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Abstract: Open-source software has become a powerful engine for the development of the
software industry. Its production mode, which is based on large-scale group collaboration, allows
for the rapid and continuous evolution of open-source software on demand. As an important
branch of open-source software, open-source operating systems are commonly used in modern
service industries such as finance, logistics, education, medical care, e-commerce and tourism, etc.
The reliability of these systems is increasingly valued. However, a self-organizing and loosely coupled
development approach complicates the structural analysis of open-source operating system software.
Traditional methods focus on analysis at the local level. There is a lack of research on the relationship
between internal attributes and external overall characteristics. Consequently, conventional methods
are difficult to adapt to complex software systems, especially the structural analysis of open-source
operating system software. It is therefore of great significance to capture the holistic structure and
behavior of the software system. Complex network theory, which is adequate for this task, can make
up for the deficiency of traditional software structure evaluation methods that focus only on local
structure. In this paper, we propose a package network model, which is a directed graph structure,
to describe the dependency of open-source operating system software packages. Based on the
Ubuntu Kylin Linux Operating system, we construct a software package dependency network of each
distributed version and analyze the structural evolution through the dimensions of scale, density,
connectivity, cohesion, and heterogeneity of each network.

Keywords: open-source operating system; complex network; software structure analysis

1. Introduction

With the extensive application of software in daily production and life, complexity increases
dramatically. Complexity has become one of the elementary attributes of software systems, and runs
through the whole life cycle of software analysis, design, development, testing, and maintenance. It is
difficult to analyze the structure of a sophisticated software product and the relationships between its
components, further increasing the difficulty of developing, maintaining, extending, and upgrading it.
Researchers have studied a large number of open-source software systems and find that the complexity
of the software system is one of the primary factors leading to software errors. Thus, exploring the
internal rules of complex software systems and figuring out key nodes that lead to vital problems will
play an important part in the software development progress [1–3].

The complexity of software systems stems from manifold aspects [4,5]. First, subjects described
by software systems are increasingly complicated. Moreover, diverse application fields lead to
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completely different internal structures and functional logic. Secondly, software systems themselves
are progressively intricate. Systems generated by various platforms retain their particular architecture
by virtue of the unique compilation mechanism of each platform. On the other hand, comprehension
differences exist among developers towards the same software requirements. A variety of program
languages, computation modes, and application modes can be selected for software implementation.
Furthermore, the complexity of computer hardware results in a consideration of hardware resources
during the development of software systems. Thirdly, the complexity of a software system is derived
from continuous updating and upgrading, namely, the process of software evolution.

Software structural change is a common phenomenon. Measurement and control of software
structure has always been the goal of software designers and developers. Therefore, how to effectively
analyze and control the internal structure of software is pivotal to understanding and measuring the
complexity of software as well as its evolution. Current software complexity metrics generally spotlight
either program code line such as scale of code lines, blank lines, or analyzing cyclomatic, essential and
code path quantity of software module data control flow diagrams. Prevailing approaches include
McCabe, Halstead, C&K, and MOOD. McCabe transformed the control flow of a program into a
directed graph and measured the complexity by counting the number of linearly independent directed
loops. Different from McCabe, Halstead proposed a data flow-based method and evaluated software
complexity through calculating the number of operators in a program. Accompanying the development
of object-oriented technology, Chidanber and Kemerer put forward an inheritance tree-based way and
estimated the complexity of an object-oriented software at a granularity of classes from six indicators
containing number of weighted methods in class, depth of inheritance tree, number of subclasses,
degree of coupling between objects, number of external function call in a class, and polymerization
degree among methods inside a class. Brito introduced the MOOD approach, which measures
the encapsulation, inheritance, coupling, and polymorphism of object-oriented software to reflect
its complexity. The above traditional measurement methods describe the complexity of software
from different aspects. All focus on analyzing the local structure and characteristics of functional
individuals in the software system like classes, methods, etc., and lack a global measurement of
software structure [6–10].

