an idea which broadens the notion of an ellipse. What if, in constructing ellipses,
one does not rely on point-foci, but on circles and draws an ellipse with such a new property. Two,
three, four or more circles are drawn on the plane, and then a curve is drawn, the sum of the distances
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from the curve points to the circles-foci (guiding circles) are constant. This is a directrix curled into a
circle. The distance from a point to a circle is easy to determine—the length of a straight line between
the point itself and the point on the circle lying on the line joining the point to the centre of the circle.
The centre of the circle, the point on its circumference and the point on our new ellipse must lie on
one straight line. Instead of circle-foci, other closed curves: Ellipses, triangles, squares, rhombuses,
rectangles (polygons), straight lines, etc. can be used. The distance from a point to these curves is
also easy to determine. For example, a point on the contour of a triangle or of a square that is closest
to a point, that is not on this contour, can be either on the vertex of the triangle or of the square (see
the triangle in Figure 3) or on a segment perpendicular to the side of the triangle or of the square
(Figure 3). It is easy to create appropriate procedures or functions and use them when building our
new ellipses. A Mathcad document with functions returning the coordinates of a point on segments of
lines, circles, squares and equilateral triangles closest to the given point is stored as Supplementary
Materials (File_S1.xmcd). The codes are shown below.
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Figure 3. New Three-foci ellipse Lc + Ls + Lt = 1.80 m.

3. Results and Discussion

3.1. New Type of Ellipses

Using as a focus of the ellipse a circle instead of a point does not change anything in the form of
the ellipse if the ellipse does not intersect the circle-focus. This occurs when the value of the sum of L1

+ L2 (bifocal ellipse) or the sum of L1 + L2 + L3 (three focal ellipse) is sufficiently large. Therefore, the
authors conducted a study not only of a circle, but of an equilateral triangle and a square as the focus
of the ellipse. The animation of this study is provided within the Supplementary Materials (Video S1).

Figure 3 shows a new previously unseen Three-foci ellipse, where an equilateral triangle, a square
and a circle act as “foci” (directing closed curves, directrixes). The square in Figure 3 seems distorted
due to optical illusion because of the intersection with the triangle and the circle.

By changing discretely, the sum of the distances from the points of the ellipse to fixed “foci”,
families of ellipses can be obtained. Figures 4 and 5 show modified Tschirnhaus ellipses in blue.
The blue closed curves have different sums of distances. The three “foci” of these ellipses are the three
red circles.
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is one of the goals of fine art in general and of the decoration of porcelain in particular. 

Figure 5 shows two sketches of a Tschirnhaus mathematical plate obtained with a circle and two 

squares in the role of foci. On the right-hand figure, a kind of horse or zebra with longitudinal, instead 

of transverse, strips can be seen. The foci in Figures 4 and 5 can be likened to certain lenses, which 

distort the images. 

The task of determining the distance from a given point to an ellipse is itself quite difficult even 

for a simple two-foci ellipse. However, the methods for constructing curves with given properties, 

described below, allow us to solve this problem in a simple way, which consists of finding the 
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Combining figures (closed curves), which are used as “foci”, and their mutual arrangement, it 
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If a circle is used as a focus instead of a point, a classic ellipse (see Figure 6a) or a new closed 

curve (elliptic-hyperbolic oval), which consists of a part of an ellipse and a part of one hyperbola 

branch (see Figure 6b), can be obtained. Such an elliptic-hyperbolic oval is observed if the sum of 

distances from its points to the focus point and to the focus circle is sufficiently small and the elliptic-

hyperbolic oval crosses the circle.  

Figure 4. Sketch of a porcelain plate with modified ellipses of Tschirnhaus (different blue ovals
correspond to different values of the sum Lcircle1 + Lcircle2 + Lcircle3).
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Figure 5. Sketches of the drawing of two porcelain plates obtained with a circle and two squares as
“foci” (different blue ovals correspond to different values of the sum Lcircle + Lsquate1 + L squate2).

In Figure 4, the outer largest ellipse is the traditional (normal) egg-shaped Tschirnhaus ellipse
with three focus points, located at the centers of the three circles. The remaining six ellipses have
deviations from the traditional ellipse inside the circles-foci, which cause a specific visual effect. This
is one of the goals of fine art in general and of the decoration of porcelain in particular.

