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Abstract: We study standing waves of the NLS equation posed on the double-bridge graph:
two semi-infinite half-lines attached at a circle. At the two vertices, Kirchhoff boundary conditions
are imposed. We pursue a recent study concerning solutions nonzero on the half-lines and periodic
on the circle, by proving some existing results of sign-changing solutions non-periodic on the circle.
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1. Introduction and Main Results

The study of nonlinear equations on graphs, especially the nonlinear Schrödinger equation
(NLS), is a quite recent research subject, which already produced a plenty of interesting results
(see [1–3]). The attractive feature of these mathematical models is the complexity allowed by the
graph structure, joined with the one dimensional character of the equations. While they are an
oversimplification in many real problems, they appear indicative of several dynamically interesting
phenomena that are atypical or unexpected in more standard frameworks. The most studied issue
concerning NLS is certainly the existence and characterization of standing waves (see, e.g., [4–9]).
More particularly, several results are known about ground states (standing waves of minimal energy
at fixed mass, i.e., L2 norm) as regard existence, non-existence and stability properties, depending on
various characteristics of the graph [2,10–13].

In this paper, we are interested in a special example, which reveals an unsuspectedly complex
structure of the set of standing waves. More precisely, we consider a metric graph G made up of two
half lines joined by two bounded edges, i.e., a so-called double-bridge graph (see Figure 1). G can
also be thought of as a ring with two half lines attached in two distinct vertices. The half lines are
both identified with the interval [0,+∞), while the bounded edges are represented by two bounded
intervals of lengths L1 > 0 and L2 ≥ L1, precisely [0, L1] and [L1, L] with L = L1 + L2.

∞ ∞

L1

L2

Figure 1. The double-bridge graph.
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A function ψ on G is a Cartesian product ψ(x1, ..., x4) = (ψ1 (x1) , . . . , ψ4 (x4)) with xj ∈ Ij for
j = 1, . . . , 4, where I1 = [0, L1], I2 = [L1, L] and I3 = I4 = [0,+∞). Then, a Schrödinger operator HG
on G is defined as

HGψ (x1, . . . , x4) =
(
−ψ′′1 (x1) , . . . ,−ψ′′4 (x4)

)
, xj ∈ Ij, (1)

with domain D (HG) given by the functions ψ on G whose components satisfy ψj ∈ H2(Ij) together
with the so-called Kirchhoff boundary conditions, i.e.,

ψ1(0) = ψ2(L) = ψ3(0), ψ1(L1) = ψ2(L1) = ψ4(0), (2)

ψ′1(0)− ψ′2(L) + ψ′3(0) = ψ′1(L1)− ψ′2(L1)− ψ′4(0) = 0. (3)

As is well known (see [14] for general information on quantum graphs), the operator HG is
self-adjoint on the domain D(HG), and it generates a unitary Schrödinger dynamics. Essential
information about its spectrum is given in ([15], Appendix A). We perturb this linear dynamics
with a focusing cubic term, namely we consider the following NLS on G

i
dψt

dt
= HGψt − |ψt|2 ψt (4)

where the nonlinear term |ψt|2ψt is a shortened notation for (|ψ1,t|2ψ1,t, . . . , |ψ4,t|2ψ4,t). Hence,
Equation (4) is a system of scalar NLS equations on the intervals Ij coupled through the Kirchhoff
boundary conditions in Equations (2)–(3) included in the domain of HG . On rather general grounds, it
can be shown that this problem enjoys well-posedness both in strong sense and in the energy space
(see in particular ([2], Section 2.6)).

We are interested in standing waves of Equation (4), i.e., its solutions of the form ψt = e−iωtU (x)
where ω ∈ R and U(x1, ..., x4) = (u1 (x1) , . . . , u4 (x4)) is a purely spatial function on G, which may
also depend on ω. Such a problem has already been considered in [11,12,15,16]. In particular, in [11,12],
variational methods are used to show, among many other things, that Equation (4) has no ground
state, i.e., no standing wave exists that minimizes the energy at fixed L2-norm. In a recent paper [16],
information on positive bound states that are not ground states is given. The special example of tadpole
graph (a ring with a single half-line) is treated in detail in [17,18].

As for the results in [15], they can be summarized as follows. Writing the problem of standing
waves of Equation (4) component-wise, we get the following scalar problem:

−u′′j − u3
j = ωuj, uj ∈ H2(Ij)

u1(0) = u2(L) = u3(0), u1(L1) = u2(L1) = u4(0)

u′1(0)− u′2(L) + u′3(0) = 0, u′1(L1)− u′2(L1)− u′4(0) = 0.

(5)

Such a system has solutions with u3 = u4 = 0 if and only if the ratio L1/L2 is rational. In this
case, they form a sequence of continuous branches in the (ω, ‖U‖L2) plane, bifurcating from the
linear eigenvectors of the Schrödinger operator HG (see Figure 2), and they are periodic on the ring
of G, that is, u1 and u2 are restrictions to I1 and I2 of a function u belonging to the second Sobolev
space of periodic functions H2

per([0, L]) =
{

u ∈ H2([0, L]) : u(0) = u(L), u′(0) = u′(L)
}

. In particular,
such function u is a rescaled Jacobi cnoidal function (see, e.g., [19,20] for a treatise on the Jacobian
elliptic functions). If ω ≥ 0, no other nonzero standing waves exist, since the NLS on the unbounded
edges has no nontrivial solution. If ω < 0, instead, the NLS on the half lines has soliton solutions,
so that standing waves with nonzero u3 and u4 are admissible. The general study of this kind of
solutions leads to a rather complicated system of equations, since, while u3 and u4 must be shifted
solitons, each of u1 and u2 can be (at least in principle) a cnoidal function, a dnoidal function or a
shifted soliton. To limit this complexity, the analysis in [15] is focused on the special case of standing
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waves that are non-vanishing on the half lines but share the above-mentioned periodicity feature with
the bifurcation solutions. This amounts to study the following system: −u′′ − u3 = ωu, u ∈ H2

per([0, L]), ω < 0

u(0) = ±u(L1) =
√

2|ω|
(6)

where the sign ± distinguishes the cases of u3 and u4 with the same sign (which we may assume
positive, thanks to the odd parity of the equation) or with different signs. In [15], it is shown that:

(i) If L1/L2 ∈ Q, then the set of solutions to (6) is made up of a sequence of secondary
bifurcation branches {(ω, ũn,ω) : ω < 0}n≥1, originating at ω = 0 from each of the previous
ones, together with a sequence {(ωn, un)}n≥1 not lying on any branch (see Figure 2).