The emergence of complex systems and complex networks [10–13], which emphasize a holistic
approach to the system rather than focusing on local aspects, has provided a valuable perspective and
a unique research dimension for understanding a software system. Unlike the traditional “reduction
method” used in software development, the complex system theory emphasizes the global features
of a system. Generally speaking, complex systems tend to give rise to new features that are not
intentionally implemented by the system developer, and these features exist only at the system level.
These emergent properties cannot be observed at the lower levels and in the local parts of a system.
There are many real examples of this phenomenon in nature [11], such as the social activities of ants
and geese, which demonstrate abilities that one or several ants or geese cannot achieve on their own.
The same is also true of software systems; while a single class or module can accomplish only a limited
amount of functionality, all classes or modules interact cooperatively within the system to achieve
the desired functionality of the user. Therefore, studying these emergent characteristics can provide
valuable perspectives and different research dimensions for understanding software systems [14–17].

In 2002, Valverde et al. first introduced the complex network method to study the structure of
software systems and found that the system structure of JDK 1.2 and Ubi Soft Pro Rally2002 both
exhibited obvious “small world” and “scale-free” characteristics. Studies have been conducted into
selected software systems written in Java and research carried out at the class level as well [18–25].

Open-source operating systems are obviously dynamic and interdependent. The development of
an open-source operating system involves more uncertainty and complexity than other engineering
projects. The internal structure of the system and its intricate interactions have gradually exceeded
the comprehension of software developers. On the one hand, bug corrections and new function
additions to the open-source project are in continuous iteration, so the version is in a state of constant
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change. On the other hand, open-source platforms emphasize software reuse, which is not restricted
to internal projects [24–28]. This reusing causes the dependencies between applications, and between
applications and operating systems, to become more complex. Currently, mainstream open-source
operating systems abstract installable software units into software packages. However, the system
not only involves the stacking of software packages, but also the orderly combination of these
packages. It is worth exploring further so as to describe and study the internal structure of open-source
operating systems.

This paper takes open-source operating system software as the object of analysis and proposes
a network model of the software package. We extract the dependencies of software packages and
describe the internal structure of open-source operating systems by treating software packages as
nodes and dependencies as edges. In brief, this paper makes three main contributions:

It constructs a software package dependency network for an open-source operating system, which
sets the overall structure of the system.

This paper takes Ubuntu Kylin Linux [29] as an example and analyzes the evolution of the
software package dependency network through the dimensions of the scale, density, connectivity,
cohesion, and heterogeneity of each distributed version.

This paper proposes a betweenness-based method in order to exploit the key nodes of an
open-source operating system software package dependency network.

The remaining parts of this paper are structured as follows. Section 2 describes the construction of
the software package network. Section 3 gives a detailed analysis of the software package dependency
network evolution of Ubuntu Kylin Linux. Section 4 proposes a betweenness-based method to mine
the key node of the above networks. Finally, conclusions are given in Section 5.

2. Software Package Dependency Network

2.1. Software Packages

At present, mainstream open-source operating systems abstract installable software units into
software packages and provide a corresponding software package management and distribution
system to manage various interdependent software packages, as well as assisting users to obtain,
install, delete or update required software packages [30–35]. A software package contains the program,
data, and corresponding configuration files of the published software, along with some metadata that
describes the name, version, dependency and other information about the software package that can
be used by the software package management and distribution system. The software package acts
as an independent module in the operating system platform to achieve a comprehensive function.
Developers develop packages through a front-end text editor, and it is up to the operating system
distributors to decide which packages can be integrated into the corresponding version of their
operating system.

A complete software package management system includes the distribution and management of
software packages. Software package distribution is maintained by means of open-source distribution
platforms such as Debian and Gentoo. According to its specific characteristics, each platform
imports/updates the source code of open-source projects by its maintainer. The resulting software
packages are kept in the storage pool and marked according to their architecture and version number.
The distribution part is the bridge that connects the open-source software project to the end users,
providing the service of obtaining and downloading the software packages through the network.
Package management involves parsing the package format and content on the client side, as well
as implementing the specific installation, update and deletion of packages. When the package
management software is dealing with the dependency of newly installed software packages, it can
obtain the required software packages from the distribution storage pool with the help of the services
provided by the distribution part, so as to realize the automation of client operation. Figure 1 presents
the management structure of open-source packages [34,35].
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2.2. Dependency of Software Packages

The main body of a software package is a set of functions. As developed in an open-source
environment, their source code can be reused and modified. Functions in the existing software package
can either be called directly or modified as new functions. In software package systems, the former is
defined as a dependency, while the latter is not defined or documented. Dependencies must be stated
in the new package description file so that the software management system can automatically load its
dependent packages when the new package is running. This dependency is the lifeblood of software
package expansion.