Figure 5 shows two sketches of a Tschirnhaus mathematical plate obtained with a circle and two
squares in the role of foci. On the right-hand figure, a kind of horse or zebra with longitudinal, instead
of transverse, strips can be seen. The foci in Figures 4 and 5 can be likened to certain lenses, which
distort the images.

The task of determining the distance from a given point to an ellipse is itself quite difficult even
for a simple two-foci ellipse. However, the methods for constructing curves with given properties,
described below, allow us to solve this problem in a simple way, which consists of finding the minimum
element of a vector.

Combining figures (closed curves), which are used as “foci”, and their mutual arrangement, it is
possible to manufacture and to color plates with a non-repetitive mathematical pattern.

If a circle is used as a focus instead of a point, a classic ellipse (see Figure 6a) or a new closed curve
(elliptic-hyperbolic oval), which consists of a part of an ellipse and a part of one hyperbola branch (see
Figure 6b), can be obtained. Such an elliptic-hyperbolic oval is observed if the sum of distances from
its points to the focus point and to the focus circle is sufficiently small and the elliptic-hyperbolic oval
crosses the circle.
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Figure 7 shows a Tschirnhaus plate with the three-foci ellipses formed by a red circle, a blue 

square, and a green equilateral triangle (see also Figure 4). However, on the plate only one modified 

three-foci ellipse can be put and shown in the animation.  

 

Figure 7. Another sketch of a Tschirnhaus plate; the green triangle is a first focus, the dark blue 

square is the second focus, the red circle is a third focus; blue ovals have different sum Lc + Ls + Lt. 

At the moment, a new trend of Information Technology called augmented reality is booming: 

Museum visitors look at the exhibit through their tablets or smartphones and receive not only 

additional audio and video information, but also see the object in a new perspective or in a new way. 

A person who sees a mathematical Tschirnhaus plate on the wall, on a table or in a museum 

display, directs his tablet or smartphone to the plate and sees on his screen not only information 

about the mathematics and the porcelain art object, but also animation, five frames which are shown 

in Figure 8. 

 

Figure 8. Frames of the drawing animation on a Tschirnhaus plate at (Lc + Ls + Lt = S): (a) S = 1.920 m; 

(b) S = 1.360 m; (c) S = 0.910 m; (d) S = 0.620 m; (e) S = 0.330 m (the green triangle is a first focus, the 

blue square is the second focus and the red circle is a third focus). 

Figure 6. An Ellipse (a - the blue oval) and an elliptic-hyperbolic oval (b - the blue oval); the brown
circle is the second focus, the first focus is a point.

3.2. Animation and Augmented Reality

Figure 7 shows a Tschirnhaus plate with the three-foci ellipses formed by a red circle, a blue
square, and a green equilateral triangle (see also Figure 4). However, on the plate only one modified
three-foci ellipse can be put and shown in the animation.
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about the mathematics and the porcelain art object, but also animation, five frames which are shown 
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Figure 8. Frames of the drawing animation on a Tschirnhaus plate at (Lc + Ls + Lt = S): (a) S = 1.920 m; 
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Figure 7. Another sketch of a Tschirnhaus plate; the green triangle is a first focus, the dark blue square
is the second focus, the red circle is a third focus; blue ovals have different sum Lc + Ls + Lt.

At the moment, a new trend of Information Technology called augmented reality is booming:
Museum visitors look at the exhibit through their tablets or smartphones and receive not only
additional audio and video information, but also see the object in a new perspective or in a new way.

A person who sees a mathematical Tschirnhaus plate on the wall, on a table or in a museum display,
directs his tablet or smartphone to the plate and sees on his screen not only information about the
mathematics and the porcelain art object, but also animation, five frames which are shown in Figure 8.
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Figure 8 shows only one blue Tschirnhaus ellipse, which changes its length and forms intricate
closed curves, tearing into parts at some point during the animation. This animation is provided
within the Supplementary Materials (Video S1). In the shrinking ellipse, a secret meaning associated
with the practical, rather than the decorative function of the plate can be seen. The vanishing ellipse is
the food eaten from the plate.

In this augmented reality, one can also make interactivity. The owner of the tablet can change the
parameters of the expanded Tschirnhaus ellipse (the number and shape of the “foci”, their relative
position, the length of the “string”, etc.) and create new sketches for the plate. If such “creativity”
takes place in a museum with porcelain manufacture, then this sketch can be immediately transferred
to a white plate and to get its own author’s porcelain artwork.

