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Abstract: In this paper, we consider a two-dimensional acoustic wave equation in an unbounded
domain and introduce a modified model of the classical un-split perfectly matched layer (PML).
We apply a regularization technique to a lower order regularity term employed in the auxiliary
variable in the classical PML model. In addition, we propose a staggered finite difference method
for discretizing the regularized system. The regularized system and numerical solution are
analyzed in terms of the well-posedness and stability with the standard Galerkin method and von
Neumann stability analysis, respectively. In particular, the existence and uniqueness of the solution
for the regularized system are proved and the Courant-Friedrichs-Lewy (CFL) condition of the
staggered finite difference method is determined. To support the theoretical results, we demonstrate
a non-reflection property of acoustic waves in the layers.

Keywords: well-posedness; stability; acoustic wave equation; perfectly matched layer

1. Introduction

It is quite important to effectively truncate an unbounded domain in wave propagation
simulations in open space, where the perfectly matched layer (PML) methods that surround the
domain of interest with thin artificial absorbing layers are popularly used in easy and effective
ways. After the method was introduced by J. P. Bérenger [1], which involves splitting a field into
two nonphysical electromagnetic fields, many studies were conducted regarding the PML method
and its modified reformulations in many different wave-type equations. These include Maxwell’s
equations [2,3], elastodynamics [4,5], linearized Euler equations [6–9], Helmholtz equations [10],
and other types of wave equations [10–12]. Most PML models by the splitting technique, named a
split PML method, yield a hyperbolic system of first order partial differential equations [1,6,13–15].
It is known that the split PML models demonstrate excellent overall performance from the viewpoint
of applications. However, it was pointed out in [7,16,17] that Bérenger’s split, as well as other split
models, transform Maxwell’s equations from being strongly hyperbolic into weakly hyperbolic. These
transforms imply a transition from strong to weak well-posedness in the Cauchy problem and may
lead to ill-posedness under certain low-order damping functions in PML layers [18]. The authors
of [6,19] mention that the use of artificial dissipation is necessary to stabilize the numerical scheme of
such formulations for long-time simulations.

The resulting concerns about the well-posedness and stability of the split PML models
have prompted the development of other PMLs. Some examples of such developments, without
splitting the fields, include un-split PML models using convolution integrals [20,21] and auxiliary
variables [17,22,23]. In contrast to the split PML models, it is known that the un-split PML wave
equations are more effective at time discretization [22] and does not make the use of additional
memory for the nonphysical field variables. However, it has also been found that the un-split PML
models are susceptible to developing gradual instabilities in long-time simulations [10,19]. To overcome
this instability issue, various studies are reported: a low-pass filter inside the absorbing layer [6],
selective damping coefficients [24], a new layer by regularizing the damping terms [8], a change of
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variable [25], etc. These issues are the motivation for the mathematical study of the well-posedness and
stability for the un-split PML acoustic wave model in various sound speed. A time-domain analysis
of PML acoustic wave equation with a constant sound speed is presented with a time-dependent
point source in two dimensions using the Cagniard-de-Hoop method [25,26], which includes the
time-stability and error estimates. However, it is not easy to extend the analysis to general initial
value problems in variable sound speed, because those include not only straight propagating but
also evanescent waves [27]. There is another approach to demonstrating the well-posedness and
stability by investigating the eigenvalues of the Cauchy hyperbolic problems for the PML wave
equations [4,7,12,16–18,28]. This approach gives a restricted result when the original formulation of
the PML wave equation is considered in a bounded domain, in which the solutions should be affected
by boundary conditions.

Alternatively, energy techniques are used to analyze the issue of stability for the PML wave
equations by presenting the energy behavior for the solution in each model [12,16,29]. In general,
the restriction of the PML equations to the computational domain coincides with the original
problem [12], so that damping terms are required to vanish identically in the computational region.
As the constant damping function can be considered as the Heaviside function, the equation
(∂t + σx)∂x = ∂x(∂t + σx) used in [12,16,29] is not valid at the interface between the domain of interest
and the layers for the constant damping case from a discontinuity. However, all these approaches
only provide its well-posedness, the stability has not been clearly proved in finite PML acoustic wave
equations with variable sound speed.