Figure 2. Bifurcation diagram for L1/L = p/q with p, q ∈ N coprime.

(ii) If L1/L2 /∈ Q, then the set of solutions to (6) reduces to two sequences {(ω+
n , u+

n )}n≥1 and
{(ω−n , u−n )}n≥1 alone, solving the problem in Equation (6) with sign ±, respectively, where the
frequency sequences {ω±n }n≥1 are unbounded below and have at least a finite nonzero cluster
point (see Figure 3). The functions u±n oscillate n times on the ring of the graph.

These results come rather unexpectedly, so the aim of this paper is to pursue the study begun
in [15] by deepening the understanding of such results in relation to the underlying physical model.
In particular, we ask the following questions: Does Equation (4) admit standing waves that are
non-periodic on ring of G? If so, do they form continuous branches to which the isolated periodic
solutions belong?
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Figure 3. The appearance of each of the sequences {(ω+
n , u+

n )}n∈N and {(ω−n , u−n )}n∈N for
L1/L ∈ R \Q.

With a view to especially answer the second question, we look for standing waves which include
the ones given by Equation (6) but still change sign on the bounded edges. More precisely, we look for
solutions to Equation (5) exhibiting the following features:

• u1, u2 are sign-changing.
• u3, u4 are nonzero.

The second feature implies ω < 0 and

uj(x) = ±
√

2η sech
(
η
(
x + aj

))
, aj ∈ R, j = 3, 4 (7)

where we set η :=
√
|ω| for brevity. Then, the first feature implies

uj(x) = η

√√√√ 2k2
j

2k2
j − 1

cn

 η√
2k2

j − 1

(
x + aj

)
; k j

 , k j ∈
(

1√
2

, 1
)

, aj ∈
[
0, Tj

)
, j = 1, 2 (8)

where cn (·; k) is the cnoidal function of parameter k and Tj = Tj
(
k j, η

)
:= S

(
k j
)

/η is the period of

the function cn
(

η (·) /
√

2k2
j − 1; k j

)
. Here and in the rest of the paper, S denotes the function

S(k) := 4
√

2k2 − 1 K(k) = 4
√

2k2 − 1
∫ 1

0

dt√
(1− t2)(1− k2t2)

, (9)

where K(k) is the so called complete elliptic integral of first kind. Notice that S : (1/
√

2, 1) → R is
strictly increasing, continuous and such that S

(
(1/
√

2, 1)
)
= (0,+∞).

Therefore, restricting ourselves for simplicity to the case with u3 and u4 of the same sign, which we
may assume positive thanks to the odd parity of the system in Equation (5), we are led to study
the existence of solutions η > 0, k1, k2 ∈

(
1√
2
, 1
)

, a1 ∈ [0, T1), a2 ∈ [0, T2), a3, a4 ∈ R to the
following system:



Symmetry 2019, 11, 161 5 of 20



k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3)

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4)

tanh (ηa3) sech (ηa3) =

= − k1
2k2

1−1
sn
(

ηa1√
2k2

1−1
; k1

)
dn
(

ηa1√
2k2

1−1
; k1

)
+ k2

2k2
2−1

sn
(

η(L+a2)√
2k2

2−1
; k2

)
dn
(

η(L+a2)√
2k2

2−1
; k2

)
tanh (ηa4) sech (ηa4) =

= k1
2k2

1−1
sn
(

η(L1+a1)√
2k2

1−1
; k1

)
dn
(

η(L1+a1)√
2k2

1−1
; k1

)
− k2

2k2
2−1

sn
(

η(L1+a2)√
2k2

2−1
; k2

)
dn
(

η(L1+a2)√
2k2

2−1
; k2

)
.

(10)

This set of equations turns out to be still rather difficult to study in his full generality, and indeed
we have results only in the subcase where the two solitons in Equation (7) have the same height at
the vertices, i.e., sech (ηa3) = sech (ηa4) (which corresponds to θ1 = θ2 in Section 2). More precisely,
in Section 2 we reduce the system in Equation (10) to an equivalent one, which naturally splits into
different cases. Then, we study three of such cases, all with sech (ηa3) = sech (ηa4), leading to our
existence results, which are the following three theorems.

The first two results only concern the case of irrational ratios L1/L2 and give solutions with
k1 6= k2, i.e., non-periodic on the ring of the graph.

Theorem 1. Assume that L1/L2 ∈ R \Q. Then, there exists a sequence of positive integers (nh)h∈N such
that for every ω < −32K(1/

√
2)2/(L1L2) there exists hω ∈ N (also depending on L1 and L2) such that for

all h > hω the problem in Equation (5) has two solutions (u+
1,h, u+

2,h, u+
3,h, u+

4,h) and (u−1,h, u−2,h, u−3,h, u−4,h) of
the form:

u±j,h(x) =

√√√√2 |ω| k2
j,h

2k2
j,h − 1

cn

(√
|ω|

2k2
j,h − 1

(
x + a±j,h

)
; k j,h

)
, j = 1, 2 (11)

u±j,h(x) =
√

2 |ω| sech
(√
|ω|

(
x + a±j,h

))
, j = 3, 4 (12)

where u±1,h(x) and u±2,h(x) have periods T1,h = L1/ [nhL1/L2 + 1] and T2,h = L2/nh, and for all h one has

1√
2
< k1,h < k2,h < 1, a±1,h ∈

(
0,

T1,h

4

)
, a±2,h ∈ [0, T2,h) , a±3,h < 0, a±4,h > 0, a+j,h 6= a−j,h. (13)

Remark 1. More precisely, according to the proof, in Theorem 1, we have that

k1,h = S−1
(

L1

[nhL1/L2 + 1]

√
|ω|
)

, a±1,h = γ1(k1,h, ω, θ±h ),

k2,h = S−1
(

L2

nh

√
|ω|
)

, a±2,h = γ2(k2,h, ω, θ±h )− L + pT2,h, −a±3,h = a±4,h = sech−1
|[0,+∞)(θ

±
h ),

where p is the unique positive integer such that a±2,h ∈ [0, T2,h), θ±h are the two distinct solutions in (0, 1] of the
equation θ2 (1− θ2) = tk1,h ,k2,h

with tk1,h ,k2,h
given by Equation (17), and γj(k j,h, ω, θ±h ) is the unique preimage

in
(

0, Tj,h/4
)

of θ±h

√
2k2

j,h − 1/k j,h by the function cn
(
(·)
√
|ω|/

√
2k2

j,h − 1; k j,h

)
.