One notable aspect of dependency is the dependency on a function library. As a vital component of
the operating system, a function library is used to realize various specific functions. Function libraries
exist on computers in the form of library files, and different operating systems have different ways of
organizing these files. An operating system’s standard function libraries usually achieve relatively
basic functions, which are developed and maintained by professional technicians. These function
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libraries can be repeatedly called up by other programs, and the operation of each application depends
on a variety of elementary function libraries.

An operating system is a complex set of elements that interact, correlate, or depend on each other.
In this paper, the dependencies of software packages can be regarded somewhat similarly to references
in academic papers. More specifically, if package A relies on package B, this means that package
A directly calls the functions in package B, and the operating system platform automatically loads
package B when package A is running.

2.3. Complex Network

A complex network aims to express complicated social systems in the real world through
mathematical concepts. Nodes in a complex network represent individuals in real life, while edges
between nodes represent relationships between individuals. A comprehensive study of complex
networks can help to understand their structural composition, evolutionary dynamics, and other
characteristics, and provide a basis for other disciplines. A complex network is a kind of network that
possesses one or all of the features of self-organization, small world, scale-free, and self-similarity.
Degree distribution, cluster coefficient, and average path length are three basic static structural
characteristics of complex networks. The number of edges connected to a node in a network is the
degree of that node. Degree represents the influence of a node. The more edges that are connected
to a node, the more relationships there are between the node and other nodes, and thus the higher
importance it has in a network. Cluster coefficient is another important parameter of a complex
network, which measures the collectivization level of a complex network. Path refers to the number of
accessible edges between two nodes in the network, that is, two nodes can be connected through these
edges. Average path distance reflects the overall structural characteristics of a complex network.

There are generally four models of complex network: regular network, random network,
WS small-world network, and BA scale-free network. A regular network is the simplest form of
complex network theory; all nodes have the same degree as well as higher average path length
and cluster coefficient. As the beginning of the systematic study of complex network theory in
mathematics, a random network is generated through two steps. First, set the size of the network,
which means the number of nodes, to N. Then, connect any two nodes in the network with probability
p. A random network with pN(N − 1)/2 edges is constructed. Degree distribution of a random
network is a relatively representative Poisson distribution. Average degree will increase with a rise
in N. However, clustering coefficient decreases with the increase of N, while average path distance
is proportional to ln N, which is obviously different from regular networks. A WS small-world
network, which describes a transition from a completely regular network to a completely random
network, has typical features of short average path distance as well as a large clustering coefficient.
A common property of many large networks is that the vertex degrees follow a scale-free power-law
distribution, The BA model features two generic mechanisms: the networks expanding and the
preferential attachment. Expanding of networks concentrates on the open property of a network that
new nodes will be added all the time. Moreover, increasing the number of nodes results in a growth in
network scale. Preferential attachment predicts a new node connection trend: they prefer to establish
relationships with nodes that have more connections. Figure 2 delineates the above four models under
the same scale, in other words, with the same node number.
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Figure 2. (a) A regular network with 20 nodes; every node has three neighbors. (b) A random network has
20 nodes with a connection probability of 0.2. (c) A WS small-world network has 20 nodes and each node
has four neighbors, with a connection probability of 0.3. (d) A BA scale-free network with 20 nodes.

2.4. Construction of the Software Package Dependency Network

When considering the internal structure of open-source operating system software, software packages
can be regarded as nodes of a network, while their relationship can be seen as the edge of the network.
Thus, the internal structure of open-source operating system software can be characterized by a network of
software packages. Edges in the network are directed owing to the directional property of dependency.

In our research, we define the software package dependency relationship as an unweighted and
directed graph G = (V, E). V represents the set of nodes V = {v1, v2, . . . , vn}. Each node represents a
software package. E represents the set of connected edges. An edge connects two dependent packages.
When a vertex vj depends on another vertex vi, there is an edge connecting node vi to node vj, in other
words, this means that package j is derived from package i. The establishment of a dependency
network is described below using the example of the Sudo software package. The dependency of the
software package can be queried from the command line. The Sudo software package is dependent on
the following packages:

$ apt-cache depends sudo

sudo
depends: libaudit1
depends: libc6
depends: libpam0g
depends: libselinux1
depends: libpam-modules
depends: lsb-base
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In this example, we only build the first-level dependency network, since there may be nested
dependencies of other packages that Sudo is dependent on. Results are presented in Figure 3.
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The following algorithm is used to extract the overall software package dependency network.

