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Abstract: In this paper, the class of q-Sheffer–Appell polynomials is introduced. The generating
function, series definition, determinant definition and some other identities of this class are
established. Certain members of q-Sheffer–Appell polynomials are investigated and some properties
of these members are derived. In addition, the class of 2D q-Sheffer–Appell polynomials is introduced.
Further, the graphs of some members of q-Sheffer–Appell polynomials and 2D q-Sheffer–Appell
polynomials are plotted for different values of indices by using Matlab.
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1. Introduction and Preliminaries

The subject of q-calculus leads to a new method for computations and classifications of q-special
functions. It was launched in the 1920s. However, it has gained importance and considerable popularity
during the last three decades [1–9]. In the last decades, q-calculus has been developed into an
interdisciplinary subject and served as a bridge between physics and mathematics. The recent interest
in the subject is due to the fact that q-series has popped in such various areas as quantum groups,
statistical mechanics, transcendental number theory, etc. The definitions and notations of q-calculus
reviewed here are taken from [10] (see also [11,12]).

The q-analog of the Pochhammer symbol (δ)κ , also called a q-shifted factorial, are defined by

(δ; q)0 = 1, (δ; q)κ =
κ−1

∏
r=0

(1− δqr), κ ∈ N, δ ∈ C. (1)

The q-analogs of a complex number δ and of the factorial function are given as follows:

[δ]q =
1− qδ

1− q
, q ∈ C− {1}, δ ∈ C, (2)

[κ]q =
κ

∑
ν=1

qν−1, [0]q = 0, [κ]q! =
κ

∏
ν=1

[ν]q = [1]q[2]q[3]q...[κ]q, [0]q! = 1, κ ∈ N, q ∈ C\{0, 1}. (3)
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The q-binomial coefficients [κν]q are defined by[
κ

ν

]
q

=
(q; q)κ

(q; q)ν(q; q)κ−ν
=

[κ]q!
[ν]q! [κ − ν]q!

, ν = 0, 1, 2, ..., κ. (4)

The q-analog of the classical derivative D u of a function u at a point 0 6= τ ∈ C is given as

Dqu(τ) =
u(τ)− u(qτ)

τ − qτ
, 0 < |q| < 1, τ 6= 0. (5)

In addition, we note that

(i) lim
q→0

Dqu(τ) =
du(τ)

dτ
, where

d
dτ

denotes the classical ordinary derivative, (6)

(ii) Dq(a1u(τ) + a2 v(τ)) = a1Dqu(τ) + a2Dqv(τ), (7)

(iii) Dq(uv)(τ) = u(qτ)Dqv(τ) + v(τ)Dqu(τ) = u(τ)Dqv(τ) + Dqu(τ)v(qτ), (8)

(vi) Dq

(
u(τ)
v(τ)

)
=

v(τ)Dqu(τ)− u(τ)Dqv(τ)
v(τ)v(qτ)

=
v(qτ)Dqu(τ)− u(qτ)Dqv(τ)

v(τ)v(qτ)
. (9)

The q-exponential functions eq(τ) and Eq(τ) are defined as:

eq(τ) =
∞

∑
κ=0

τκ

[κ]q!
:=

1
((1− q)τ; q)∞

, 0 < |q| < 1, |τ| < |1− q|−1, (10)

Eq(τ) =
∞

∑
κ=0

q
1
2 κ(κ−1) τκ

[κ]q!
:= (−(1− q); q)∞, 0 < |q| < 1, τ ∈ C. (11)

which satisfy the following properties:

Dqeq(τ) = eq(τ), DqEq(τ) = Eq(qτ), (12)

eq(τ)Eq(−τ) = Eq(τ)eq(−τ) = 1. (13)

The class of Appell polynomials was introduced and characterized completely by Appell [13].
Further, Throne [14], Sheffer [15] and Varma [16] studied this class of polynomials from different
point of views. Sharma and Chak [17] introduced a q-analog for the class of Appell polynomials
and called this sequence of polynomials as q-Harmonic. Later, Al-Salam [1] established the class of
q-Appell polynomials {Aκ,q(z)}∞

κ=0 and investigated some of its properties. These polynomials appear
in several problems of theoretical physics, applied mathematics, approximation theory and many
other branches of mathematics. The polynomials Aκ,q(z) (of degree κ) are called q-Appell polynomials
provided that they satisfy the following q-differential equation

Dq,z{Aκ,q(z)} = [κ]qAκ−1,q(z), κ = 0, 1, 2, 3, ...; q ∈ C, 0 < |q| < 1. (14)

The generating function for the q-Appell polynomials Aκ,q(z) is given as:

Aq(τ) eq(zτ) =
∞

∑
κ=0
Aκ,q(z)

τκ

[κ]q!
, (15)

where

Aq(τ) =
∞

∑
κ=0
Aκ,q

τκ

[κ]q!
, Aq(τ) 6= 0; A0,q = 1, (16)

is an analytic function at τ = 0 and Aκ,q := Aκ,q(0) denotes the q-Appell numbers.
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We note that the function Aq(τ) is called the determining function for the set Aκ,q(z). Based on
suitable selection for the function Aq(τ), different members belonging to the family of q-Appell
polynomial Aκ,q(z) can be obtained. These members along with their notations, names and generating
functions are listed in Table 1.