The main contribution of this manuscript is not only to introduce a regularized system of
the second order PML acoustic wave equation that exhibits well-posedness without losing the
non-reflection property of PMLs, but also to demonstrate its numerical stability. To construct the
system, we adopt a regularization technique for the term ∇ ·~q that has a lower regularity, which is
introduced in [8], to regularize the PML model for the Maxwell equation, where ~q is the auxiliary
variable (see (2)). The standard Galerkin approximation and energy estimation of the solution are
used to show the well-posedness of the regularized system. A concrete energy estimate yields the
boundedness of the solution (see Theorem 1) together with the existence and uniqueness of the solution
under the regularity assumption of the damping terms σx, σy ∈ L∞(Ω) (see Theorem 2). As a numerical
scheme for the regularized system, a family of finite difference schemes using half-step staggered
grids in space and time is used. All spatial and temporal derivatives are discretized with central
finite differences that maintain the second order approximation in both space and time, respectively.
A concrete von Neumann stability analysis for the numerical scheme indicates that the scheme is
stable under the Courant-Friedrichs-Lewy (CFL) condition between the temporal and spatial grids
(see Theorem 3). The novel features of this study include the good performance of the solution that
present not only the well-posedness and stability but also the non-reflection property of the wave
propagation compared to the classical PML model; even the regularized system does not possess PMLs
in the original wave equation. This novelty is numerically illustrated in Section 4.

The remainder of the manuscript is organized as follows. Section 2 describes a regularized system
for the un-split PML model of the acoustic wave equation and also contains the well-posedness of its
solution based on the energy estimation. In Section 3, we develop a staggered finite difference scheme
for the regularized system and determine the CFL condition for the numerical stability. In Section 4,
several numerical results are presented to support our theoretical analysis and demonstrate the
efficiency of the regularized system. Finally, some discussions are given in Section 5.

2. Regularized System

The aim of this section is to introduce a modified PML system using a regularization technique in
a classical PML model for the acoustic wave equation. For the sake of argument, we let H1(Ω) := {ϕ :
ϕ, ∂x ϕ, ∂y ϕ ∈ L2(Ω)} and H−1(Ω) be the Sobolev space and dual space of H1

0(Ω), respectively.
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The target problem we consider with here is a general second order acoustic wave equation with
a variable sound speed c(x) > 0 described by

utt(x, t)− c2(x)∆u(x, t) = 0 ∀(x, t) ∈ R2 × (0, T]

with initial conditions u(·, 0) = f and ut(·, 0) = 0, where supp( f ) ⊂ Ω0 with a domain Ω0 ⊂⊂
[−a, a]× [−b, b] ⊂ R2. Here, T > 0 and the sound speed c(x) is bounded by

0 < c∗ ≤ c(x) ≤ c∗ < ∞. (1)

Let the domain Ω := [−a− Lx, a + Lx]× [−b− Ly, b + Ly] consist of the computational domain
[−a, a] × [−b, b] surrounded by PML layers, where a, b, Lx, Ly > 0. Using a complex coordinate
stretch, we consider the following system of the PML wave equation which is introduced in [28]:
find (u,~q) satisfying

1
c2 utt(x, t) + α(x)ut(x, t) + β(x)u(x, t)−∇ ·~q(x, t)− ∆u(x, t) = 0 ∀(x, t) ∈ Ω× (0, T],

~qt(x, t) + A(x)~q(x, t) + B(x)∇u(x, t) = 0 ∀(x, t) ∈ Ω× (0, T],
(2)

with the initial conditions

u(·, 0) := u0 = f , ut(·, 0) := u1 = 0, ~q(·, 0) := ~q0 =~0,

and the zero Dirichlet boundary condition u(x, ·)|∂Ω = 0, where

α(x) :=
σx + σy

c2 , β(x) :=
σxσy

c2 , A(x) =:

[
σx 0
0 σy

]
, B(x) :=

[
σx − σy 0

0 σy − σx

]
.

Here, the damping terms σx := σx(x) and σy := σy(y) are assumed to be nonnegative C0 functions
which vanish in the computational domain in the sense of the analytical continuation of the PML.

Please note that a weak solution (u,~q) of (2) is in H1
0(Ω)× L2(Ω), i.e., ∇ ·~q ∈ H−1(Ω), which

regularity is not enough to show the existence. In order to provide regularity on the term by an
operator, we introduce a mollifier ρε. Let ρ ∈ C∞(R2) with supp(ρ) ⊆ B1(0) satisfying

∫
R2 ρ(x)dx = 1.

Then, for ε > 0, one can define a mollifier ρε(x) on R2 by

ρε(x) = ε−2ρ

(
|x|
ε

)
and satisfies

∫
R2

ρε(x)dx = 1 with supp(ρε) ⊆ Bε(0).

Remark 1. Let R := −∆ + I be the Riesz map from H1
0(Ω) → H−1(Ω). Then, we consider the operator

δε : H−1(Ω)→ L2(Ω) given by

δε(ϕ) = R ◦ δ∗ε ◦ R−1(ϕ) for all ϕ ∈ H−1(Ω), (3)

where δ∗ε : H1
0(Ω)→ H1

0(Ω) ∩ H2(Ω) is a linear bounded operator such that δ∗ε → 1, the identity operator in
H1

0(Ω), as ε→ 0 in the strong operator topology (see, for detail, Theorem 3 on page 7 in [30]). Then, we obtain

δε → 1 as ε→ 0 in the strong operator topology

and ‖δε(ϕ)‖L2(Ω) ≤ Cδε
‖ϕ‖H−1(Ω) for some Cδε

> 0. Furthermore, by the isometry ofR,

‖δε(ϕ)− ϕ‖H−1(Ω) = ‖δ∗ε u− u‖H1
0 (Ω) → 0 as ε→ 0
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for u ∈ H1
0(Ω) such that R(u) = ϕ. Please note that δε is a linear and bounded operator from H−1(Ω) to

L2(Ω).