Algorithm 1. Package dependency extraction

1. initialization phase
for i = 1, 2, 3, . . . , n
Vi← package names

2. find dependency relationship and construct the graph
for i = 1, 2, . . . ,n
for j = 1, 2, . . . , i−1, i+1, . . . ,n
scan the dependencies list of vi
add an edge when dependency exit between vi and vj

3. delete redundant edges
4. store the graph as a table
5. visualization

3. Results and Analysis

In this paper, we took Ubuntu Kylin Linux operating system [29], which is a Chinese official
distribution of Ubuntu Linux maintained by our university, as the research object. Ubuntu Kylin Linux
operating system released its first version, named 13.04, in 2013. Since then, two operating system
versions have been released each year. The beta version with suffix ‘.04’ is released in the first half of the
year, while the official operating system version, which has a version number that contains extension
‘.10’, is released in the second half. Our experiments are conducted on the grounds of Algorithm 1 and
extracted software package dependency relationships from their head files. This paper regards the
holistic structure of the operating system as the package dependency network. Abstracting packages
as nodes and dependency relationships as edges, complex a operating system internal structure is
transformed into a network model, namely, a graph. Thus, complexity metrics are turned into an
investigation of topological structure features. Degree distribution, cluster coefficient, and average
path length are three basic static structural characteristics of complex networks. By combining complex
network theory with knowledge of software engineering, we will obtain a better understanding of the
topological structure and dynamic characteristics [36–39].

Our experiments portray the software package dependencies of six versions of the Ubuntu
Kylin operating system, from the official versions of 13 to 18. With daily use of an operating system,
the quantity and variety of installed software packages varies from user to user depending on their
own habits. Therefore, six operating system versions tested in this experiment are all original versions
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of the system, in other words, the original version at the time of release. Figure 4 presents the overall
structure of the software package dependency network for six operating system versions. All networks
are visualized by Gephi, which is an open-source visualization tool. The following networks are
presented in modularity. Nodes inside a module have a close connection, while few connections exist
between modules. In the following pictures, a different color indicates a unique module.

The change of software structure is a common phenomenon in the wake of software evolving.
Kernel upgrade, desktop environment technology replacement, and the addition of new functions are
the primary factors that lead to structural variation in operating systems.
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Degree distribution, cluster coefficient, and average shortest path length are general preferences
used in complex network theory to estimate structural characteristics of a network. For a
comprehensive investigation of our network characteristics, we will discuss the above six networks in
terms of network scale, density, connectivity, cohesion, and heterogeneity.
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3.1. Network Scale

The scale of a network can usually be expressed in terms of the number of nodes in the network.
The scale of an actual network is almost always changing. In fact, in the case of the Internet and online
social networks, the number of nodes and edges have been increasing for quite a long time [27,28].
Figure 5 presents the trend of network scale variation during the version evolution of the Ubuntu
Kylin operating system.
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Figure 5. Network scale variation during the version evolution of the Ubuntu Kylin operating system.
In our paper, the number of vertices and edges is used to measure the network scale. The double y axis
presents the number of vertices and edges accordingly.

According to the definition of network construction, a node represents a software package.
Any increase or decrease in the number of nodes stands for a corresponding change in the number of
packages. Therefore, the growth of nodes means the emergence of new software packages. On one
hand, this may mean an addition of new technology; on the other hand, it may indicate the enrichment
and expansion of the peripheral applications. By contrast, a decrease in nodes indicates the replacement
of technology or the obsolescence of software packages. Figure 5 presents that both the number of nodes
and edges show the same evolutionary trend. Their increase is positive correlation. However, growth
rate of edges is larger since the same node can be connected to more different nodes according to the
increment of nodes.

3.2. Network Degree and Its Distribution

The degree of connectivity of nodes in a software network determines the importance of the nodes
in the network in a certain sense, reflecting the uneven degree of energy distribution. If a network is
randomly connected, the importance of each node is roughly the same, and the energy distribution
is uniform, such that the structural formula of the software can be considered “disordered.” On the
contrary, if the network is asymmetric—that is, there are a small number of “core nodes” and a large
number of “end nodes” (with small node degree) in the network—and there are also differences in
the importance of nodes, resulting in an uneven distribution of energy, then the structural formula of
the software can be considered “orderly” and “heterogeneous.” Figure 6 presents the distribution of
network node degrees across the six versions of the software package network.
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Degree distribution marked with p(k) calculates the probability of a node with degree k. In our
experiments, the fitting curves in the above figures illustrate that the degree distribution matches
power-low distribution p(k) ∼ k−b.