Table 1. Certain members of q-Appell family.

S. No. Aq(τ) Generating Functions Polynomials

I. Aq(τ) =
τ

(eq(τ)−1)
τ

(eq(τ)−1) eq(zτ) = ∑∞
κ=0 Bκ,q(z) τκ

[κ]q ! The q-Bernoulli polynomials [2,18,19]

II. Aq(τ) =
[2]q

(eq(τ)+1)
[2]q

(eq(τ)+1) eq(zτ) = ∑∞
κ=0 Eκ,q(z) τκ

[κ]q ! The q-Euler polynomials [3,19,20]

III. Aq(τ) =
[2]qτ

(eq(τ)+1)
[2]qτ

(eq(τ)+1) eq(zτ) = ∑∞
κ=0 Gκ,q(z) τκ

[κ]q ! , The q-Genocchi polynomials [7,19,21]

In 1978, Roman and Rota [22] used the umbral calculus to define the sequence of Sheffer
polynomials whose their characteristics proved that this new proposed family of polynomials is
equivalent to the family of polynomials of type zero, which was previously introduced by Sheffer [23].
Later, Roman [24] proposed a similar umbral approach under the area of nonclassical umbral calculus
which is called q-umbral calculus. Recently, Kim et al. [5] introduced the q-Sheffer polynomials (qSP)
sκ,q(z) for (v(τ), u(τ)) by means of the following generation function:

1
v(u−1(τ))

eq(zu−1(τ)) =
∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
, for all z ∈ C, (17)

where u−1(τ) is the compositional inverse of u(τ).
In addition, the q-Sheffer polynomials may be alternatively defined as:

φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
, (18)

where

φq(τ) =
∞

∑
κ=0

φκ,q
τκ

[κ]q!
and H(τ) =

∞

∑
κ=0

Hκ,q
τκ

[κ]q!
. (19)

In view of Equations (17) and (18), we have

φq(τ) =
1

v(u−1(τ))
and H(τ) = u−1(τ). (20)

The q-Sheffer polynomials for the pair (φ(τ), τ)q is called the q-Appell polynomials Aκ,q(z) and
for the pair (1, H(τ))q becomes the q-associated Sheffer polynomials sκ,q(z).

Recently, Duran et al. [25] introduced the q-Hermite polynomials (qHP)Hκ,q(z) by means of the
following generating function:

eq([2]qzτ)eq(−τ2) =
∞

∑
κ=0
Hκ,q(z)

τκ

[κ]q!
. (21)

In [25], (p, q)-number is defined by [x]p,q = px−qx

p−q . It is worth noting that [x]p,q = c[x]q for some
constant c in p. Thus, there is no need to deal with the family of (p, q)-Sheffer–Appell polynomials.

In the present article, a new family of q-Sheffer–Appell polynomials (qSAP) is introduced by
means of generating functions, series and determinant definitions. Further, some results are obtained
for some members of this family. In the next section, the q-Sheffer–Appell polynomials are introduced
by means of the generating functions and series definition. In addition, the determinant definition and
many interesting properties of these q-hybrid special polynomials are derived. In Section 3, we consider
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some members of q-Sheffer–Appell polynomials and obtain the determinant definitions and some
other properties of these members. In Section 4, the class of 2D q-Sheffer–Appell polynomials (2DqSAP)
is also introduced. In Section 5, the graphs of some members of q-Sheffer–Appell polynomials and 2D
q-Sheffer–Appell polynomials are plotted for different values of indices by using Matlab.

2. q-Sheffer–Appell Polynomials

In this section, the generating function, series definition and determinant definition for the
q-Sheffer–Appell polynomials sAκ,q(z) are introduced.

To establish the generating function for the qSAP by making use of replacement technique,
the following result is proved:

Theorem 1. The following generating function for the q-Sheffer–Appell polynomials sAκ,q(z) holds true:

Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (22)

Proof. By expanding the q-exponential function eq(zτ) in the left hand side of Equation (15)
and then replacing the powers of z, i.e., z0, z, z2, ..., zκ , by the corresponding polynomials
s0,q(z), s1,q(z), s2,q(z), ..., sκ,q(z) in the left hand side and z by s1,q(z) in the right hand side of the
resultant equation, we have

Aq(τ)

(
1 + s1,q(z)

τ

[1]q!
+ s2,q(z)

τ2

[2]q!
+ ... + sκ,q(z)

τκ

[κ]q!
+ ...

)
=

∞

∑
κ=0
Aκ,q(s1,q(z))

τκ

[κ]q!
. (23)

Further, summing up the series in left hand side and then using Equation (18) in the resultant
equation, we get

Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0
Aκ,q(s1,q(z))

τκ

[κ]q!
. (24)

Finally, indicating resultant qSAP by sAκ,q(z), that is

Aκ,q(s1,q(z)) = sAκ,q(z), (25)

the assertion in Equation (22) is proved.

Next, we introduce the series definition for the qSAP sAκ,q(z) by proving the following result:

Theorem 2. The q-Sheffer–Appell polynomials sAκ,q(z) are defined by the following series definition:

sAκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Aν,q sκ−ν,q(z). (26)

Proof. In view of Equations (16) and (18), Equation (22) can be written as:

∞

∑
ν=0
Aν,q

τν

[ν]q!

∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
, (27)

which on using the Cauchy product rule [26] gives

∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

Aν,q sκ−ν,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (28)

Now, comparing the coefficients of identical powers of τ in above equation, we arrive at our
assertion in Equation (26).
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Theorem 3. The q-Sheffer–Appell polynomials sAκ,q(z) satisfy the following linear homogeneous
recurrence relation:

sAκ,q(z) =
1

[κ]q

κ

∑
ν=0

[
κ

ν

]
q

(αν + zβν)sAκ−ν,q(z), (29)

where

τ
Aq(qτ)

(
Dq,τφq(τ)

)
+ φq(τ)

(
Dq,τAq(τ)

)
Aq(τ)φq(τ)

=
∞

∑
κ=0

ακ
τκ

[κ]q!
,

τ
Aq(qτ)φq(qτ)

(
Dq,τ H(τ)

)
Aq(τ)φq(τ)

=
∞

∑
κ=0

βκ
τκ

[κ]q!
.

(30)

Proof. Consider the generating function

Fq(z, τ) = Aq(τ)φq(τ) eq(zH(τ)) =
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (31)

Taking the q-derivative of Equation (31) partially with respect to τ, we get

Dq,τ(Fq(z, τ)) = {Aq(qτ)
(

Dq,τφq(τ)
)
+ φq(τ)

(
Dq,τAq(τ)

)
}eq(zH(τ))

+z Aq(qτ)φq(qτ)
(

Dq,τ H(τ)
)
eq(zH(τ)) (32)

Now, factorizing Fq(z, τ) from its left hand side and after that multiplying both sides by τ,
it follows that

τDq,τ(Fq(z, τ))

= Fq(z, τ)

{
τ
Aq(qτ)φq(τ)

(
Dq,τAq(τ)

)(
Dq,τφq(τ)

)
Aq(τ)φq(τ)

+ zτ
Aq(qτ)φq(qτ)

(
Dq,τ H(τ)

)
Aq(τ)φq(τ)

}
. (33)

In view of the assumption in Equations (30) and (31), Equation (33) can be expressed as

∞

∑
κ=0

[κ]q sAκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!

{
∞

∑
κ=0

ακ
τκ

[κ]q!
+ z

∞

∑
κ=0

βκ
τκ

[κ]q!

}
, (34)

which on using the Cauchy product rule, gives

∞

∑
κ=0

[κ]q sAκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

(αν + zβν)sAκ−ν,q(z)
τκ

[κ]q!
. (35)

Finally, equating the coefficients of identical powers of τ in above equation and after that dividing
both sides of the resultant equation by [κ]q, we get the assertion in Equation (29).

Due to the importance of determinant form for the computational and applied purposes, we derive
the determinant definition for the qSAP sAκ,q(z).

Theorem 4. The q-Sheffer–Appell polynomials sAκ,q(z) of degree κ are defined by
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sA0,q(z) =
1
B0,q

, (36)

sAκ,q(z) =
(−1)κ

(B0,q)κ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 s1,q(z) s2,q(z) ... sκ−1,q(z) sκ,q(z)

B0,q B1,q B2,q ... Bκ−1,q Bκ,q

0 B0,q [21]qB1,q ... [κ−1
1 ]qBκ−2,q [κ1]qBκ−1,q

0 0 B0,q ... [κ−1
2 ]qBκ−3,q [κ2]qBκ−2,q

. . . ... . .

. . . ... . .
0 0 0 ... B0,q [ κ

κ−1]qB1,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (37)

Bκ,q = − 1
A0,q

( κ

∑
ν=1

[
κ

ν

]
q

Aν,qBκ−ν,q

)
, κ = 1, 2, 3, ...,

where B0,q 6= 0, B0,q = 1
A0,q

and sκ,q(z)(κ = 0, 1, 2, ..., ) are the q-Sheffer polynomials of degree κ.

Proof. Consider sAκ,q(z) to be a sequence of the qSAP defined by Equation (22) and Aκ,q, Bκ,q be two
numerical sequences (the coefficients of q-Taylor’s series expansions of functions) such that

Aq(τ) = A0,q +A1,q
τ

[1]q!
+A2,q

τ2

[2]q!
+ ... +Aκ,q

τκ

[κ]q!
+ ..., κ = 0, 1, 2, 3, ...; A0,q 6= 0, (38)

Âq(τ) = B0,q + B1,q
τ

[1]q!
+ B2,q

τ2

[2]q!
+ ... + Bκ,q

τκ

[κ]q!
+ ..., κ = 0, 1, 2, 3, ...; B0,q 6= 0, (39)

satisfying
Aq(τ)Âq(τ) = 1. (40)

On using Cauchy product rule for the two series production Aq(τ)Âq(τ), we get

Aq(τ)Âq(τ) =
∞

∑
κ=0
Aκ,q

τκ

[κ]q!

∞

∑
κ=0
Bκ,q

τκ

[κ]q!

=
∞

∑
κ=0

κ

∑
ν=0

[
κ

ν

]
q

Aν,qBκ−ν,q
τκ

[κ]q!
.