Now, following [8,31], we introduce a regularized system of the classical PML model (2) by using
δε in the term ∇ ·~q, which is given by

1
c2 utt(x, t) + α(x)ut(x, t) + β(x)u(x, t)− δε∇ ·~q(x, t)− ∆u(x, t) = 0,

~qt(x, t) + A(x)~q(x, t) + B(x)∇u(x, t) = 0,
(4)

with initial and boundary conditions

u(·, 0) := u0 = f , ut(·, 0) := u1 = 0, ~q(·, 0) := ~q0 =~0, u(x, ·)|∂Ω = 0.

The remainder of this section details the analysis of the well-posedness of the solution to the
regularized system (4) based on the energy estimation under the assumption that the dampings σx

and σy are in L∞(Ω).

2.1. Energy Estimate of Weak Solution

We assume that the damping functions σx, σy satisfy σx, σy ∈ L∞(Ω), which implies that

‖α‖∞ = ‖σx + σy‖∞ < ∞, ‖β‖∞ ≤ ‖σxσy‖∞ < ∞,

‖A‖2 := max{‖σx‖∞, ‖σy‖∞} < ∞, ‖B‖2 ≤
√

2(‖σx‖∞ + ‖σy‖∞) < ∞
(5)

under the condition of c(x) = 1 in the layers of the PML model (2), where ‖ · ‖∞ denotes the L∞-norm.
Under these assumptions, the aim of this subsection is to provide an energy estimation of the weak
solution of (4) in the sense that

u ∈ L2(0, T; H1
0(Ω)), ~q ∈ L2(0, T;L2(Ω)) (6)

with
ut ∈ L2(0, T; L2(Ω)), utt ∈ L2(0, T; H−1(Ω)), ~qt ∈ L2(0, T;L2(Ω)),

which satisfies 
〈

1
c2 utt, w

〉
+ (αut, w) + (βu, w)− (δε∇ ·~q, w) + (∇u,∇w) = 0,

(~qt,~v) + (A~q,~v) + (B∇u,~v) = 0
(7)

for each w ∈ H1
0(Ω),~v ∈ L2(Ω), and almost everywhere 0 ≤ t ≤ T and the initial data satisfy

(u(0), w) = (u0, w), < ut(0), w >= (u1, w), and (~q(0),~v) = (~q0,~v) (8)

for each w ∈ H1
0(Ω),~v ∈ L2(Ω). Here, < ·, · > denotes the duality pairing between H−1(Ω) and

H1
0(Ω), and (·, ·) is the inner product in L2(Ω). In addition, the time derivatives are understood in a

distributional sense.

Remark 2. We note that u ∈ C([0, T]; L2(Ω)), ut ∈ C([0, T];H−1(Ω)), and ~q ∈ C([0, T]; L2(Ω)).
(see Theorem 2, Chapter 5.9.2 [32] for detail). Consequently, the equalities in (7), (8) make sense.

To investigate the weak solution of (4) that satisfies (7) and (8), we use the standard Galerkin
approximation and estimate the energy of the solution, which will be used to show the well-posedness
of the regularized system (4) in the subsequent subsection. Let {wj|j ∈ N} be an c−2-weighted



Symmetry 2019, 11, 177 5 of 15

orthonormal basis in L2(Ω), i.e., (c−2wj, wk) = δjk, where the Kronecker delta is given by δjk ={
0 if j 6= k,
1 if j = k

of the eigenfunctions of the eigenvalue problem{
c2∆w = λw in Ω, λ ∈ C,

w = 0 on ∂Ω.

Let Uk be the subspace generated by the orthonormal system {w1, w2, · · · , wk} of L2(Ω). Then,
one can see that Uk also becomes the c−2-weighted orthogonal basis of H1

0(Ω) in the sense that(
c−2wj, wk

)
+
(
∇wj,∇wk

)
= 0 if j 6= k.