As can be seen from the above figure, the node degree distribution of the six networks generally
follows the power law distribution [32], and the distribution of the system structure presents as uneven,
showing that the whole structure is “orderly.” The node degree distribution curve of the six versions of the
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software networks displays the “long tail” feature; that is, most nodes in the network have only a small
degree of connectivity, while a few nodes have a large degree of connectivity and become the central nodes.

The software package dependency network is a directed graph, and the input and output degrees
of nodes represent different meanings. The reasons for this difference are linked to design rules and
decisions made during development. In this paper, it is believed that the higher the in-degree of a
node, the higher the level of its dependence on other nodes; by contrast, the higher the out-degree
of a node, the higher the level of its reuse. This indirectly reflects the complexity of the operating
system design.

3.3. Network Connectivity

Network connectivity is an indicator that measures whether network nodes are connected as a
whole. For undirected networks, where there is a sequence of nodes i1, i2, . . . , in and edge connection
exists between adjacent node pairs, there is a path between nodes i1 and in. Moreover, if a path exists
between each pair of nodes in an undirected network, it is referred to as connected. The edges of a
directed network have direction, and so does its path. If there is a node sequence i1, i2, . . . , in, where
the adjacent node pairs have edges pointing from the former to the latter, it is said that there is a path
from node i1 to node in. Obviously, there is a path from node in to node in, however there does not
have to be a path from node in to node in. The connectivity of directed networks can be classified into
two types: strong connectivity and weak connectivity. Strong connectivity means that between any
pair of nodes i and j in the network, there is a path from node i to node j and from node j to node i.
Weak connectivity means that when the direct edges as regarded as undirected edges, the undirected
network is connected. Experiments have shown that the Ubuntu Kylin software package dependency
network is not strongly connected. Figure 7 presents the number of strongly connected modules in
each version of Ubuntu Kylin.
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Next, we discuss the weakly connected property of the software package dependency network.
Figure 8 presents the number of weakly connected modules as well as the node portion of the maximum
connected modules of the Ubuntu Kylin software package dependency network. It can be seen from
Figure 9 that the size of weakly connected modules from 13 to 18 versions is kept at 30 and above,
while the node portion of the largest connected module is over 95%. This means that Ubuntu Kylin
operating system package dependency network has good connectivity. Another phenomenon that each
version of the connectivity reflects a relatively stable development trend can be observed in the figure.
The node proportion of the maximum connected modules has been maintained at 95%, indicating
that the package network is distinct from other networks, such as citation networks or dependency
networks, and grows as a whole.
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3.4. Network Density

The denseness of a network refers to the number of connected edges relative to the network size.
Network density and average degree are two parameters that predominantly adopted for measuring
network denseness. The former one measures the relative denseness of a network while the latter
measures the absolute denseness of the network. The definition of the network density of a directed
graph, which is marked with ρ, is presented in Equation (1). The average degree, marked with k,
is defined in Equation (2). In the equation, M is the number of edges in the network, while N is the
number of nodes.

ρ =
M

N(N − 1)
(1)

k =
M
N

(2)

Figure 9 presents the graph density of each version of the software package dependency network.
The experimental results demonstrate that the overall network density exhibits a downward trend and
the network becomes sparse. The average density of the graph of the dependency network is 0.0025,
while the average of the average degree is only 4.616, indicating that the software package dependency
network is very sparse.

As the software version evolves, the degree of connection between software packages decreases,
and so does the complexity of the internal structure. Increment of software scale, that is to say,
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the addition of new package, does not result in an increase in complexity. It indicates that the operating
system version evolution only considers and design necessary features so as to avoid over-design.