Consequently,
κ

∑
ν=0

[
κ

ν

]
q

Aν,qBκ−ν,q =

{
1, i f κ = 0,

0, i f κ > 0.
(41)

That is, B0,q = 1
A0,q

,

Bκ,q = − 1
A0,q

{
∑κ

ν=1 [
κ
ν]qAν,qBκ−ν,q

}
, κ = 0, 1, 2, ...

(42)

Next, multiplying both sides of Equation (22) by Âq(t), we get

Aq(τ)Âq(τ)φq(τ) eq(zH(τ)) = Âq(τ)
∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (43)

Further, in view of Equations (18), (39) and (40), the above equation can be expressed as
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∞

∑
κ=0

sκ,q(z)
τκ

[κ]q!
=

∞

∑
κ=0
Bκ,q

τκ

[κ]q!

∞

∑
κ=0

sAκ,q(z)
τκ

[κ]q!
. (44)

Now, on using Cauchy product rule for the two series in the right hand side of Equation (44), we
obtain the following infinite system for the unknowns sAκ,q(z):

B0,q sA0,q(z) = 1,

B1,q sA0,q(z) + B0,q sA1,q(z) = s1,q(z)

B2,q sA0,q(z) + [21]qB1,q sA1,q(z) + B0,q sA2,q(z) = s2,q(z),
...

Bκ−1,q sA0,q(z) + [κ−1
1 ]qBκ−2,q sA1,q(z) + ... + B0,q sAκ−1,q(z) = sκ−1,q(z),

Bκ,q sA0,q(z) + [κ1]qBκ−1,q sA1,q(z) + ... + B0,q sAκ,q(z) = sκ,q(z),
...

(45)

Obviously, the first equation of the system in Equation (45) leads to our first assertion in
Equation (36). The coefficient matrix of the system in Equation (45) is lower triangular, thus this
assist us to obtain the unknowns sAκ,q(z) by applying Cramer rule to the first κ + 1 equations of the
system in Equation (45). According to this, we can obtain

sAκ,q(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 ... 0 1

B1,q B0,q 0 ... 0 s1,q(z)

B2,q [21]qB1,q B0,q ... 0 s2,q(z)
. . . ... . .
. . . ... . .

Bκ−1,q [κ−1
1 ]qBκ−2,q [κ−1

2 ]qBκ−3,q ... B0,q sκ−1,q(z)

Bκ,q [κ1]qBκ−1,q [κ2]qBκ−2,q ... [ κ
κ−1]qB1,q sκ,q(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q 0 0 ... 0 1

B1,q B0,q 0 ... 0 0

B2,q [21]qB1,q B0,q ... 0 0
. . . ... . .
. . . ... . .
Bκ−1,q [κ−1

1 ]qBκ−2,q [κ−1
2 ]qBκ−3,q ... B0,q 0

Bκ,q [κ1]qBκ−1,q [κ2]qBκ−2,q ... [ κ
κ−1]qB1,q B0,q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(46)

where κ = 1, 2, 3, ..., which on expanding the determinant in the denominator and taking the transpose
of the determinant in the numerator, yields to
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sAκ,q(z) =
1

(B0,q)κ+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B0,q B1,q B2,q ... Bκ−1,q Bκ,q

0 B0,q [21]qB1,q ... [κ−1
1 ]qBκ−2,q [κ1]qBκ−1,q

0 0 B0,q ... [κ−1
2 ]qBκ−3,q [κ2]qBκ−2,q

. . . ... . .

. . . ... . .
0 0 0 ... B0,q [ κ

κ−1]qB1,q

1 s1,q(z) s2,q(z) ... sκ−1,q(z) sκ,q(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (47)

Finally, after κ circular row exchanges, i.e., after moving the jth row to the (j + 1)th position for
j = 1, 2, 3, ..., κ − 1, we arrive at our assertion in Equation (37).

Theorem 5. The following identity for the qSAP sAκ,q(z) holds true:

sAκ,q(z) =
1
B0,q

(
sκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q sAν,q(z)
)

, κ = 1, 2, .... (48)

Proof. Expanding the determinant in Equation (37) with respect to the (κ + 1)th row and using a
similar approach used in ([27], Theorem 3.1), the assertion in Equation (48) is proved.

3. Examples

Several members belonging to the q-Sheffer–Appell family sAκ,q(z) can be derived by making
suitable selections for the functions Aq(τ), φq(τ) and H(τ). The q-Hermite polynomials (qHP)
Hκ,q(z) [25] are one of the important members of q-Sheffer family. In addition, the q-Bernoulli
polynomials Bκ,q(z), q-Euler polynomials Eκ,q(z) and q-Genocchi polynomials Gκ,q(z) are considerable
members of the q-Appell family. In this section, we introduce the q-Hermite–Bernoulli polynomials

HBκ,q(z), q-Hermite–Euler polynomials HEκ,q(z) and q-Hermite–Genocchi polynomials HGκ,q(z)
by means of the generating functions, series definitions and also explore other properties of
these members.