Let us also denote Qk, which is the space generated by the smooth functions {~v1,~v2, · · · ,~vk}
such that {~vk : k ∈ N} is an orthonormal basis of L2(Ω). We now construct approximate solutions(

uk,~q k
)

, k = 1, 2, 3, · · · , in the form

uk(t) =
k

∑
j=1

gk
j (t)wj, ~q k(t) =

k

∑
j=1

hk
j (t)~vj, (9)

whose coefficients gk
j (t), hk

j (t), j = 1, 2, · · · , k, are chosen so that

gk
j (0) =

(
u0, wj

)
, (gk

j )t(0) =
(
u1, wj

)
, hk

j (0) =
(
~q0,~vj

)
and 

(
1
c2 uk

tt, wj

)
+
(

αuk
t + βuk − δε∇ ·~q k, wj

)
+
(
∇uk,∇wj

)
= 0,(

~q k
t ,~vj

)
+
(

A~q k,~vj

)
+
(

B∇uk,~vj

)
= 0

(10)

are satisfied for all wj ∈ Uk, ~vj ∈ Qk, j = 1, · · · , k. For each integer k = 1, 2, · · · , the standard

theory of ordinary differential equations guarantees the existence of the approximation
(

uk(t), ~q k(t)
)

satisfying (9) and (10).
The following theorem gives a uniform bound of energy of the approximate solutions (9),

which allows us to send k→ ∞.

Theorem 1. There exists a constant CT > 0 that depends only on σx, σy, Ω, and T such that for k ≥ 1

max
0≤t≤T

Ek(t) +
∥∥∥uk

tt

∥∥∥
L2(0,T;H−1(Ω))

+
∥∥∥~q k

t

∥∥∥
L2(0,T;L2(Ω))

≤ CT

(
‖u0‖2

H1
0 (Ω) + ‖u1‖2

L2(Ω) + ‖~q0‖2
L2(Ω)

)
,

where the energy Ek(t) is defined by

Ek(t) = ‖
1
c

uk
t (t)‖2

L2(Ω) + ‖∇uk(t)‖2
L2(Ω) + ‖~q

k(t)‖2
L2(Ω).

Proof. Please note that uk
t ∈ U k and ~q k ∈ Qk. Hence, we apply uk

t and ~q k in the first and second
equations of (10), respectively, to obtain

( 1
c2 uk

tt, uk
t

)
+
(

αuk
t + βuk − δε∇ ·~q k, uk

t

)
+
(
∇uk,∇uk

t

)
= 0,(

~q k
t ,~q k

)
+
(

A~q k,~q k
)
+
(

B∇uk,~q k
)

= 0

for almost everywhere 0 ≤ t ≤ T. Combining the two equations with the equality
(

1
c2 uk

tt, uk
t

)
=

d
dt

(
1
2‖

1
c uk

t ‖2
L2(Ω)

)
, we obtain
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1
2

d
dt

Ek + F1
k + F2

k = 0,

where

F1
k =

(
αuk

t , uk
t

)
+
(

βuk, uk
t

)
−
(

δε∇ ·~q k, uk
t

)
, F2

k =
(

A~q k,~q k
)
+
(

B∇uk,~q k
)

.

Based on the linear bounded operator ϕ 7−→ δε(ϕ), Hölder’s inequality, assumptions for σx, σy,
and Poincaré inequality, it can be noted that Ek(t) satisfies the inequality

dEk
dt
≤ Cε

kEk for a suitable constant Cε
k > 0.

Furthermore, by applying Gronwall’s inequality, Poincaré inequality, and (1) in the above equation,
one can obtain

max
0≤t≤T

(
‖uk(t)‖2

H1
0 (Ω)

+ ‖uk
t (t)‖2

L2(Ω) + ‖~q
k‖L2(Ω)

)
≤ C

(
‖u0‖2

H1
0 (Ω)

+ ‖u1‖2
L2(Ω) + ‖~q0‖2

L2(Ω)

)
(11)

for some C > 0.
Fix any w ∈ H1

0(Ω) with ‖w‖H1
0 (Ω) ≤ 1 and~v ∈ L2(Ω) with ‖~v‖L2(Ω) ≤ 1, and write w = w1 +w2

and ~v = ~v1 +~v2, where

w1 ∈ span{wj}k
j=1,

(
1
c2 w2, wj

)
= 0 for j = 1, · · · , k

and
~v1 ∈ span{~vj}k

j=1,
(
~v2,~vj

)
= 0 for j = 1, · · · , k.

From (9) and (10), we have〈
1
c2 uk

tt, w
〉

=

(
1
c2 uk

tt, w
)

=

(
1
c2 uk

tt, w1
)

= − (αuk
t + βuk, w1)− (δε∇ ·~q k, w1) + (∇uk,∇w1),(

~q k
t ,~v
)

=
(
~q k

t ,~v1
)

= −
(

A~q k,~v1
)
−
(

B∇uk,~v1
)

.

Thus, we have∣∣∣〈uk
tt, w

〉∣∣∣+ ∣∣∣(~q k
t ,~v
)∣∣∣ ≤ C

(∥∥∥uk
∥∥∥

H1
0 (Ω)

+
∥∥∥uk

t

∥∥∥
L2(Ω)

+
∥∥∥~q k

∥∥∥
L2(Ω)

)
.