Theorem 2. Assume that L1/L2 ∈ R \ Q. Then, there exists a sequence of positive integers (nh)h∈N
such that for every ω < −32K(1/

√
2)2/(L1L2) there exists hω ∈ N (also depending on L1 and L2)

such that for all h > hω the problem in Equation (5) has two solutions (u±1,h, u±2,h, u±3,h, u±4,h) of the form
of Equations (11)–(12), where u±1,h(x) and u±2,h(x) have periods T1,h = L1/ [nhL1/L2] and T2,h = L2/nh,
the parameters a±1,h, a±2,h, a±3,h, a±4,h are as in Equation (13) and for all h one has
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1√
2
< k2,h < k1,h < 1.

Remark 2. More precisely, in Theorem 2 we have that

k1,h = S−1
(

L1

[nhL1/L2]

√
|ω|
)

and k2,h = S−1
(

L2

nh

√
|ω|
)

,

whereas a±j,h are exactly as in Remark 1.

The third result does not need L1/L2 irrational and concerns the subcase of the system in
Equation (5) which, if L1/L2 ∈ R \Q and k1 = k2, is exactly the system in Equation (6) with plus sign
(see Remark 5).

Theorem 3. Let m, n ∈ N be such that n > m ≥ 1. Then, there exists ωm,n < 0 (also depending on L1) such
that for all ω < ωm,n the problem in Equation (5) has a solution (u1, u2, u3, u4) of the form of Equations (7)–(8),
with k1, k2 ∈

(√
3/2, 1

)
, a1 ∈ (0, T1/4), a2 ∈ [0, T2).

Remark 3. According to the proof, in Theorem 3, a1, a2, a3, a4 can be described in a similar way of
Theorems 1 and 2. On the contrary, the parameters k1, k2 do exist, but are not explicit as in the previous theorems.

As already mentioned, Theorems 1–3 do not exhaust the study of solutions to the problem in
Equation (5), and thus of standing waves of (NLS), as they only concern the case of solitons having
the same height at the vertices. In addition, they do not describe the whole family of this kind of
solutions, but only give existence results. However, they still provide some answer to the questions
raised above. Indeed, Theorems 1 and 2 answer in the affirmative to the first question, as they prove
existence of standing waves which are non-periodic on the ring of G. As to Theorem 3, for any m
and n, it provides a family of solutions which depend on the continuous parameter ω ∈ (−∞, ωm,n)

and, roughly speaking, make m oscillations on the edge of length L1 and n− m oscillations on the
one of length L2 (cf. the second and third equations of the system in Equation (33)). If L1/L2 is
irrational and one of these families contain a solution with k1 = k2, then such a solution is one of
the isolated solutions found in [15] in the irrational case and we can answer affirmatively also to the
second question. Unfortunately, the argument we used in proving Theorem 3 does not allow us to
say wether we find solutions with k1 = k2 or not, and therefore we do not have a final answer to the
second question.

2. Preliminaries

In this section, we reduce the system in Equation (10) to a simpler equivalent one, which is the
system in Equation (14) with the last two equations replaced by the system in Equation (19).

For brevity, we set

X1 =
ηa1√

2k2
1 − 1

, X2 =
η (L + a2)√

2k2
2 − 1

, X3 =
η (L1 + a1)√

2k2
1 − 1

, X4 =
η (L1 + a2)√

2k2
2 − 1

,

and

σ1 = sgn [sn (X1; k1)] , σ2 = sgn [sn (X2; k2)] , σ3 = sgn [sn (X3; k1)] , σ4 = sgn [sn (X4; k2)] .

Then, using well known identities (see [20]) and the first equation of the system in Equation (10),
we get



Symmetry 2019, 11, 161 7 of 20

sn (X1; k1) = σ1

√
1− cn2 (X1; k1) = σ1

√
1−

2k2
1 − 1
k2

1
sech2 (ηa3),

dn (X1; k1) =
√

1− k2
1 + k2

1 cn2 (X1; k1) =
√

1− k2
1 +

(
2k2

1 − 1
)

sech2 (ηa3)

and hence

k1

2k2
1 − 1

sn (X1; k1)dn (X1; k1) = σ1

√
k2

1
2k2

1 − 1
− sech2 (ηa3)

√(
1− k2

1
)

2k2
1 − 1

+ sech2 (ηa3)

= σ1

√√√√ k2
1
(
1− k2

1
)(

2k2
1 − 1

)2 + sech2 (ηa3)− sech4 (ηa3).

Arguing similarly for the products sn (X2; k2)dn (X2; k2), sn (X3; k1)dn (X3; k1) and
sn (X4; k2)dn (X4; k2), and defining

c (k) :=
k2 (1− k2)
(2k2 − 1)2 ,

we thus obtain that the system in Equation (10) is equivalent to

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3)

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4)

tanh (ηa3) sech (ηa3) = −σ1

√
c (k1) + sech2 (ηa3)− sech4 (ηa3) + σ2

√
c (k2) + sech2 (ηa3)− sech4 (ηa3)

tanh (ηa4) sech (ηa4) = σ3

√
c (k1) + sech2 (ηa4)− sech4 (ηa4)− σ4

√
c (k2) + sech2 (ηa4)− sech4 (ηa4).