3.1. q-Hermite–Bernoulli Polynomials

Since, for Aq(τ) = τ
eq(τ)−1 , the qAP Aκ,q(z) reduce to the qBP Bκ,q(z) (Table 1(I)) and for

φq(τ) = eq(−τ2), H(τ) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of
Aq(τ), φq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHBP HBκ,q(z). In view of Equation (22),
the generating function for the qHBP HBκ,q(z) is given as:

τ

eq(τ)− 1
eq([2]qzτ)eq(−τ2) =

∞

∑
κ=0

HBκ,q(z)
τκ

[κ]q!
. (49)

In view of Equation (26), the qHBP HBκ,q(z) of degree κ are defined by the series:

HBκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Bν,qHκ−ν,q(z). (50)

In view of Equation (48), the following identity for the qHBP HBκ,q(z) holds true:

HBκ,q(z) =
1
B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HBν,q(z)
)

, κ = 1, 2, .... (51)
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Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
[j+1]q

(j = 1, 2, 3, ...) in Equations (36)
and (37), we obtain the determinant definition of the qHBP HBκ,q(z) given as:

Definition 1. The q-Hermite–Bernoulli polynomials HBκ,q(z) of degree κ are defined by

HB0,q(z) = 1, (52)

HBκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) Hκ,q(z)

1 1
[2]q

1
[3]q

... 1
[κ]q

1
[κ+1]q

0 1 [21]q
1

[2]q
... [κ−1

1 ]q
1

[κ−1]q
[κ1]q

1
[κ]q

0 0 1 ... [κ−1
2 ]q

1
[κ−2]q

[κ2]q
1

[κ−1]q
. . . ... . .
. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1

[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (53)

κ = 1, 2, 3, ...,

whereHκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 6. The q-Hermite–Bernoulli polynomials HBκ,q(z) satisfy the following q-recurrence relations:

Dq,zHBκ,q(z) = [2]q[κ]qHBκ−1,q(z), (54)

D(k)
q,zHBκ,q(z) =

[2]kq[κ]q!
[κ − k]q!H

Bκ−k,q(z). (55)

Proof. Applying the q-derivative with respect to z to both sides of Equation (49), we get

∞

∑
κ=0

Dq,zHBκ,q(z)
τκ

[κ]q!
= [2]qτ

τ

eq(t)− 1
eq([2]qzτ)eq(−τ2)

= [2]q
∞

∑
κ=0

[κ]qHBκ−1,q(z)
τκ

[κ]q!
. (56)

Now, equating the coefficient of like powers of τ in both sides of the above equation, we get the
assertion in Equation (54). Similarly, on applying the q-derivative with respect to z to both sides of
Equation (49) k times, we get the assertion in Equation (55).

3.2. q-Hermite–Euler Polynomials

Since, forAq(τ) =
[2]q

eq(τ)+1 , the qAPAκ,q(z) reduce to the qEP Eκ,q(z) (Table 1(II)) and for φq(τ) =

eq(−τ2), H(t) = [2]qτ the qSP sκ,q(z) reduce to qHPHκ,q(z), for the same choices of Aq(τ), φq(τ) and
H(τ), the qSAP sAκ,q(z) reduce to qHEP HEκ,q(z). In view of Equation (22), the generating function
for the qHEP HEκ,q(z) is given as:

[2]q
eq(τ) + 1

eq([2]qzτ)eq(−τ2) =
∞

∑
κ=0

HEκ,q(z)
τκ

[κ]q!
. (57)

In view of Equation (26), the qHEP HEκ,q(z) of degree κ are defined by the series:

HEκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Eν,qHκ−ν,q(z). (58)
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In view of Equation (48), the following identity for the qHEP HEκ,q(z) holds true:

HEκ,q(z) =
1
B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HEν,q(z)
)

, κ = 1, 2, .... (59)

Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
2 (j = 1, 2, 3, ...) in

Equations (36) and (37), we obtain the determinant definition of the qHEP HEκ,q(z) given as:

Definition 2. The q-Hermite–Euler polynomials HEκ,q(z) of degree κ are defined by

HE0,q(z) = 1, (60)

HEκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) Hκ,q(z)

1 1
2

1
2 ... 1

2
1
2

0 1 [21]q
1
2 ... [κ−1

1 ]q
1
2 [κ1]q

1
2

0 0 1 ... [κ−1
2 ]q

1
2 [κ2]q

1
2

. . . ... . .

. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (61)

κ = 1, 2, 3, ...,

whereHκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 7. The q-Hermite–Euler polynomials HEκ,q(z) satisfy the following q-recurrence relations:

Dq,zHEκ,q(z) = [2]q[κ]qHEκ−1,q(z), (62)

D(k)
q,zHEκ,q(z) =

[2]kq[κ]q!
[κ − k]q!H

Eκ−k,q(z). (63)

Proof. Using a similar approach used in the proof of Theorem 6, we are led to the assertions in
Equations (62) and (63).