3.3. Tschirnhaus Watch

Porcelain plates are often hung on the walls to decorate the interior of the rooms. Sometimes such
plates are made in the form of a wall clock: Make a hole in the centre of the plate through which the axes
for hands pass. These clock-plates can also be made in the style of the Tschirnhaus ellipse (Figure 9).
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Figure 9. Watch with an elliptical three-focal dial (blue lines are the hours hand and black lines are for
the minutes hand).

Figure 9 takes us back to Figure 1, where a pencil moves along the closed egg-shaped curve,
drawing the Tschirnhaus ellipse. Figure 9 shows a moving triple of straight lines: The hour hand (blue
lines: Twelve and a half hours) and the minute hand (black lines: Thirty minutes).

3.4. Parabola and Hyperbola

The ellipse is one of the three curves of the second order. The other two similar curves are the
hyperbola and the parabola, which can also be used for porcelain applications.

A porcelain vase can be made in the form of a parabola (paraboloid), in which the stand is
the directrix, and the top handle is the focus (Figure 10). The parabola is the geometric locus of
points equidistant from the focus of the parabola and from a straight line called the parabola directrix
(Figure 11).
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Focus in the German language (in the native language of Tschirnhaus) is der Brennpunkt—

“burning point”. A parabola has this property—if a parallel beam of light falls on a parabolic mirror, 

then the reflected beam converges into the focus. There is such a kind of fine arts—burning in the sun 

on a tree with the help of a magnifying glass or a parabolic mirror. Without fire, it is impossible to 

make porcelain—billets of porcelain products are burned in special furnaces. Tschirnhaus himself 

developed paraboloid mirror, an example of this is at the Dresden museum. 

Figure 10. Profile of the vase in the form of a parabola (red curve), a directrix (bottom black straight
line), a focus (top ball), and a vertical bar connecting all parts.
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Figure 11. Parabola with a focus and a directrix (Dir) L1 = L2 = 2.235 (the red line is the parabola, the
black point is the focus and the dashed line is the directory).

However, as a focus of the parabola, one could also take a circle instead of a point (Figure 12),
where four frames of the animation of the movement of the directrix (blue line) of the parabola through
its focus circle (black curve) are shown. The new “parabola” (red curve) is broken into two branches,
and then remerges into one line.
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Figure 12. Frames of the animation of the parabola with a circular focus (the red lines are the parabolas,
the black circles are the foci and the blue lines are the directories).

Focus in the German language (in the native language of Tschirnhaus) is der Brennpunkt—
“burning point”. A parabola has this property—if a parallel beam of light falls on a parabolic mirror,
then the reflected beam converges into the focus. There is such a kind of fine arts—burning in the
sun on a tree with the help of a magnifying glass or a parabolic mirror. Without fire, it is impossible
to make porcelain—billets of porcelain products are burned in special furnaces. Tschirnhaus himself
developed paraboloid mirror, an example of this is at the Dresden museum.
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If a factor is introduced into the constitutive equation of the parabola and makes it different
from unity, then the parabola will either collapse into an ellipse or split into two branches of the
hyperbola (Figure 13). This factor is called eccentricity [10]. A silhouette of a vase can be formed by
two hyperbolas (Figure 13).
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Figure 13. Profile of a vase for flowers made in the form of a single-sheeted hyperboloid.

The hyperbola is the geometrical locus of points, such that the modulus of the difference of
distances from each point to the two foci is constant. In the ellipse, the sum of these two quantities
remains constant. However, Figure 13 shows not a focal, but a directional method for constructing a
hyperbola, when not two foci are fixed on the plane, but only one focus supplemented by the directrix.
Figures 14 and 15 show two branches of the hyperbola, when the focal points are replaced by circles or
ellipses. These new hyperboles also represent the profiles of porcelain vases.
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Figure 14. Hyperbola with two circular foci |L1 −L2| = a, a = 1.7 m, r = 0.5 m, r1 = 0.7 m (the red
circles are the foci, the blue curves is two blanch of the hyperbola).
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If, in constructing plane curves with the support of two foci, instead of using the sum (ellipse) 

or the difference (hyperbola), the product is used, then a curve is obtained, that is known as the 

Cassini oval (Figure 16). 
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Cassini ovals can also have more than two foci, and these foci may not be points, but circles (see 

Figure 17), squares, triangles.    