3.5. Network Diameter

In the evolution of open-source operating systems, are software packages more closely associated
or less? The average path length and network diameter can be used to assess the cohesion of a network.
The shortest path between nodes i and j, marked as dij, is defined as the smallest number of edges that
can connect two nodes. The average path length of a network, marked as L, is the average distance
between any two nodes. For directed networks, the formula for the average path length is defined in
Equation (3) [1]:

L =
1

N(N − 1)∑i≥j
dij. (3)

Many of the actual networks are large, but have a small average path length. This is called the
“small world” phenomenon. Network diameter is defined in Equation (4); in other words, it is the
maximum number of all shortest paths:

D = max
i,j

dij. (4)

The average path length and diameter of each version of the software package dependency
network are presented in Figure 10. We study average path length to identify what level should
be maintained in a software system so as to better realize the extensibility and maintainability of
the software system and control the cost of software development. If the average shortest path of a
network is too large, it may be because of a loose organization and a low degree of reuse. On the other
hand, a small average shortest path indicates a high coupling degree between packages as well as
an unclear system design responsibility. A small average is not conducive to software maintenance
and modification.
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3.6. Average Clustering Coefficient

The clustering coefficient, which originates from the social networking field, is a measure of
the rate at which nodes in a network tend to cluster together. Nodes in real-world networks tend to
create tightly knit groups with a relatively high density. Two versions of clustering coefficient exist in
a network: the local clustering coefficient and its global alternative. The local clustering coefficient
quantifies how close its neighbors are to being a clique. To wit, it calculates the proportion of neighbors
directly adjacent between nodes to account for the maximum possible neighbors. Its global version,
the average clustering coefficient, gives an indication of the overall clustering in a network. In our
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experiments, the local clustering coefficient is given as in Equation (5), where ei refers to the actual
connection number of a node and ki is the degree of the node:

Ci = 2ei/ki(ki − 1). (5)

The average clustering coefficient is the average of the local clustering coefficients of all the
vertices, which can be acquired through Equation (6):

C =
1
n

n

∑
i=1

Ci. (6)

The average clustering coefficient describes the clustering of nodes in a network; in other words,
how close the network is. The average clustering coefficient of the six operating system versions tested
in this paper ranges from [0.196, 0.214], while that of a corresponding random graph is 0.003. That is,
the average clustering coefficient of our operating system package dependency network is more than
65 times higher than that of a random network. This indicates that the dependency network is a
high-clustering network, and that the packages in the network are closely related and cluster together.
The average clustering coefficient distribution of each version of the software package dependency
network is presented in Figure 11.
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Table 1 summarizes the descriptive statistics for the six versions of the software package
dependency network [30,31].

Table 1. Descriptive statistics for the six versions of the software package dependency network.

Version
Number

Number
of Vertices

Number
of Edges

Average
Path Length

Average
Clustering
Coefficient

Average Clustering
Coefficient of A Random

Network in the Same Scale

Average
Degree

13.10 1546 7809 3.434 0.213 0.003 5.051
14.10 1908 9517 3.35 0.207 0.003 4.988
15.10 1826 9197 3.249 0.214 0.003 5.037
16.10 1983 9102 3.295 0.2 0.003 4.59
17.10 2098 10102 3.585 0.211 0.003 4.815
18.10 1925 8206 3.214 0.196 0.003 3.214

It can be seen from the results of the above statistical analysis that, although the size of the network
varies, the average shortest distance length of these networks is relatively small compared to their size.
For example, in version 17.10, there are more than 2000 software packages, but the average shortest
path length is less than 4; on the other hand, the average aggregation coefficient between nodes is
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much higher than that of a random network of the same size [28]. This result suggests that these
networks have “small world” characteristics. During the evolution of operating systems, the values of
average path length are maintained at a steady level. This phenomenon indicates a proper coupling
degree between packages. The degree of connection between software packages decreases, resulting
in a reduction of the complexity of the internal structure. With the increase of software scale and the
addition of new function packages, the complexity of software structure does not increase accordingly.

There are isolated nodes in all versions of the software dependency networks. These packages are
simple and independent function software packages, such as rar software packages.

4. Analysis of Key Nodes in the Software Package Dependency Network

Mining the key nodes in the complex network and evaluating their importance can improve the
overall performance and robustness of the system. In this paper, key nodes of the software package
dependency network are defined as those software package nodes that can affect the stability of the
entire network structure. The evaluation of key nodes in the network should be conducted via analysis
of the local connection characteristics and the overall influence degree of the nodes. In this paper, node
degree and betweenness centrality of the node are used to identify the key nodes of each version of the
software package dependency network [40–45].

Table 2 presents the top 10 nodes with the highest out-degree for each version of the software
package dependency network. As can be seen from the table, the software packages with high degrees
of reuse in various versions of the operating system are relatively fixed; all of these are software libraries
of the operating system or software packages providing graphical interfaces. C, C++, and Python are
extensively used in writing package source code. Moreover, the increased out-degree of Perl packages
in version 18.10 discloses a popularity increment of Perl language.