3.3. q-Hermite–Genocchi Polynomials

Since, for Aq(τ) =
[2]qτ

eq(τ)+1 , the qAP Aκ,q(z) reduce to the qGP Gκ,q(z) (Table 1(III)) and for

φq(τ) = eq(−τ2), H(t) = [2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of
Aq(τ), φq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHGP HGκ,q(z) which in view of Equation (22)
can be defined by means of following generating functions:

[2]q τ

eq(τ) + 1
eq([2]qzτ)eq(−τ2) =

∞

∑
κ=0

HGκ,q(z)
τκ

[κ]q!
. (64)

In view of Equation (26), the qHGP HGκ,q(z) of degree κ are defined by the series:

HGκ,q(z) =
κ

∑
ν=0

[
κ

ν

]
q

Gν,qHκ−ν,q(z). (65)

In view of Equation (48), the following identity for the qHGP HGκ,q(z) holds true:

HGκ,q(z) =
1
B0,q

(
Hκ,q(z)−

κ−1

∑
ν=0

[
κ

ν

]
q

Bκ−ν,q HGν,q(z)
)

, κ = 1, 2, .... (66)
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Further, by taking sκ,q(z) = Hκ,q(z), B0,q = 1 and Bj,q = 1
2[j+1]q

(j = 1, 2, 3, ...) in Equations (36)
and (37), we obtain the determinant definition of the qHGP HGκ,q(z) given as:

Definition 3. The q-Hermite–Genocchi polynomials HGκ,q(z) of degree κ are defined by

HG0,q(z) = 1, (67)

HGκ,q(z) = (−1)κ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) ... Hκ−1,q(z) H1,q(z)

1 1
2[2]q

1
2[3]q

... 1
2[κ]q

1
2[κ+1]q

0 1 [21]q
1

2[2]q
... [κ−1

1 ]q
1

2[κ−1]q
[κ1]q

1
2[κ]q

0 0 1 ... [κ−1
2 ]q

1
2[κ−2]q

[κ2]q
1

2[κ−1]q
. . . ... . .
. . . ... . .
0 0 0 ... 1 [ κ

κ−1]q
1

2[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (68)

κ = 1, 2, 3, ...,

whereHκ,q(z)(κ = 0, 1, 2, 3, ...) are the q-Hermite polynomials of degree κ.

Theorem 8. The q-Hermite–Genocchi polynomials HGκ,q(z) satisfy the following q-recurrence relations:

Dq,zHGκ,q(z) = [2]q[κ]qHGκ−1,q(z), (69)

D(k)
q,zHGκ,q(z) =

[2]kq[κ]q!
[κ − k]q!H

Gκ−k,q(z). (70)

Proof. Using a similar approach used in the proof of Theorem 6, we are led to the assertions in
Equations (69) and (70).

In the next section, we introduce a new class of the 2D q-Sheffer–Appell polynomials by means of
generating function and series representation.

4. 2D q-Sheffer–Appell Polynomials

Recently, Keleshteri and Mahmudov [27] introduced the 2D q-Appell polynomials (2DqAP)
{Aκ,q(z1, z2)}∞

κ=0, which are defined by means of the generating functions:

Aq(τ) eq(z1τ)Eq(z2τ) =
∞

∑
κ=0
Aκ,q(z1, z2)

τκ

[κ]q!
, 0 < q < 1, (71)

where

Aq(τ) =
∞

∑
κ=0
Aκ,q

τκ

[κ]q!
, Aq(τ) 6= 0; A0,q = 1 (72)

and Aκ,q := Aκ,q(0, 0) denotes the 2D q-Appell numbers.
Some members of the 2D q-Appell polynomials are listed in Table 2.
The approach used in the previous section is further exploited to introduce the 2D

q-Sheffer–Appell polynomials (2DqSAP) and the focus is on deriving its generating functions and
series definitions.
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Table 2. Some members of 2D q-Appell polynomials.

S. No. Aq(τ) Generating Functions Polynomials

I. Aq(τ) =
τ

(eq(τ)−1)
τ

(eq(τ)−1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Bκ,q(z1, z2)

τκ

[κ]q ! The 2D q-Bernoulli polynomials [21,28]

II. Aq(τ) =
[2]q

(eq(τ)+1)
[2]q

(eq(τ)+1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Eκ,q(z1, z2)

τκ

[κ]q ! The 2D q-Euler polynomials [21,28]

III. Aq(τ) =
[2]qτ

(eq(τ)+1)
[2]qτ

(eq(τ)+1) eq(z1τ)Eq(z2τ) = ∑∞
κ=0 Gκ,q(z1, z2)

τκ

[κ]q ! , The 2D q-Genocchi polynomials [21,28]

To establish the generating function for the 2DqSAP, the following result is proved:

Theorem 9. The following generating function for the 2D q-Sheffer–Appell polynomials sAκ,q(z1, z2)

holds true:

Aq(τ)φq(τ) eq(z1H(τ))Eq(z2τ) =
∞

∑
κ=0

sAκ,q(z1, z2)
τκ

[κ]q!
. (73)

Proof. By expanding the first q-exponential function eq(z1τ) in the left hand side of Equation (71)
and then replacing the powers of z1 i.e., z0

1, z1, z2
1, ..., zκ

1 by the corresponding polynomials
s0,q(z1), s1,q(z1), s2,q(z1), ..., sκ,q(z1) in the left hand side and z1 by s1,q(z1) in the right hand side
of the resultant equation, we have

Aq(τ)

(
1 + s1,q(z1)

τ

[1]q!
+ s2,q(z1)

τ2

[2]q!
+ ... + sκ,q(z1)

τκ

[κ]q!
+ ...