 

Figure 15. Hyperbola with two square foci |L1 − L2| = a, a = 0.940 m (the red squares are the foci, the
blue curves is two blanch of the hyperbola).

If, in constructing plane curves with the support of two foci, instead of using the sum (ellipse) or
the difference (hyperbola), the product is used, then a curve is obtained, that is known as the Cassini
oval (Figure 16).
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Cassini ovals can also have more than two foci, and these foci may not be points, but circles (see
Figure 17), squares, triangles.
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Figure 17. Three frames of animation of the three-foci (L1·L2·L3 = a) blue Cassini oval with red circles
in the role of foci: (a) a = 0.073 m3; (b) a = 0.317 m3; (c) a = 1.003 m3.



Symmetry 2019, 11, 184 11 of 18

If one does not work with the sum (ellipse), the difference (hyperbola) or the product (Cassini’s
ovals), but with the ratio, one gets the so-called Apollonius circles. All these curves are also suitable
for the design of the mathematical porcelain service. If, in the focal (two-foci) construction of an ellipse,
hyperbola, Cassini ovals, or Apollonius circles, one point-focus is replaced by a straight line, the new
curves (Figure 18) can be obtained.
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Figure 19. An ellipse with two foci given by a point and a parabola. 

Attempts by the authors to find information on the Internet about point and line on the plane 

did not lead to mathematical formulas, but to a book with the same title by Vasily Kandinsky with 

the subtitle "Contribution to the analysis of pictorial elements". This book was originally published 

in German with the title “Punkt und linie zu flache” when Kandinsky was teaching at the well-known 

Bauhaus (before in Weimar, then in Dessau). True, in Kandinsky and other Russian avant-garde 

Figure 18. Extended ellipse, hyperbola, Cassini oval and Apollonius circle (red ovals and curves): (a)
L1 + L2 = s, s = 0.5 m; (b) |L1 + L2| = s, s = 0.15 m; (c) L1·L2 = s, s = 0.05 m2; (d) L1/L2 = s or L2/L1 = s
s = 0.7 (blue lines are the first focus and the black points are the second focus).

In Figure 18, the point can be replaced by a circle, a square or a triangle and get new curves for
research and for drawings on porcelain. In this case, a circle, a square or a triangle can intersect and
not intersect with a straight line. A straight line, in turn, can be replaced by a curve, and in particular,
by a parabola. Figure 19 shows a “new ellipse” with two foci, one focus is a point, and the other is
a parabola.
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Figure 19. An ellipse with two foci given by a point and a parabola.

Attempts by the authors to find information on the Internet about point and line on the plane
did not lead to mathematical formulas, but to a book with the same title by Vasily Kandinsky with
the subtitle "Contribution to the analysis of pictorial elements". This book was originally published in
German with the title “Punkt und linie zu flache” when Kandinsky was teaching at the well-known
Bauhaus (before in Weimar, then in Dessau). True, in Kandinsky and other Russian avant-garde
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artists, everything was reduced only to aesthetic issues. We also added mathematics to this creative
process. However, the phrase “point and line to the plane” is redundant in terms of classical Euclidean
geometry: The points and the straight line are always in one definite plane. If a similar book was
written by a sculptor, instead of a painter, he would have entitled it “Point and a straight line in space”!
and one more remark from the point of view of mathematics. On a picturesque canvas, we see not a
straight line, but only a segment of a straight line, which can also act as a focal point. Figure 20 shows
the metamorphosis of a traditional ellipse, when one of its focus turns into an elongating segment of a
straight line.
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3.5. Curves of Order Greater Than Two  

The ellipse, the hyperbola, and the parabola are curves of the second order. It was interesting to 

know what curves of the order of 3, 4, 5, etc. are good for porcelain decoration. Figure 22 illustrates 

such a problem: Points are dashed randomly through a plane through which curves of different 

orders are drawn. A parabola can only come about with a special and almost incredible arrangement 

Figure 20. An ellipse with a focus changing from a point to a line segment.