(14)

Let us now focus on the last two equations. Setting

θ1 = sech (ηa3) , θ2 = sech (ηa4) , σ5 = sgn (a3) = sgn (tanh (ηa3)) , σ6 = sgn (a4) = sgn (tanh (ηa4))

the couple of such equations is equivalent to
σ5

√
1− θ2

1 θ1 = −σ1

√
c (k1) + θ2

1
(
1− θ2

1
)
+ σ2

√
c (k2) + θ2

1
(
1− θ2

1
)

σ6

√
1− θ2

2 θ2 = σ3

√
c (k1) + θ2

2
(
1− θ2

2
)
− σ4

√
c (k2) + θ2

2
(
1− θ2

2
)
.

(15)

Squaring the equations, we get

c (k1) + θ2
1

(
1− θ2

1

)
+ c (k2)− 2σ1σ2

√
c (k1) + θ2

1
(
1− θ2

1
)√

c (k2) + θ2
1
(
1− θ2

1
)
= 0,

c (k1) + θ2
2

(
1− θ2

2

)
+ c (k2)− 2σ3σ4

√
c (k1) + θ2

2
(
1− θ2

2
)√

c (k2) + θ2
2
(
1− θ2

2
)
= 0,

which are impossible if σ1σ2 = −1 or σ3σ4 = −1. Hence, we can add the conditions σ1 = σ2 and
σ3 = σ4 to the system in Equation (15), and get

σ5

√
1− θ2

1 θ1 = σ1

(
−
√

c (k1) + θ2
1
(
1− θ2

1
)
+
√

c (k2) + θ2
1
(
1− θ2

1
))

σ6

√
1− θ2

2 θ2 = σ3

(√
c (k1) + θ2

2
(
1− θ2

2
)
−
√

c (k2) + θ2
2
(
1− θ2

2
))

σ2 = σ1, σ4 = σ3.

(16)
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Moreover, both θ2
1
(
1− θ2

1
)

and θ2
2
(
1− θ2

2
)

must be solutions t ∈ [0, 1/4] of the equation

c (k1) + c (k2) + t− 2
√

c (k1) + t
√

c (k2) + t = 0.

Such equation has the unique nonnegative solution

t = tk1,k2 =
1
3

(
2
√

c (k1)
2 − c (k1) c (k2) + c (k2)

2 − c (k1)− c (k2)

)
, (17)

which belongs to [0, 1/4] if and only if (k1, k2) belongs to the set

A =

{
(k1, k2) ∈

(
1√
2

, 1
)2

: 2
√

c (k1)
2 − c (k1) c (k2) + c (k2)

2 − c (k1)− c (k2) ≤
3
4

}
,

i.e., as one can easily see after some computations,

A =

(k1, k2) ∈ R : k1 ∈
(

1√
2

, 1
)

,

√
4k2

1 − 1

2k1
≤ k2 ≤

1

2
√

1− k2
1

, k2 < 1


(the set A is portrayed in Figure 4).

0.75 0.80 0.85 0.90 0.95 1.00

0.75

0.80

0.85

0.90

0.95

1.00

Figure 4. The set A. The point (
√

2/2,
√

2/2) and the straight lines of the boundary are not included.

In this case, the equation θ2 (1− θ2) = tk1,k2 with θ ∈ (0, 1] has two distinct solutions

θ±k1,k2
=

√
1±

√
1− 4tk1,k2

2
(18)

if tk1,k2 ∈ (0, 1/4), two coincident solutions θ+k1,k2
= θ−k1,k2

= 1/
√

2 if tk1,k2 = 1/4, and a unique solution
θ+k1,k2

= 1 if tk1,k2 = 0 (i.e., k1 = k2). In this latter case, we still write θ+k1,k2
= θ−k1,k2

= 1 for future

convenience. We also observe that the function c (k) is positive and strictly decreasing from
(

1/
√

2, 1
)

onto (0,+∞), so that the terms within brackets on the right hand sides of the first two equations of
Equation (16) have a fixed sign according as k1 < k2 or k1 > k2. Therefore, the system in Equation (15)
turns out to be equivalent to
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(k1, k2) ∈ A, θ1, θ2 ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = θ1, sech (ηa4) = θ2

k1 < k2

σ5 = −σ1

σ6 = σ3

∨


k1 > k2

σ5 = σ1

σ6 = −σ3

∨
{

k1 = k2

a3 = a4 = 0

σ2 = σ1, σ4 = σ3.

(19)

As a conclusion, Equation (10) is equivalent to the system in Equation (14) with the last two
equations replaced by the system in Equation (19).

3. Case θ1 = θ2, σ1 = σ3 and k1 < k2. Proof of Theorem 1

We focus on the case σ1 = σ3 = 1, which gives Theorem 1, leaving the analogous case
σ1 = σ3 = −1 to the interested reader. In such a case, condition (k1, k2) ∈ A becomes

(k1, k2) ∈ A′ = A∩{(k1, k2) ∈ R : k1 < k2} =

(k1, k2) ∈ R :
1√
2
< k1 < k2 ≤

1

2
√

1− k2
1

, k2 < 1


and, taking into account the equivalence between Equation (15) and Equation (19), the system in
Equation (14) becomes:

(k1, k2) ∈ A′, θ ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = sech (ηa4) = θ, a3 < 0, a4 > 0

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ

sn
(

ηa1√
2k2

1−1
; k1

)
> 0, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
> 0

sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
> 0.

(20)

We denote by γj = γj
(
k j, η, θ

)
the unique preimage in

(
0, Tj/4

)
of the value

√
2k2

j−1

kj
θ by

the function cn

(
η√

2k2
j−1

(·) ; k j

)
. Then,


k1√

2k2
1−1

cn
(

ηa1√
2k2

1−1
; k1

)
= θ, sn

(
ηa1√
2k2

1−1
; k1

)
> 0

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= θ, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
> 0

means{
a1 = γ1

L1 + a1 = γ1 + mT1 for some m ≥ 1,
i.e.,

{
a1 = γ1

L1 = mT1 for some m ≥ 1
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while 
k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ, sn

(
η(L+a2)√

2k2
2−1

; k2

)
> 0

k2√
2k2

2−1
cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
> 0

means{
L + a2 = γ2 + pT2 for some p ≥ 0
L1 + a2 = γ2 + qT2 for some 0 ≤ q < p,

i.e.,

{
L + a2 = γ2 + pT2 for some p ≥ 0
L2 = (p− q) T2 for some 0 ≤ q < p.