)
Eq(z2τ) =

∞

∑
κ=0
Aκ,q(s1,q(z1), z2)

τκ

[κ]q!
. (74)

Further, summing up the series in left hand side and then using Equation (18) in the resultant
equation, we get

Aq(τ)φq(τ) eq(z1H(τ))Eq(z2τ) =
∞

∑
κ=0
Aκ,q(s1,q(z1), z2)

τκ

[κ]q!
. (75)

Finally, denoting the resultant qSAP in the right hand side of the above equation by sAκ,q(z1, z2),
that is

Aκ,q(s1,q(z1), z2) = sAκ,q(z1, z2), (76)

the assertion in Equation (22) is proved.

Theorem 10. The 2D q-Sheffer–Appell polynomials sAκ,q(z1, z2) are defined by the following series definitions:

sAκ,q(z1, z2) =
κ

∑
ν=0

[
κ

ν

]
q

q
ν(ν−1)

2 zν
2sAκ,q(z1). (77)

Proof. Using Equations (11) and (1) in Equation (73), we get

∞

∑
κ=0

sAκ,q(z1)
τκ

[κ]q!

∞

∑
ν=0

q
ν(ν−1)

2 zν
2

τν

[ν]q!
=

∞

∑
κ=0

sAκ,q(z1, z2)
τκ

[κ]q!
. (78)

Now, using the Cauchy product rule in the left hand side of the above equation and then equating
the coefficients of like powers of τ in both sides of the resultant equation, we get the assertion in
Equation (77).

Since for φq(τ) = eq(−τ2), H(τ) = [2]qτ the qSP sκ,q(z) reduce to qHPHκ,q(z), by making same
choices for the functions φq(τ) and H(τ) in Equations (73) and (77), we get
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Aq(τ)eq([2]qz1τ)eq(−τ2)Eq(z2τ) =
∞

∑
κ=0

HAκ,q(z1, z2)
τκ

[κ]q!
, (79)

HAκ,q(z1, z2) =
κ

∑
ν=0

[
κ

ν

]
q

q
ν(ν−1)

2 zν
2HAκ,q(z1). (80)

Certain members belonging to the 2D q-Appell family are given in Table 2. By making suitable
choices for the functions Aq(t) in Equations (79) and (80), the generating functions and series
definitions for the corresponding member belonging to the 2D q-Hermite–Appell family can be
obtained. The resultant 2D q-Hermite–Appell polynomials (2DqHAP) along with their generating
functions and series definitions are given in Table 3.

Table 3. Certain members belonging to the 2DqHAP HAκ,q(z1, z2).

S. No. Aq(τ) Generating Functions Series Definition Polynomials

I. τ
(eq(τ)−1)

τ
(eq(τ)−1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HBκ,q(z1, z2) The 2D q-Hermite–Bernoulli

= ∑∞
κ=0 HBκ,q(z1, z2)

τκ

[κ]q ! = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HBκ−ν,q(z1) polynomials

II. [2]q
(eq(τ)+1)

[2]q
(eq(τ)+1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HEκ,q(z1, z2) The 2D q-Hermite–Euler

= ∑∞
κ=0 HEκ,q(z1, z2)

τκ

[κ]q ! = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HEκ−ν,q(z1) polynomials

III. [2]qτ
(eq(τ)+1)

[2]qτ
(eq(τ)+1) eq([2]qz1τ)eq(−τ2)Eq(z2τ) HGκ,q(z1, z2) The 2D q-Hermite–Genocchi

= ∑∞
κ=0 HGκ,q(z1, z2)

τκ

[κ]q ! , = ∑κ
ν=0 [

κ
ν]qq

ν(ν−1)
2 zν

2HGκ−ν,q(z1) polynomials

5. Graphical Representation

In this section, the shapes of some members of the q-Sheffer–Appell polynomials and 2D
q-Sheffer–Appell polynomials are displayed with the help of Matlab.

To draw the graphs of qHBP HBκ,q(z), qHEP HEκ,q(z) and qHGP HGκ,q(z), we considered the
first four values of q-Hermite polynomials Hκ,q(z) [25]; the expressions of these polynomials are listed
in Table 4.

Table 4. Expressions of the first fourHκ,q(z).

κ 0 1 2 3

Hκ,q(z) 1 [2]qz [2]2qz2 − [2]q [2]3qz3 − [3]q[2]2qz

Next, setting κ = 3 in the determinant definitions in Equations (53), (61) and (68), we have

HB3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
[2]q

1
[3]q

1
[4]q

0 1 [21]q
1

[2]q
[31]q

1
[3]q

0 0 1 [32]q
1

[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (81)

HE3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
2

1
2

1
2

0 1 [21]q
1
2 [31]q

1
2

0 0 1 [32]q
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(82)
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and

HG3,q(z) = (−1)3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 H1,q(z) H2,q(z) H3,q(z)

1 1
2[2]q

1
2[3]q

1
2[4]q

0 1 [21]q
1

2[2]q
[31]q

1
2[3]q

0 0 1 [32]q
1

2[2]q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (83)

Now, taking q = 1
3 and using the expressions of theHκ,q(z) in Table 4, Equations (81)–(83) become