Consequently, we obtain

∫ T

0

(∥∥∥uk
tt

∥∥∥
H−1(Ω)

+ ‖~qt‖L2(Ω)

)
dt ≤ C

∫ T

0

(∥∥∥uk
∥∥∥2

H1
0 (Ω)

+
∥∥∥uk

t

∥∥∥2

L2(Ω)
+
∥∥∥~q k

∥∥∥2

L2(Ω)

)
dt

≤ CT

(
‖u0‖2

H1
0 (Ω) + ‖u1‖2

L2(Ω) + ‖~q0‖2
L2(Ω)

)
.

(12)

The proof is carried out by combining (11) and (12).

2.2. Existence and Uniqueness

In this subsection, we will discuss the well-posedness of the regularized system by demonstrating
the existence and uniqueness of the solution (6) based on the result of Theorem 1.

Theorem 2. (Existence and Uniqueness) Assume that the initial data (u0, u1,~q0) are in H1
0(Ω)× L2(Ω)×

L2(Ω). Then, the system (4) has a unique weak solution provided by σx, σy ∈ L∞(Ω).
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Proof. The energy estimates of Theorem 1 and the standard Galerkin method enable the existence of a
weak solution using the fact that ∇· : L2(Ω) → H−1(Ω) and δε : H−1(Ω) → L2(Ω) are continuous
almost everywhere t ∈ [0, T] (see [31] for detail proof of uniqueness).

Remark 3. The most important concern in the proof is the estimation of the term δε∇ ·~q in the regularized
system, which has roles of a convolution, improving the stability of the system from the regularization of the
term from H−1(Ω) to L2(Ω).

3. Numerical Scheme

The aim of this section is to introduce a staggered finite difference method for discretizing the
regularized system and to find a stability condition for the numerical scheme. For the staggered
finite difference method, we use a family of finite difference schemes [33] with half-step staggered
grids in space and time. All spatial derivatives are discretized with the centered finite differences
over two or three cells, which guarantees a second order approximation in space. For the time
discretization, we also use the centered finite differences for the first and second order time derivatives
on a uniform mesh, which is also of the second order approximation in time. Based on the standard
von Neumann stability analysis technique, we analyze the stability of the numerical scheme and obtain
its CFL condition.

3.1. Staggered Finite Differences

Let4t > 0 denote the time step size and4x > 0 and4y > 0 denote the spatial mesh sizes in
the x and y directions, respectively. In addition, we also introduce the time step tn = n4t and the
spatial nodes xi = i4x and yj = j4y for n ∈ N ∪ {0} and i, j ∈ Z. We also define staggered nodes
in the time direction and the x and y directions, respectively, as tn± 1

2
= tn ± 1

24t, xi± 1
2
= xi ± 1

24x,

and yj± 1
2
= yj ± 1

24y for n, i, j ∈ N. To simplify the notation, we denote un
i,j := u(tn, xi, yj) and

qn+ 1
2

α
i+ 1

2 ,j+ 1
2

:= qα(tn+ 1
2
, xi+ 1

2
, yj+ 1

2
) for~q = (qx, qy), α = x, y. For the discretization of the regularization

defined in Remark 1 for the regularized system, the smooth function ρε(x, y) chosen in the following
examples is constant on a rectangle centered at zero,

ρε(x, y) = ρε1(x)ρε2(y), (13)

where

ρεk (ξ) =

{
1
εk

if ξ ∈ [− εk
2 , εk

2 ], k = 1, 2,
0 elsewhere.

For a given two-dimensional finite difference grid with spatial sizes4x and4y, a possible choice
of εk is ε1 = nx4x and ε2 = ny4y with nx, ny ∈ N. For instance, with nx = ny = 1 and the usual
integration formula (see Chapter 3 in [34]), we discretize the regularized term δε(v)i,j := (ρε ∗ v)i,j,
using the 9-point central difference formula, as follows:

(ρε ∗ v)i,j =
1

16
(
4vi,j + 2vi±1,j + 2vi,j±1 + vi±1,j+1 + vi±1,j−1

)
.

Let us now introduce new notations

Ax±
i+ 1

2
:= 1± 4t

2
σx

i+ 1
2

, A
y±
j+ 1

2
:= 1± 4t

2
σy

j+ 1
2

,

and for k = i, j, α = x, y,

A
xy±
i,j := 1± 4t

2
(σxi + σyj), σαk := σα(αk), σα

k+ 1
2

:= σα(αk+ 1
2
).
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Based on these notations, the staggered finite difference scheme for discretizing the regularized
system is defined in the following steps.