Hence, the system in Equation (20) becomes

(k1, k2) ∈ A′, θ ∈
{

θ+k1,k2
, θ−k1,k2

}
sech (ηa3) = sech (ηa4) = θ, a3 < 0, a4 > 0

L1 = mT1 (k1, η) for some m ≥ 1

L2 = nT2 (k2, η) for some n ≥ 1

a1 = γ1 (k1, η, θ)

a2 = γ2 (k2, η, θ) + pT2 (k2, η)− L for some p ≥ n

(21)

(observe that θ depends on both k1 and k2, and so do a1 and a2 according to the last two equations).

Remark 4. The equivalence between the systems in Equation (20) and Equation (21) does not need assumption
k1 < k2. On the other hand, if k1 = k2, then T1 (k1, η) = T2 (k2, η) and thus the third and fourth equations of
the system in Equation (21) imply L1/L2 ∈ Q. This means that solutions to the system in Equation (10) with
k1 = k2 (which implies θ1 = θ2 = 1) and σ1 = σ3 cannot exist if the ratio L1/L2 is not rational.

Let us now focus on the following group of equations:
(k1, k2) ∈ A′

L1 = mT1 (k1, η) , for some m ≥ 1

L2 = nT2 (k2, η) , for some n ≥ 1.

(22)

Recalling that Tj
(
k j, η

)
= S

(
k j
)

/η, this system is equivalent to

1√
2
< k1 < k2 ≤ 1

2
√

1−k2
1
, k2 < 1

k1 = S−1
(

η L1
m

)
for some m ≥ 1

k2 = S−1
(

η L2
n

)
for some n ≥ 1.

(23)

and therefore, recalling that S is strictly increasing and continuous from (1/
√

2, 1) onto (0,+∞),
we can obtain solutions by fixing η > 0 and finding n, m ≥ 1 such that


S−1

(
η L1

m

)
< S−1

(
η L2

n

)
S−1

(
η L2

n

)
≤ 1

2

√
1−
[
S−1

(
η

L1
m

)]2
,

i.e.,


L1
m < L2

n

η L2
n ≤ S

 1

2

√
1−
[
S−1

(
η

L1
m

)]2

 .
(24)
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Lemma 1. One has

S

 1

2
√

1− [S−1 (t)]2

 = t +
1

32K2
0

t3 + o
(

t3
)

as t→ 0+

(where, we recall, K0 = K
(

1/
√

2
)

).

Proof. We have

lim
t→0+

S−1 (t)− 1√
2
− t2

32K2
0

√
2

t4 = lim
k→(1/

√
2)

+

S−1 (S (k))− 1√
2
− S(k)2

32K2
0

√
2

S (k)4

= lim
k→(1/

√
2)

+

k− 1√
2
− 16K(k)2(2k2−1)

32K2
0

√
2

28K (k)4 (2k2 − 1)2

=
1

210K2
0

lim
k→(1/

√
2)

+

2K2
0 − K (k)2

(√
2k + 1

)
K (k)4

(√
2k + 1

)2 (
k− 1/

√
2
)

where, setting K′0 = K′
(

1/
√

2
)

, by De L’Hôpital’s rule, we get

lim
k→(1/

√
2)

+

2K2
0 − K (k)2

(√
2k + 1

)
k− 1/

√
2

= −4K0K′0 − K2
0

√
2.

Hence, we conclude

lim
t→0+

S−1 (t)− 1√
2
− t2

32K2
0

√
2

t4 = −
K0 + 2

√
2K′0

211
√

2K5
0

,

i.e.,

S−1 (t) =
1√
2
+ c1t2 − c2t4 + o

(
t4
)

as t→ 0+ (25)

where c1 = 1
32
√

2K2
0

and c2 =
K0+2

√
2K′0

211
√

2K5
0

. This implies

1

2
√

1− S−1 (t)2
=

1

2
√

1
2 −

2√
2

c1t2 −
(

c2
1 −
√

2c2

)
t4 + o (t4)

=
1

√
2
√

1− 2
√

2c1t2 − 2
(

c2
1 −
√

2c2

)
t4 + o (t4)

=
1√
2
+ c1t2 +

(
2
√

2c2
1 − c2

)
t4 + o

(
t4
)

.

Using De L’Hôpital’s rule again, we now compute

lim
k→(1/

√
2)

+

S (k)− 211/4K0

(
k− 1/

√
2
)1/2

(
k− 1/

√
2
)3/2 = lim

k→(1/
√

2)
+

S′ (k)− 27/4K0

(
k− 1/

√
2
)−1/2

3
2

(
k− 1/

√
2
)1/2
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=
2
3

lim
k→(1/

√
2)

+

8k√
2k2−1

K (k) + 4
√

2k2 − 1K′ (k)− 27/4K0

(k−1/
√

2)
1/2(

k− 1/
√

2
)1/2

=
215/4

3
K′0 +

2
3

lim
k→(1/

√
2)

+

8kK(k)
4√2
√√

2k+1
− 27/4K0

k− 1/
√

2

=
215/4

3
K′0 +

2
3

lim
k→(1/

√
2)

+

8k(K(k)−K0)
4√2
√√

2k+1
+

(
8k

4√2
√√

2k+1
− 27/4

)
K0

k− 1/
√

2
= 25/4K0 + 211/4K′0

where the result follows because K (k)− K0 ∼ K′0
(

k− 1/
√

2
)

as k→
(

1/
√

2
)+

and

8k
4
√

2
√√

2k + 1
− 27/4 = 27/4 2k−

√√
2k + 1√√

2k + 1
= 27/4 4k2 −

√
2k− 1√√

2k + 1
(

2k +
√√

2k + 1
)

= 27/4

(
4k +

√
2
) (

k− 1/
√

2
)

√√
2k + 1

(
2k +

√√
2k + 1

) .