Figure 21 shows two sketches of the Tschirnhaus plate. The usual three-foci ellipse (the edge of
the plate—Figure 2) is dissected by three straight lines, whose points of intersection serve as foci of
the ellipse. Red lines are formed by points, whose sum (Figure 21a) or product (Figure 21b) of the
distances to the straight lines remains constant.

Symmetry 2019, 11, 184 12 of 18 

 

artists, everything was reduced only to aesthetic issues. We also added mathematics to this creative 

process. However, the phrase “point and line to the plane” is redundant in terms of classical 

Euclidean geometry: The points and the straight line are always in one definite plane. If a similar 

book was written by a sculptor, instead of a painter, he would have entitled it “Point and a straight 

line in space”! and one more remark from the point of view of mathematics. On a picturesque canvas, 

we see not a straight line, but only a segment of a straight line, which can also act as a focal point. 

Figure 20 shows the metamorphosis of a traditional ellipse, when one of its focus turns into an 

elongating segment of a straight line. 

 

Figure 20. An ellipse with a focus changing from a point to a line segment. 

Figure 21 shows two sketches of the Tschirnhaus plate. The usual three-foci ellipse (the edge of 

the plate—Figure 2) is dissected by three straight lines, whose points of intersection serve as foci of 

the ellipse. Red lines are formed by points, whose sum (Figure 21a) or product (Figure 21b) of the 

distances to the straight lines remains constant. 

 

Figure 21. Sketches of the Tschirnhaus plates with a: (a) Constant sum or (b) product of distances 

from a point to three straight lines. 
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such a problem: Points are dashed randomly through a plane through which curves of different 
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Figure 21. Sketches of the Tschirnhaus plates with a: (a) Constant sum or (b) product of distances from
a point to three straight lines.

3.5. Curves of Order Greater Than Two

The ellipse, the hyperbola, and the parabola are curves of the second order. It was interesting to
know what curves of the order of 3, 4, 5, etc. are good for porcelain decoration. Figure 22 illustrates
such a problem: Points are dashed randomly through a plane through which curves of different orders
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are drawn. A parabola can only come about with a special and almost incredible arrangement of
five points. The probability of the ellipse falling out (about 28%) can be considered a certain new
mathematical constant. Through two points, it is possible to draw a straight line (a curve of the first
order), in five—an ellipse or two branches of a hyperbola (the second order), through nine points
curves of the third order, etc. These intricate curves can be also used to decorate porcelain. This will in
some way resemble the so-called blue onion pattern.
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Figure 22. Curves of different orders: (a) 2; (b) 3; (c) 4; (d) 5; (e) 6; (f) 7; (h) 13; (i) 16; (j) 17.

It is possible to see the modification of the pattern shown in the animation provided with the
Supplementary Materials (Video S2).

3.6. 2.5D Printer

Tschirnhaus plates are made by traditional technology from porcelain, and then painted by hand.
However, they can be printed on a 3D printer, and then painted on an ordinary 2D colour printer
(kitsch). These two printers can be combined into one, which can be named a 2.5D printer.

The figures and closed curves given above were not created through an analytic study of functions,
but by a simple (“blunt”) scan of a rectangular region in Cartesian coordinates. Modern printers
similarly form text or drawing—scan a sheet of paper and put black or coloured dots (rasters) in
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the right places. Figure 23 shows a part of Mathcad document (a virtual 2D printer) that depicts the
egg-shaped Tschirnhaus ellipse.Symmetry 2019, 11, 184 14 of 18 
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Figure 23. Scanning a flat area for drawing a Tschirnhaus three-foci ellipse.

In the program in Figure 23, the for loop with parameter x, in which is nested a second for a loop
with parameter y, moves points in the rectangular area from x1 to x2 and from y1 to y2. Variables
x1, x2, y1 and y2, as well as other quantities and functions needed for calculation, are set in advance.
The value of the integer variable n that defines the scan step can be changed, achieving a compromise
between accuracy and duration of the computation. In the double for loop, the distances from the
current point of x and y coordinates to the first focus (L1), to the second focus (L2) and to the third focus
(L3) are calculated. Instead of points as foci, segments of curves, circles, squares, triangles, etc. can be
put. Distances from a point to these curves can be easily calculated using special functions created
by the authors. Available in the Supplementary Materials (File_S2.xmcd). If the sum of the distances
L1, L2 and L3 turns out to be approximately equal to the given variable a, then the coordinates of the
current point are recorded in the vectors X and Y, whose length is increased by one (i← i + 1, where i
is the index of the vectors X and Y). Then the vectors X and Y are displayed on the graph in the form of
a desired curve consisting of points. If these points are large enough, they merge into a line.