Step 1. Compute
(

qn+ 1
2

x
i+ 1

2 ,j+ 1
2

, qn+ 1
2

y
i+ 1

2 ,j+ 1
2

)
,

Ax+
i+ 1

2
qn+ 1

2
x

i+ 1
2 ,j+ 1

2
= Ax−

i+ 1
2
qn− 1

2
x

i+ 1
2 ,j+ 1

2
−4t(σx

i+ 1
2
− σy

j+ 1
2
)∂̃xun

i+ 1
2 ,j+ 1

2
,

A
y+
j+ 1

2
qy

n+ 1
2

i+ 1
2 ,j+ 1

2
= A

y−
j+ 1

2
qn− 1

2
y

i+ 1
2 ,j+ 1

2
−4t(σy

j+ 1
2
− σx

i+ 1
2
)∂̃yun

i+ 1
2 ,j+ 1

2
,

where the cell averages ∂̃xun
i+ 1

2 ,j+ 1
2

and ∂̃yun
i+ 1

2 ,j+ 1
2

are defined as

∂̃xun
i+ 1

2 ,j+ 1
2
=

un
i+1,j+1 − un

i,j+1 + un
i+1,j − un

i,j

24x
, ∂̃yun

i+ 1
2 ,j+ 1

2
=

un
i+1,j+1 − un

i+1,j + un
i,j+1 − un

i,j

24y
.

The definition of the cell averages allows us to compute the regularized term in (3)

(δε∂xqx)
n
i,j := (ρε ∗ ∂xqx)

n
i,j, (δε∂yqy)

n
i,j := (ρε ∗ ∂xqy)

n
i,j

for ∂xqn
xi,j

= 1
2

(
∂̃xqn+ 1

2
xi,j + ∂̃xqn− 1

2
xi,j

)
and ∂yqn

yi,j
= 1

2

(
∂̃yqn+ 1

2
yi,j + ∂̃yqn− 1

2
yi,j

)
, where the cell averages of the

derivatives of the function (qn± 1
2

xi,j , qn± 1
2

yi,j ) are defined as

∂̃xqn± 1
2

xi,j =
1

24x

(
qn± 1

2
x

i+ 1
2 ,j+ 1

2
− qn± 1

2
x

i− 1
2 ,j+ 1

2
+ qn± 1

2
x

i+ 1
2 ,j− 1

2
− qn± 1

2
x

i− 1
2 ,j− 1

2

)
,

∂̃yqn± 1
2

yi,j =
1

24y

(
qn± 1

2
y

i+ 1
2 ,j+ 1

2
− qn± 1

2
y

i+ 1
2 ,j− 1

2
+ qn± 1

2
y

i− 1
2 ,j+ 1

2
− qn± 1

2
y

i− 1
2 ,j− 1

2

)
.

Step 2. Compute un+1
i,j ,

A
xy+
i,j un+1

i,j = 2un
i,j − A

xy−
i,j un−1

i,j +4t2
(
−σ

xy
i,j un

i,j + c2
i,j

(
(δε∂xqx)

n
i,j + (δε∂yqy)

n
i,j

)
+ c2

i,j∆nun
i,j

)
, (14)

where

σ
xy
i,j = σxi σyj , ci,j = c(xi, yj), ∆nun

i,j =
un

i+1,j − 2un
i,j + un

i−1,j

4x2 +
un

i,j+1 − 2un
i,j + un

i,j−1

4y2 .

3.2. Stability Analysis

To obtain the stability condition of the staggered finite difference scheme defined above, we restrict
our concern to the constant damping case with σx = σy = σ0 ≥ 0 for simplicity in our analysis.
The stability condition for the scheme in the computational domain is as follows.

Remark 4. The CFL condition of scheme (13)–(14) in the computational area (i.e., σx = σy = 0) is

c
4t
h
≤ 1√

2

for4x = 4y = h from the standard von Neumann stability analysis technique.

Generally the stability condition for the staggered finite difference scheme developed in Section 3.1
can be obtained as follows.
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Theorem 3. Assume that σx = σy = σ0 > 0 and the sound speed c are constants. Then, the discrete scheme
(13)–(14) is stable if the CFL condition

c4t ≤ h√
2

1

(1 + σ0
2h2

8c2 )1/2
(15)

is satisfied for4x = 4y = h.

To prove Theorem 3 and use the technique of the standard von Neumann stability analysis, we recall
the definition of the simple von Neumann polynomial and some of its properties as follows.

Definition 1. A polynomial is a simple von Neumann polynomial if all its roots, r, lie on the unit disk
(|B(0, r)| < 1) and its roots on the unit circle are simple roots.

The following theorem demonstrates that a simple von Neumann polynomial can be a sufficient
stability condition.

Theorem 4. A sufficient stability condition is that φ be a simple von Neumann polynomial, where φ is the
characteristic polynomial (see [35] for the proof).

With Theorem 4, the stability condition for a polynomial is presented in the following.

Theorem 5. Let φ be a polynomial of degree p written as

φ(z) = c0 + c1z + · · ·+ cpzp,

where c0, c1, · · · , cp ∈ C and cp 6= 0. The polynomial φ is a simple von Neumann polynomial if and only if
φ0 is a simple von Neumann polynomial and |φ(0)| ≤ |φ̄(0)|, where φ0 is defined as

φ0(z) =
φ̄(0)φ(z)− φ(0)φ̄(z)

z
,

and the conjugate polynomial φ̄ is defined as

φ̄(z) = c̄p + c̄p−1z + · · ·+ c̄0zp,

where c̄ is the complex conjugate of c. The main ingredient in the proof of the theorem is Rouché’s theorem;
the proof is detailed in [36].