This means

S (k) = 211/4K0

(
k− 1/

√
2
)1/2

+
(

25/4K0 + 211/4K′0
) (

k− 1/
√

2
)3/2

+ o
((

k− 1/
√

2
)3/2

)
(26)

as k→
(

1/
√

2
)+

and therefore we deduce that as t→ 0+ one has (note that 211/4K0
√

c1 = 1)

S

 1

2
√

1− S−1 (t)2

 = 211/4K0
√

c1t

(
1 +

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))1/2

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1 +

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))3/2

+ o
(

t3
)

= t

(
1 +

1
2

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1 +

3
2

2
√

2c2
1 − c2

c1
t2 + o

(
t2
))

+ o
(

t3
)

= t +

(
211/4K0

√
c1

1
2

2
√

2c2
1 − c2

c1
+
(

25/4K0 + 211/4K′0
)

c1
√

c1

)
t3 + o

(
t3
)

.

Simplifying the coefficient of t3, this gives the result.

Thanks to Lemma 1, the system in Equation (24) becomes

0 <
m
n
− L1

L2
≤

L3
1η2

32K2
0 L2

1
m2 + ζm (27)

where (ζm)m is a suitable sequence (also dependent on L1, L2, η) such that ζm = o
(
m−2) as m → ∞.

Notice that, according to systems (23) and (24), the equality sign in the second inequality amounts to
k2 = 1

2
√

1−k2
1
.
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Proof of Theorem 1. Since L1/L2 ∈ R \Q, by ([21], Corollary 1.9) there exist infinitely many rational
numbers m/n such that

0 <
m
n
− L1

L2
<

1
n2 . (28)

This implies nL1/L2 < m < nL1/L2 + 1 and thus m = [nL1/L2 + 1]. Since the denominators
of such rationals m/n must be infinite, we may arrange them in a diverging sequence (nh) ⊂ N;
accordingly, the corresponding numerators are mh = [nhL1/L2 + 1]. Now, let η > 4

√
2K0 (L1L2)

−1/2

and fix ε > 0 such that

η2 >

(
L1

L2
+ ε

)2 32K2
0 L2

L3
1

.

Since Equation (28) implies that mh/nh → L1/L2 as h → ∞, for h large enough, we have that
mh/nh < L1/L2 + ε, so that

1
n2

h
<

(
L1

L2
+ ε

)2 1
m2

h
<

L3
1η2

32K2
0 L2

1
m2

h
.

Hence, up to further enlarging h, Equation (28) gives

0 <
mh
nh
− L1

L2
<

(
L1

L2
+ ε

)2 1
m2

h
<

L3
1η2

32K2
0 L2

1
m2

h
+ ζmh , (29)

so that nh and mh satisfy Equation (27). For every h, this provides solutions to the system in
Equation (22) by taking k1 = k1,h = S−1 (ηL1/mh) and k2 = k2,h = S−1 (ηL2/nh), and thus solutions
to the system in Equation (21) by choosing θ = θh ∈ {θ+k1,h ,k2,h

, θ−k1,h ,k2,h
}, taking p as the unique integer

such that
0 ≤ γ2 (k2,h, η, θh) + pT2 (k2,h, η)− L < T2 (k2,h, η)

(where T2 (k2,h, η) = L2/nh), which turns out to be greater than or equal to nh, and defining a1, a2, a3, a4

according to the second, fifth and sixth equation of the system. Note that θ+k1,h ,k2,h
and θ−k1,h ,k2,h

are
different for all h, since tk1,h ,k2,h

6= 0 (because k1,h 6= k2,h) and tk1,h ,k2,h
6= 1/4 (because of the strict

inequality signs in Equation (29)). Up to discarding a finite number of terms of the sequence (nh),
the proof is complete.

4. Case θ1 = θ2, σ1 = σ3 and k1 > k2. Proof of Theorem 2

As in the previous section, we focus on the case σ1 = σ3 = 1. In this case, the system
in Equation (14) becomes again the system in Equation (21), but with (k1, k2) ∈ A′ replaced by
(k1, k2) ∈ A′′, where

A′′ = A ∩ {(k1, k2) ∈ R : k1 > k2} =

(k1, k2) ∈ R :

√
4k2

1 − 1

2k1
≤ k2 < k1 < 1

 .

Then, Equation (22) is now equivalent to the system

√
1− 1

4k2
1
≤ k2 < k1 < 1

k1 = S−1
(

η L1
m

)
for some m ≥ 1

k2 = S−1
(

η L2
n

)
for some n ≥ 1,



Symmetry 2019, 11, 161 14 of 20

i.e., 

L2
n < L1

m

η L2
n ≥ S

(√
1− 1

4S−1
(

η
L1
m

)2

)

k1 = S−1
(

η L1
m

)
, k2 = S−1

(
η L2

n

) (30)

with η > 0 and n, m ∈ N.

Lemma 2. One has

S

(√
1− 1

4S−1 (t)2

)
= t− 1

32K2
0

t3 + o
(

t3
)

as t→ 0+

(where, we recall, K0 = K
(

1/
√

2
)

).

Proof. Since S−1 (t) = 1√
2
+ c1t2 − c2t4 + o

(
t4) as t→ 0+ (see Equation (25)), we have

1− 1

2S−1 (t)2 = 1− 1

2
(

S−1 (t)− 1/
√

2 + 1/
√

2
)2

= 1− 1
2

1(
S−1 (t)− 1/

√
2
)2

+ 1/2 + 2
(

S−1 (t)− 1/
√

2
)

/
√

2

= 1− 1
2

1

(c1t2 − c2t4 + o (t4))
2
+ 1/2 + 2 (c1t2 − c2t4 + o (t4)) /

√
2

= 1− 1

1 + 2c1
√

2t2 + 2
(

c2
1 − c2

√
2
)

t4 + o (t4)

= 2c1
√

2t2 − 2
(

3c2
1 + c2

√
2
)

t4 + o
(

t4
)

and therefore√
1− 1

4S−1 (t)2 =
1√
2

√√√√1 +

(
1− 1

2S−1 (t)2

)

=
1√
2

1 +
1
2

(
1− 1

2S−1 (t)2

)
− 1

8

(
1− 1

2S−1 (t)2

)2

+ o

(1− 1

2S−1 (t)2

)2


=
1√
2
+ c1t2 −

(
2
√

2c2
1 + c2

)
t4 + o

(
t4
)

.
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Hence, using the expansion in Equation (25), we deduce that

S

(√
1− 1

4S−1 (t)2

)
= 211/4K0

√
c1t

(
1−

2
√

2c2
1 + c2

c1
t2 + o

(
t2
))1/2

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1−

2
√

2c2
1 + c2

c1
t2 + o

(
t2
))3/2

+ o
(

t3
)

= t

(
1− 1

2
2
√

2c2
1 + c2

c1
t2 + o

(
t2
))

+

+
(

25/4K0 + 211/4K′0
)

c1
√

c1t3

(
1− 3

2
2
√

2c2
1 + c2

c1
t2 + o

(
t2
))

+ o
(

t3
)

= t +

((
25/4K0 + 211/4K′0

)
c1
√

c1 − 211/4K0
√

c1
1
2

2
√

2c2
1 + c2

c1

)
t3 + o

(
t3
)

.