Figures 24–26 show the listings of the functions used to work with a new focus—with circle,
square and triangle. In addition, these functions are provided with the Supplementary Materials
(File_S1.xmcd).
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Figure 25. A Mathcad function that returns the coordinates of a point on the contour of a square with a
“radius” r (half the length of the side of the square) and centred at the point (xs, ys) closest to the given
point with the coordinates (x, y).
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Figure 26. A Mathcad function that returns the coordinates of a point on the contour of an equilateral
triangle with a “radius” r (the distance from the center of the triangle to its vertex) and centered at the
point (xt, yt) closest to the given point with coordinates (x, y).

The distance from the already constructed ellipse to a given point is easy to determine, bearing in
mind that our ellipse is formed not by an analytic formula, but by two vectors with discrete values of
coordinates. Figure 27 shows the body of the double-cycle with parameters x and y (see the headings
of these cycles in Figure 23), which solves this problem: The coordinates of the two closed curves are
given by the vectors (X1, Y1) and (X2, Y2). It is necessary to find and to place in the vectors X and Y
the coordinates of the new curve whose points have a certain property with respect to the two initial
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(reference) curves. In particular, the sum of the distances from the points forming the new curve to
the points of the reference curves must be constant. It turns out a super-ellipse, shown in Figure 28.
When solving this problem, auxiliary vectors D1 and D2 are formed, storing distances from a given
point to the points of the reference curves. In the vectors D1 and D2, it is easy to find the minimum
values—corresponding to the distance from the point to the curve. We repeat this task analytically, it is
rather difficult to solve, while numerically can be without problems.
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Figure 28. Super-ellipse with “elliptical” foci, L1 + L2 = const, L3 + L3 + L5 = const.

The small three-foci ellipses shown in Figure 28 are in turn foci, in fact foci can be not only points,
but new ellipses with focal points-ellipses. There may be a fractal [11] and fractals themselves are very
interesting objects, also for the decoration of porcelain with elements of mathematics. However, this is
the topic of a separate “mathematical-aesthetic” conversation [12,13].

The super-ellipse or Lame ellipse is an ellipse described by the equation (x/a)n + (y/b)n = 1.
For n = 2, we have an ordinary ellipse. Figures 29 and 30 show sketches for the design of porcelain plates
in the style of Lame ellipses with different exponents of degree n. In the right parts of the drawing’s
information is given, which will need to be placed on the reverse sides of these “mathematical” plates.
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Figure 30. Lame Oval plate with golden section proportion.

4. Conclusions

A scanning method, which is used in one flat rectangular area and allows the generation of new
unusual and interesting curves with very simple properties, was introduced. This method is applicable
for generation of not only curves, but also geometric figures, i.e., if inequalities instead of equations
are considered.

The suggested method introduces a new stream into the design of porcelain dishes. The egg-ellipse
can help to provide new ideas for porcelain decoration and to find practical as well as decorative
application. The new Three-foci ellipse (elliptic-hyperbolic oval) with an equilateral triangle, a square
and a circle as “foci” is introduced. The other two second order curves, the hyperbola and the parabola,
can be also used to create a new porcelain design. Curves of the order of 3, 4, 5, etc. can also inspire a
porcelain designer. An idea of combination of 3D printer and 2D colour printer in form of 2.5D printer
for porcelain production and decoration is presented and the functions codes in Mathcad are provided.
The super-ellipse or lame ellipse can provide ideas for the design of porcelain plates in the style of
lame ellipses with different exponents of degree n.

The ideas proposed in the article were presented at the porcelain factory in Meissen. Factory
representatives were interested in the work and plan to use mathematical drawings on porcelain when
receiving orders.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/2/184/s1,
File_S1: Mathcad document with functions returning the coordinates of a point on segments of lines, circles,
squares and equilateral triangles closest to the given point, File_S2: Calculation of distances from a point to the
curves using special functions created by the authors, Video S1: Frames of drawing animation on a Tschirnhaus
plate at (Lc + Ls + Lt = S), Video S2: Curves of different orders.
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