Now, we can computationally verify the stability condition (15) in Theorem 3 using Theorems 4
and 5.

Proof of Theorem 3 . Assume that σx = σy = σ0 in scheme (13)–(14) and we rewrite the scheme as the
second order central difference scheme of the variables u and~q.

1
c2

i,j

[
un+1

i,j − 2un
i,j + un−1

i,j

4t2 + 2σ0
un+1

i,j − un−1
i,j

24t
+ σ0

2un
i,j

]
(16)

=
un

i+1,j − 2un
i,j + un

i−1,j

4x2 +
un

i,j+1 − 2un
i,j + un

i,j−1

4y2 + (ρε ∗ ∂xqx)
n
i,j + (ρε ∗ ∂yqy)

n
i,j,

~q n+ 1
2

i+ 1
2 ,j+ 1

2
−~q n− 1

2
i+ 1

2 ,j+ 1
2

4t
+ σ0

~q n+ 1
2

i+ 1
2 ,j+ 1

2
+~q n− 1

2
i+ 1

2 ,j+ 1
2

2
=~0. (17)
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By von Neumann analysis, we can assume a spatial dependence of the following form in the
field quantities:

un+1
i,j = ûn+1(kx, ky)eikx xi+ikyyj , un

i,j = ûn(kx, ky)eikx xi+ikyyj ,

~q n+ 1
2

i+ 1
2 ,j+ 1

2
= ~̂q n+ 1

2
i+ 1

2 ,j+ 1
2
(kx, ky)e

ikx x
i+ 1

2
+ikyy

j+ 1
2 ,

where kx, ky, is the component of the wave vector~k, i.e.,~k = (kx, ky)T, and the wave number is k =√
k2

x + k2
y. Then, we have the system

[
ûn+1, ûn, q̂n+ 1

2
x , q̂n+ 1

2
y

]T

= G
[

ûn, ûn−1, q̂n− 1
2

x , q̂n− 1
2

y

]T

, where the

amplification matrix G of scheme (16), (17) is given by

G =


− c1

c2
− c0

c2
Cq̂x Cq̂y

1 0 0 0
0 0 η 0
0 0 0 η

 ,

where Cq̂x and Cq̂y satisfy c2ûn+1 + c1ûn + c0ûn−1 = Cq̂x q̂x
n− 1

2 + Cq̂y q̂y
n− 1

2 with c0 = 1
4t2 − σ0

4t ,

c1 = − 2
4t2 − 2c2 cos(kx4x)−1

4x2 − 2c2 cos(ky4y)−1
4y2 + σ0

2, c2 = 1
4t2 +

σ0
4t , and η =

1−4t
2 σ0

1+4t
2 σ0

. Then, it is noted

that the characteristic function of G is given by

φ(G) =

(
G2 +

c1

c2
G +

c0

c2

)
(G− η)2.

Please note that |η| < 1 by the assumption. It can be observed from Theorem 5 that φ(G) is a
simple von Neumann polynomial if and only if |c1| ≤ |c0 + c2|, i.e.,∣∣∣∣ 2

4t2 + 2c2 cos(kxh) + cos(kyh)− 2
h2 − σ0

2
∣∣∣∣ ≤ 2
4t2 , for h = 4x = 4y.

This inequality gives the CFL condition (15), which completes the proof.

Remark 5. From the proof of Theorem 3, we notice that the characteristic function φ of the amplification matrix
G does not depend on any quantity related to the regularized term. That is, the staggered finite difference scheme
corresponding to the classical PML model (2) with a constant damping in the layers is stable under the CFL
condition (15).

4. Numerical Result

The aim of this section is to provide numerical evidence of the well-posedness of the regularized
system and the non-reflection properties of the acoustic wave in the layers of the classical PML model.
For the discussion of the non-reflection properties, we demonstrate the behavior of the maximum error
at tn defined as the maximum of the differences between the numerical solution and a reference solution
in the computational domain Ω0 := [0, 1]× [0, 1]. Here, the reference solution is taken in the same
computational domain instead of the layers with an additional large domain, for example, 15 times
wider in the x and y directions in our experiment, causing the wave in the computational domain to be
unaffected by the wave propagating from outside in the chosen long-time step. Furthermore, we use
the energy method introduced in [37] and numerically examine the well-posedness or stability of the
model (4) by observing the long-time behavior of the acoustic wave energy defined by

E(t) = 1
2

∫
Ω0

(
1
c2 ut(t)2 +∇u(t) · ∇u(t)