Simplifying the coefficient of t3, the result ensues.

By Lemma 2, the first two conditions of the system in Equation (24) become

0 >
m
n
− L1

L2
≥ −

L3
1η2

32K2
0 L2

1
m2 + ζm

where (ζm)m is a suitable sequence such that ζm = o
(
m−2) as m→ ∞. Notice that the equality sign in

the second inequality amounts to k2 =

√
4k2

1−1
2k1

.

Proof of Theorem 2. Since L1/L2 ∈ R \Q, by ([21], Corollary 1.9) there exist infinitely many rational
numbers m/n such that

0 >
m
n
− L1

L2
> − 1

n2 .

This implies nL1/L2 − 1 < m < nL1/L2 and thus m = [nL1/L2]. Proceeding exactly as in the
proof of Theorem 1, the result follows.

5. Case θ1 = θ2 and σ1 = −σ3. Proof of Theorem 3

We focus on the case θ1 = θ2 = θ+k1,k2
and σ1 = −σ3 = 1, which gives Theorem 3, leaving the

analogous cases θ1 = θ2 = θ−k1,k2
or σ1 = −σ3 = −1 to the interested reader. In such a case, the system in

Equation (14) becomes

(k1, k2) ∈ A

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3) = θ+k1,k2

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4) = θ+k1,k2

σ2 = −σ4 = 1{
k1 < k2

σ5 = σ6 = −1
∨
{

k1 > k2

σ5 = σ6 = 1
∨
{

k1 = k2

a3 = a4 = 0
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that is 

(k1, k2) ∈ A

k1√
2k2

1−1
cn
(

ηa1√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= sech (ηa3) = θ+k1,k2

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= k2√

2k2
2−1

cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= sech (ηa4) = θ+k1,k2

sn
(

ηa1√
2k2

1−1
; k1

)
> 0, sn

(
η(L1+a1)√

2k2
1−1

; k1

)
< 0

sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0, sn

(
η(L1+a2)√

2k2
2−1

; k2

)
< 0{

k1 < k2

σ5 = σ6 = −1
∨
{

k1 > k2

σ5 = σ6 = 1
∨
{

k1 = k2

a3 = a4 = 0

(31)

Defining γj
(
k j, η, θ

)
as in Section 3, we have that
k1√

2k2
1−1

cn
(

ηa1√
2k2

1−1
; k1

)
= θ+k1,k2

, sn
(

ηa1√
2k2

1−1
; k1

)
> 0

k1√
2k2

1−1
cn
(

η(L1+a1)√
2k2

1−1
; k1

)
= θ+k1,k2

, sn
(

η(L1+a1)√
2k2

1−1
; k1

)
< 0

means  a1 = γ1

(
k1, η, θ+k1,k2

)
L1 = mT1 (k1, η)− 2γ1

(
k1, η, θ+k1,k2

)
for some m ≥ 1

(32)

and 
k2√

2k2
2−1

cn
(

η(L+a2)√
2k2

2−1
; k2

)
= θ+k1,k2

, sn
(

η(L+a2)√
2k2

2−1
; k2

)
> 0

k2√
2k2

2−1
cn
(

η(L1+a2)√
2k2

2−1
; k2

)
= θ+k1,k2

, sn
(

η(L1+a2)√
2k2

2−1
; k2

)
< 0

means  L2 = (n−m) T2 (k2, η) + 2γ2

(
k2, η, θ+k1,k2

)
for some n ≥ m

a2 = γ2

(
k2, η, θ+k1,k2

)
− L + pT2 (k2, η) for some p ≥ n−m + 1

where m is the same integer of the system in Equation (32). Hence, the system in Equation (31)
amounts to 

(k1, k2) ∈ A

L1 = mT1 (k1, η)− 2γ1

(
k1, η, θ+k1,k2

)
for some m ≥ 1

L2 = (n−m) T2 (k2, η) + 2γ2

(
k2, η, θ+k1,k2

)
for some n ≥ m

a1 = γ1

(
k1, η, θ+k1,k2

)
a2 = γ2

(
k2, η, θ+k1,k2

)
− L + pT2 (k2, η) for some p ≥ n−m + 1

sech (ηa3) = sech (ηa4) = θ+k1,k2{
k1 < k2

a3, a4 < 0
∨
{

k1 > k2

a3, a4 > 0
∨
{

k1 = k2

a3 = a4 = 0.

(33)

Remark 5. Suppose L1/L2 /∈ Q. If we assume k1 = k2 in the system in Equation (14), then we have
θ1 = θ2 = 1 and σ1 = −σ3 (see Remark 4). Hence, a solution to the problem in. Equation (6) with plus
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sign gives rise to a solution to the system in Equation (33). On the other hand, a solution to the system in
Equation (33) with k1 = k2 is such that L = L1 + L2 = nT and a2 = a1 − L + pT = a1 + (p − n)T,
where T = T1 (k1, η) = T2 (k2, η), a1 ∈ (0, T/4) and a2 ∈ [0, T). This forces p = n and thus a1 = a2, so that
the corresponding solution to the problem in Equation (6) is periodic on the circle.

Now, recall that Tj
(
k j, η

)
:=

S
(
k j
)

η
. By the definition of γj = γj

(
k j, η, θ+k1,k2

)
, one has

cn

 η√
2k2

j − 1
γj; k j

 =

√
2k2

j − 1

k j
θ+k1,k2

(34)

with γj ∈
(
0, Tj/4

)
. This implies

0 <
η√

2k2
j − 1

γj <
η√

2k2
j − 1

S
(
k j
)

4η
=

S
(
k j
)

4
√

2k2
j − 1

= K
(
k j
)

and therefore Equation (34) yields that

γj

(
k j, η, θ+k1,k2

)
=

√
2k2

j − 1

η
arccn


√

2k2
j − 1

k j
θ+k1,k2

; k j

 .