HB3, 1
3
(z) =

64
27

z3 − 52
27

z2 − 103
9

z +
1049
720

, (84)

HE3, 1
3
(z) =

64
27

z3 − 104
81

z2 − 26
9

z +
17
18

, (85)

HG3, 1
3
(z) =

64
27

z3 +
11
27

z2 − 931
324

z− 2129
5760

. (86)

Similarly, we can obtain the values of HBκ,q(z),HEκ,q(z) and HGκ,q(z) for κ = 1, 2 and q = 1
3 as:

For κ = 2, we get

HB2, 1
3
(z) =

16
9

z2 − 4
3

z− 199
156

, (87)

HE2, 1
3
(z) =

16
9

z2 − 8
9

z− 3
2

, (88)

HG2, 1
3
(z) =

16
9

z2 − 2
3

z− 931
624

. (89)

For κ = 1, we get

HB1, 1
3
(z) = −3

4
+

4
3

z, (90)

HE1, 1
3
(z) = −1

2
+

4
3

z, (91)

HG1, 1
3
(z) = −3

8
+

4
3

z. (92)

Further, setting κ = 3, q = 1
3 in the series definitions of HBκ,q(z1, z2),HEκ,q(z1, z2) and

HGκ,q(z1, z2) given in Table 3 and using the expressions of HBκ,q(z), HEκ,q(z) and HGκ,q(z) for
κ = 1, 2, 3 from Equations (84)–(92), we have

HB3, 1
3
(z1, z2) =

64
27

z3
1 −

52
27

z2
1 −

103
9

z1 +
1049
720

+
304
27

z2
1z2 −

76
9

z1z2 −
3781
468

z2

−19
36

z2
2 +

76
81

z1z2
2 +

1
729

z3
2, (93)

HE3, 1
3
(z1, z2) =

64
27

z3
1 −

104
81

z2
1 −

26
9

z1 +
17
18

+
304
27

z2
1z2 −

152
27

z1z2 −
19
2

z2 −
19
54

z2
2

+
76
81

z1z2
2 +

1
729

z3
2, (94)

HG3, 1
3
(z1, z2) =

64
27

z3
1 +

11
27

z2
1 −

931
324

z1 −
2129
5760

+
304
27

z2
1z2 −

38
9

z1z2 −
17689
1872

z2

−19
72

z2
2 +

76
81

z1z2
2 +

1
729

z3
2. (95)

Now, with the help of Matlab and using Equations (52), (60), (67), (84)–(95), we get the
following Figures 1–6.
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Figure 1. Graph of HBκ,q(z).
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Figure 2. Graph of HEκ,q(z).
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Figure 3. Graph of HGκ,q(z).

−5

0

5

−5

0

5

−2000

−1000

0

1000

2000

Figure 4. Surface plot of HB3, 1
3
(z1, z2).



Symmetry 2019, 11, 159 17 of 19

−5

0

5

−5

0

5

−2000

−1000

0

1000

2000

Figure 5. Surface plot of HE3, 1
3
(z1, z2).

−5

0

5

−5

0

5

−2000

−1000

0

1000

2000

Figure 6. Surface plot of HG3, 1
3
(z1, z2).

6. Further Remarks

It is worth noting that the results derived in the previous sections can be exploited to establish
further new relations.
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Let us consider the following relation

[2]−κ
q Dκ

q,zeq(−[2]qzτ) = (−τ)κeq(−[2]qzτ), (96)

which, on replacing κ by 2κ and multiplying both sides of the resultant equation by 1
[κ]q! , gives

1
[κ]q!

[2]−2κ
q D2κ

q,zeq(−[2]qzτ) =
1

[κ]q!
(−τ)2κeq(−[2]qzτ). (97)

Now, taking summation on both sides of the above equation and then multiplying both sides of
the resultant equation by τ

eq(τ)−1 and using Equation (49), we get

∞

∑
κ=0

HBκ,q(x)
τκ

[κ]q!
=

τ

eq(τ)− 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (98)

where x = −z.
Similarly, we can obtain the following results:

∞

∑
κ=0

HEκ,q(x)
τκ

[κ]q!
=

[2]q
eq(τ) + 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (99)

∞

∑
κ=0

HGκ,q(x)
τκ

[κ]q!
=

[2]q τ

eq(τ) + 1

∞

∑
κ=0

[2]−2κ
q

[κ]q!
D2κ

q,zeq([2]qxτ), (100)

where x = −z.

7. Conclusions

We would like to underline that the q-series and q-polynomials have many applications in different
fields of mathematics, physics and engineering. In the present article, we demonstrate how a new
replacement technique has been adopted to introduce mixed type q-special polynomials and different
method to establish their q-recurrence relation.

To extend this new and significant approach, the hybrid class of the q-Sheffer–Appell polynomials
and 2D q-Sheffer–Appell polynomials are introduced by means of series expansion and generating
functions. The determinant form related to q-Sheffer–Appell polynomials are derived, which are
important for the computational and applied purposes. This process can be used to establish further a
wide variety of formulas and new relations for several other q-special polynomials.

The q-difference equation for the two iterated q-Appell and mixed type q-Appell polynomials are
established in [29,30]. This aspect may be considered in future investigation.
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