)
dx. (18)
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For the numerical simulation, we use the same initial condition defined by (4) and, in the absorbing
layer, the damping function of the form given by

σxk (xk) =


0, |xk| < ak = 1,

σ0

(
|xk − 1|

L

)β

, 1 ≤ |xk| ≤ 1 + L,
(19)

where β = 0, 1, 2, σ0 is a given constant and L denotes the thickness of the layers.
For the comparisons of non-reflection property, we first demonstrate the maximum error for both

Formulas (2) and (4) with two sets of thickness and damping as (L, σ0) = (0.25, 30) and (L, σ0) =

(0.1875, 30). The numerical results are displayed in Figure 1. The classical PML has slightly smaller
errors than the modified one in both cases, as shown in Figure 1, but it can be observed that these
errors of the modified one can be reduced by simply increasing small amounts of thickness or damping
such as L = 0.27 or σ0 = 35.

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5

2

2.5

3
10

-3
(a) Error of  Models with 

0
=30

L=0.25 Classical PML

L=0.25 Modified PML

L=0.27 Modified PML

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

4

6

8

10
10

-3
 (b) Error of  Models with L=0.1875

0
=30 Modified PML

0
=30 Classical PML

0
=35 Modified PML

Figure 1. Comparison of errors: (a) a fixed damping σ0 = 30, (b) a thickness L = 0.1875 (β = 2)

To see the influence of absorbing property by incidence angle, we demonstrate both formulas
with different positions of source function. The resulted differences between reference and computed
values of the solution during simulation at one point within the computational domain are plotted
in Figure 2. The errors of the classical PML have relatively smaller than the modified one and both
formulas have slightly better absorbing property when the angle of incidence to the interface between
the computational domain and the layers is bigger.

0 100 200 300 400 500 600 700 800
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

(a) a centered source functioin 

Classical PML

Modified PML

0 100 200 300 400 500 600 700 800
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

 (b) a non-centered source functioin

Classical PML

Modified PML

Figure 2. Comparison of the difference at a point from different positions of source function with
σ0 = 35 and L = 0.1
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Next, to investigate the energy E(t) behavior, we choose a time step size 4t of 4x/3, which
satisfies the CFL condition (15) to guarantee the stability of the staggered finite difference scheme
(see Remark 4). Here, the first order backward and second order central finite differences in time and
space, respectively, are used to discretize the energy E(tn) of (18) at each time step tn. We investigate
the behavior of the energy for a long-time simulation at time tn =10,000 according to the thickness
of the layers and magnitude of the damping. The numerical results are displayed in Figure 3: (a) the
energy with various dampings σ0 = 40, 50, 50, 60, 70 for a fixed thickness L = 0.0625 and (b) the
energy with various thicknesses L = 0.0625, 0.1, 0.125, 0.15 for a fixed damping σ0 = 50. The results
indicate that the numerical stability of the modified formula is consistently stable in the long-time
simulation regardless of the magnitudes of damping and thickness of the layer. This provides proof of
the well-posedness of the developed system and numerical stability for the finite difference method.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

E
n

e
rg

y

(a) Energy of modified formula with various dampings

0
 =70

0
 =60

0
 =50

0
 =40

Figure 3. E(t) with (a) various damping values σ0 = 40, 50, 60, 70 for a fixed thickness L = 0.0625 (β = 0),
(b) various thickness L = 0.0625, 0.1, 0.125, 0.15 for a fixed damping σ0 = 50 (β = 0).

Lastly, in order to illustrate this visual investigation, we consider the damping β = 2 and
display the snap shots of the wave propagation at times tn = 1, 30, 60, 100, 130, 150, 200, 300, 500 with
σ0 = 35, L = 0.25 in Figure 4. One can see that the regularized system displays a good property of
non-reflection in the layers, which is the purpose of building the layers . It is remarkable that from a
mathematical point of view, the analytical well-posedness without losing the non-reflection property
in the layers of that the classical PML model.
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Figure 4. Snap shots of the regularized system at time tn = 1, 30, 60, 100, 130, 150, 200, 300, 500 with
σ0 = 35, β = 2, L = 0.25 (Red rectangular box represents the computational domain.)

5. Discussion

We have introduced a new and efficient formulation related to the acoustic wave equation based
on the regularization of the un-split PML wave equation. By regularizing the lower order regularity
term in the original equation and the standard von Neumann stability analysis, we have achieved
well-posedness as well as numerical stability of the solution in the new formulation. We summarize
the main novelty and results of this study as follows: (1) We have proved the analytical well-posedness
of our formulation without any restriction of damping terms; (2) a staggered finite difference scheme
for the formulation is introduced and numerical stability is also analyzed; (3) several numerical tests
are exhibited to show the numerical stability and a non-reflection property.
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Abbreviations

The following abbreviations are used in this manuscript:

PML Perfectly Matched Layers
CFL Courant-Friedrichs-Lewy
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