Hence, defining

γ (k1, k2) :=
√

2k2
1 − 1 arccn


√

2k2
1 − 1

k1
θ+k1,k2

; k1

 =
√

2k2
1 − 1

∫ 1√
2k2

1−1
k1

θ+k1,k2

dt√
(1− t2)

(
1− k2

1(1− t2)
)

and observing that θ+k1,k2
= θ+k2,k1

, one has

γ1

(
k1, η, θ+k1,k2

)
=

1
η

γ (k1, k2) and γ2

(
k2, η, θ+k1,k2

)
=

1
η

γ (k2, k1) .

Thus, the first three equations of the system in Equation (33) are equivalent to
(k1, k2) ∈ A

ηL1 = mS (k1)− 2γ (k1, k2) for some m ≥ 1

ηL2 = (n−m) S (k2) + 2γ (k2, k1) for some n ≥ m.

(35)

To prove Theorem 3, we use the following lemma, concerning the existence of a globally defined
implicit function. Its proof is classical, so we leave it to the interested reader.

Lemma 3. Let bi ∈ R for i = 1, ..., 4 and let G : (b1, b2)× (b3, b4)→ R be a continuous function such that
for all x ∈ (b1, b2) the following properties hold:

• the mapping G(x, ·) is strictly increasing on (b3, b4);
• lim

y→b+3
G(x, y) < 0 and lim

y→b−4
G(x, y) > 0.

Then, the set of solutions to the equation G(x, y) = 0 is the graph of a continuous function g : (b1, b2) →
(b3, b4).
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Proof of Theorem 3. Let n > m ≥ 1 and for (k1, k2) ∈ A define the continuous functions

Fm (k1, k2) := mS (k1)− 2γ (k1, k2) and Fm,n (k1, k2) := (n−m) S (k2) + 2γ (k2, k1) .

We also define Fm and Fm,n on the segments
{
(k1, 1) :

√
3/2 ≤ k1 < 1

}
and{

(1, k2) :
√

3/2 ≤ k2 < 1
}

of the boundary of A, respectively, where the above definitions
also make sense.

Fix
√

3/2 < λ < 1 such that the square Q = [λ, 1]× [λ, 1] is contained into the closure of A and
the partial derivatives ∂F1/∂k1 and ∂F1,2/∂k2 are strictly positive on Q. The existence of such a square
can be checked by using the explicit expressions

F1 (k1, k2) = 2
√

2k2
1 − 1

2K (k1)−
∫ 1√

2k2
1−1

k1
θ+k1,k2

dt√
(1− t2)

(
1− k2

1(1− t2)
)
 , (36)

F1,2 (k1, k2) = 2
√

2k2
2 − 1

2K (k2) +
∫ 1√

2k2
2−1

k2
θ+k1,k2

dt√
(1− t2)

(
1− k2

2(1− t2)
)
 , (37)

where θ+k1,k2
is given by Equation (18). Similarly, one checks that also F1 is strictly positive on Q,

while F1,2 obviously is. Consequently, ∂Fm/∂k1, ∂Fm,n/∂k2, Fm and Fm,n are also strictly positive on Q
(recall that the function S is strictly increasing and positive). Define

µm := max
λ≤k2≤1

Fm (λ, k2) , µm,n := max
λ≤k1≤1

Fm,n (k1, λ) and ηm,n :=
max {µm, µm,n}

L1
,

and let η > ηm,n, so that ηL2 > ηL1 > max {µm, µm,n}. By continuity of Fm and Fm,n, and using
again the explicit expressions in Equations (36)–(37) (with general m and n inserted) as k1, k2 → 1, we
have that

lim
k1→λ+

Fm (k1, k2) = Fm (λ, k2) ≤ µm < ηL1 and lim
k1→1−

Fm (k1, k2) = +∞

for every fixed k2 ∈ [λ, 1], and

lim
k2→λ+

Fm,n (k1, k2) = Fm,n (k1, λ) ≤ µm,n < ηL2 and lim
k2→1−

Fm,n (k1, k2) = +∞

for every fixed k1 ∈ [λ, 1]. Then, Lemma 3 ensures that the level sets

{(k1, k2) ∈ Q : Fm (k1, k2) = ηL1} and {(k1, k2) ∈ Q : Fm,n (k1, k2) = ηL2}

respectively, are the graphs k1 = f (k2) and k2 = g (k1) of two continuous functions f , g defined on
[λ, 1]. The first graph joins a point on the segment [λ, 1]× {1} to a point on [λ, 1]× {λ}, the latter one
joins a point on {λ} × [λ, 1] to a point on {1} × [λ, 1], and therefore the two level sets must intersect in
the interior of Q at a point (k1, k2), which thus solves the system in Equation (35). Then, Lines 4–7 of
the system in Equation (33) fix the values of a1, a2, a3, a4, by taking p as the unique integer such that
the corresponding a4 belongs to (0, T2]. This completes the proof.

Remark 6. In the proof of Theorem 3, the sign of the function F1 can be easily checked. Indeed, taking into
account that θ+k1,k2

≥ 1/
√

2, one has

F1 (k1, k2) > 2
√

2k2
1 − 1

∫ 1√
2k2

1−1

k1
√

2

1√
1− t2

 1√
1− k2

1t2
− 1√

1− k2
1(1− t2)

 > 0.



Symmetry 2019, 11, 161 19 of 20

On the contrary, the analysis of the sign of ∂F1/∂k1 and ∂F1,2/∂k2 over the set A is rather involved and we
could not perform it exactly. Therefore, we based our argument concerning the existence of the square Q on the
numerical evidence given by the plots of their graphs (see Figure 5), for which we used the software Wolfram
MATHEMATICA 10.4.1.

Figure 5. The functions ∂F1/∂k1 and ∂F1,2/∂k2 over the square [λ, 1]2 with λ = 0.88.
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