Table 2. Top 10 out-degree nodes of each version of the software package dependency network.

Version Number Node Name Out-Degree Version Number Node Name Out-Degree

13.10

libc6 1096

16.10

libc6 1335
multiarch-support 421 libglib2.0-0 386

libglib2.0-0 380 libstdc++6 251
libstdc++6 156 libgcc1 220

libgcc1 138 libx11-6 148
libx11-6 129 zlib1g 126

libgtk-3-0 120 libgtk-3-0 118
dpkg 98 libcairo2 93

libgdk-pixbuf2.0-0 94 multiarch-support 93
zlib1g 94 libgdk-pixbuf2.0-0 91

14.10

libc6 1414

17.10

libc6 1465
multiarch-support 659 libglib2.0-0 447

libglib2.0-0 441 libstdc++6 297
libstdc++6 262 libgcc1 263

libgcc1 216 libx11-6 167
libx11-6 153 libgtk-3-0 140
zlib1g 128 zlib1g 125

libgtk-3-0 116 libcairo2 116
python 115 libgdk-pixbuf2.0-0 112

libgdk-pixbuf2.0-0 105 libpango-1.0-0 108

15.10

libc6 1269

18.10

libc6 1237
multiarch-support 601 libglib2.0-0 334

libglib2.0-0 400 libstdc++6 194
libstdc++6 218 libgcc1 176

libgcc1 182 perl 129
libx11-6 135 libx11-6 128

libgtk-3-0 120 zlib1g 128
zlib1g 105 libgtk-3-0 109

libcairo2 92 libcairo2 85
libgdk-pixbuf2.0-0 91 libgdk-pixbuf2.0-0 79



Symmetry 2019, 11, 172 16 of 20

The in-degree of a node indicates the extent to which the node depends on other nodes; the
higher the in-degree, the higher the extent of dependence on other nodes. Table 3 specifies 10 nodes
with the highest in-degree for each version of the software package dependency network. As can be
observed in the table, most of the packages that rely heavily on other nodes are related to the desktop
environment. The changes in the top 10 in-degree nodes also describe an evolution of the Ubuntu
desktop environment, from GNOME to Unity to UKUI.

Table 3. Top 10 in-degree nodes of each version of the software package dependency network.

Version Number Node Name In-Degree Version Number Node Name In-Degree

13.10

ubuntukylin-desktop 81

16.10

ubuntukylin-desktop 64
libreoffice-core 54 unity-control-center 61

gnome-control-center 48 unity 46
empathy 47 mpv 45

unity 40 libqt5gui5 42
gstreamer0.1-plugings-good 38 unity-setting-daemon 40

ubuntu-minimal 38 libwebkit2gtk 39
gstreamer1.0-plugings-good 35 gstreamer1.0-plugings-good 36

gnome-setting-daemon 32 libwebkitgtk 36
libwebkitgtk 32 ubuntu-minimal 36

14.10

gstreamer1.0-plugings-bad 62

17.10

gstreamer1.0-plugings-bad 74
libreoffice-core 62 ubuntukylin-desktop 71

unity-control-center 58 unity-control-center 61
gstreamer0.1-plugings-bad 52 libreoffice-core 51

empathy 51 mpv 47
mplayer2 49 unity 46

unity 44 libqt5gui5 42
libqt5gui5 43 unity-setting-daemon 39

gimp 40 chromium-browser 38
gstreamer0.1-plugings-good 38 gimp 38

15.10

ubuntukylin-desktop 80

18.10

ubuntukylin-desktop 70
unity-control-center 61 mplayer 60

libreoffice-core 54 mpv 49
empathy 52 libukwm-1-0 49

unity 44 libqt5gui5 42
libqt5gui5 43 libwebkit2gtk 41

unity-setting-daemon 40 gstreamer1.0-plugings-good 39
gstreamer0.1-plugings-good 38 ukui-control-center 38

ubuntu-minimal 38 chromium-browser 34
libwebkitgtk 36 ubuntu-minimal 34

In-degree and out-degree are basic properties of nodes in a network, and can be wielded to
explore key nodes from a connection point of view. In this paper, key nodes are analyzed from another
perspective as well, namely in terms of the role of nodes in the network and the extent of their impact
on the network. We utilize betweenness of a node to conduct the key node mining. Nodes in the
network with heavy information load can be determined by using the index of betweenness: the
more tasks on a node, the higher its betweenness value. If such a node loses its efficacy, this will
have a significant negative impact on the whole software system. Thus, we can analyze the failure
influence of a node on the whole system according to the betweenness value, providing guidance
for system reconstruction and optimization. This kind of result is precisely what traditional software
measurement methods cannot achieve.

For two nodes A and B in the network, there may be many shortest paths between them.
The betweenness of one node in a network is considered to be high if many of the shortest paths
between two nodes in the network go through it. Suppose σst represents the number of shortest paths
between vertex s and vertex t, while σst(v) represents the number of shortest paths passing through v.
Accordingly, betweenness is defined as in Equation (7):

B(v) = ∑
s 6=t 6=v∈V

σst(v)
σst

. (7)
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Table 4 lists the top 10 nodes with the highest betweenness for each version of the software
package dependency network.

Table 4. Top 10 betweenness nodes of each version of the software package dependency network.

Version Number Node Name Betweenness Version Number Node Name Betweenness

13.10

libgtk-3-0 11364.22

16.10

libgtk-3-0 18781.11
libc6 8357.45 libqt5gui5 5207.38
udev 6556.18 libgl1-mesa 4180.14

upstart 5226.74 dpkg 3981.82
debconf 4945.29 libcups2 3910.03

dpkg 4936.39 passwd 3651.25
dbus 4153.23 libwayland-egl1-mesa 3308.32

passwd 3899.30 libgl1-mesa-dri 3108.68
perl-base 3836.72 libfontconfig1 3095.37
libcups2 3539.74 fontconfig-config 2766.81

14.10

libgtk-3-0 10191.41

17.10

libgtk-3-0 19640.03
passwd 5286.504 libglib2.0 13467.23

dbus 4654.707 passwd 12441.35
libgtk2.0-0 4635.568 libuuid1 11585.17
libcups2 4614.537 libmount1 9959.20

dpkg 4527.79 libblkid1 9350.53
libfontconfig1 4256.135 libqt5gui5 5493.75

libuuid1 4114.621 dpkg 5298.70
fontconfig-config 4069.921 libegl1-mesa 4867.30

libqt5gui5 3788.161 libcups2 4153.26

15.10

libgtk-3-0 13379.02

18.10

libgtk-3-0 14339.41
libqt5gui5 4564.72 dpkg 4585.28
libcups2 4246.68 libcups2 3302.04

dpkg 4079.47 libglib2 3272.01
passwd 3882.18 libfontconfig1 2694.25

libc6 2787.44 libc6 2642.52
python3 2775.04 fontconfig-config 2554.11
libgtk2.0 2741.31 libegl1 2447.56
libuuid1 2699.08 libcairo2 2329.06

xserver-xor-core 2636.12 perl 2298.56

During the evolution of an operating system, the betweenness values of libgtk-3-0 and DPKG are
always larger in each version. The greater the betweenness of a node, the greater the responsibility
it has; in other words, the greater the impact of its failure on the system. Hence, the failure of the
above software packages must be taken seriously. Otherwise, they are likely to cause large-scale
system failure.

5. Conclusions

This paper studies the software package dependency network of open-source operating systems
from the perspective of complex networks. Firstly, a directed software package dependency network
model is proposed to describe the structure of the open-source operating system. Through research into
the Ubuntu Kylin operating system, versions 13-18, it is found that the open-source operating system
software package dependency network has the characteristics of “small world” and “no scale” in
terms of its structure. Moreover, the development of network structure is “orderly” in its evolutionary
process. Network density decreases with the increase in scale, as does network cohesion. The network
connectivity is very good, and the proportion of maximum connected slices exceeds 95%. The network
has a small number of nodes with large degree values and a large number of nodes with small degree
values. Finally, a measure of key nodes, namely betweenness centrality, is proposed to identify key
nodes in the open-source operating system software package.

Software evolution, a process of software updating and changing, is one of the essential
characteristics of software. By observing the structural characteristics during evolution, the quality
of the new version of the software caused by different structural characteristics can be found out,
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as well as the rules of how they evolve. This information is useful for understanding the unfolding
nature of software and provides a reference for software version upgrade so as to guarantee a proper
iterative development and quality control. In addition, this study provides guidance for designing
a software structure with higher fault tolerance and robustness, avoiding the premature end of the
software life cycle.
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