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Abstract

:

In this paper, the class of q-Sheffer–Appell polynomials is introduced. The generating function, series definition, determinant definition and some other identities of this class are established. Certain members of q-Sheffer–Appell polynomials are investigated and some properties of these members are derived. In addition, the class of 2D q-Sheffer–Appell polynomials is introduced. Further, the graphs of some members of q-Sheffer–Appell polynomials and 2D q-Sheffer–Appell polynomials are plotted for different values of indices by using Matlab.
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1. Introduction and Preliminaries


The subject of q-calculus leads to a new method for computations and classifications of q-special functions. It was launched in the 1920s. However, it has gained importance and considerable popularity during the last three decades [1,2,3,4,5,6,7,8,9]. In the last decades, q-calculus has been developed into an interdisciplinary subject and served as a bridge between physics and mathematics. The recent interest in the subject is due to the fact that q-series has popped in such various areas as quantum groups, statistical mechanics, transcendental number theory, etc. The definitions and notations of q-calculus reviewed here are taken from [10] (see also [11,12]).



The q-analog of the Pochhammer symbol (δ)κ, also called a q-shifted factorial, are defined by


(δ;q)0=1,(δ;q)κ=∏r=0κ−1(1−δqr),κ∈N,δ∈C.



(1)







The q-analogs of a complex number δ and of the factorial function are given as follows:


[δ]q=1−qδ1−q,q∈C−{1},δ∈C,



(2)






[κ]q=∑ν=1κqν−1,[0]q=0,[κ]q!=∏ν=1κ[ν]q=[1]q[2]q[3]q…[κ]q,[0]q!=1,κ∈N,q∈C∖{0,1}.



(3)







The q-binomial coefficients κνq are defined by


κνq=(q;q)κ(q;q)ν(q;q)κ−ν=[κ]q![ν]q![κ−ν]q!,ν=0,1,2,…,κ.



(4)







The q-analog of the classical derivative Du of a function u at a point 0≠τ∈C is given as


Dqu(τ)=u(τ)−u(qτ)τ−qτ,0<|q|<1,τ≠0.



(5)







In addition, we note that


(i)limq→0Dqu(τ)=du(τ)dτ,whereddτdenotestheclassicalordinaryderivative,



(6)






(ii)Dq(a1u(τ)+a2v(τ))=a1Dqu(τ)+a2Dqv(τ),



(7)






(iii)Dq(uv)(τ)=u(qτ)Dqv(τ)+v(τ)Dqu(τ)=u(τ)Dqv(τ)+Dqu(τ)v(qτ),



(8)






(vi)Dqu(τ)v(τ)=v(τ)Dqu(τ)−u(τ)Dqv(τ)v(τ)v(qτ)=v(qτ)Dqu(τ)−u(qτ)Dqv(τ)v(τ)v(qτ).



(9)







The q-exponential functions eq(τ) and Eq(τ) are defined as:


eq(τ)=∑κ=0∞τκ[κ]q!:=1((1−q)τ;q)∞,0<|q|<1,|τ|<|1−q|−1,



(10)






Eq(τ)=∑κ=0∞q12κ(κ−1)τκ[κ]q!:=(−(1−q);q)∞,0<|q|<1,τ∈C.



(11)




which satisfy the following properties:


Dqeq(τ)=eq(τ),DqEq(τ)=Eq(qτ),



(12)






eq(τ)Eq(−τ)=Eq(τ)eq(−τ)=1.



(13)







The class of Appell polynomials was introduced and characterized completely by Appell [13]. Further, Throne [14], Sheffer [15] and Varma [16] studied this class of polynomials from different point of views. Sharma and Chak [17] introduced a q-analog for the class of Appell polynomials and called this sequence of polynomials as q-Harmonic. Later, Al-Salam [1] established the class of q-Appell polynomials {Aκ,q(z)}κ=0∞ and investigated some of its properties. These polynomials appear in several problems of theoretical physics, applied mathematics, approximation theory and many other branches of mathematics. The polynomials Aκ,q(z) (of degree κ) are called q-Appell polynomials provided that they satisfy the following q-differential equation


Dq,z{Aκ,q(z)}=[κ]qAκ−1,q(z),κ=0,1,2,3,…;q∈C,0<|q|<1.



(14)







The generating function for the q-Appell polynomials Aκ,q(z) is given as:


Aq(τ)eq(zτ)=∑κ=0∞Aκ,q(z)τκ[κ]q!,



(15)




where


Aq(τ)=∑κ=0∞Aκ,qτκ[κ]q!,Aq(τ)≠0;A0,q=1,



(16)




is an analytic function at τ=0 and Aκ,q:=Aκ,q(0) denotes the q-Appell numbers.



We note that the function Aq(τ) is called the determining function for the set Aκ,q(z). Based on suitable selection for the function Aq(τ), different members belonging to the family of q-Appell polynomial Aκ,q(z) can be obtained. These members along with their notations, names and generating functions are listed in Table 1.



In 1978, Roman and Rota [22] used the umbral calculus to define the sequence of Sheffer polynomials whose their characteristics proved that this new proposed family of polynomials is equivalent to the family of polynomials of type zero, which was previously introduced by Sheffer [23]. Later, Roman [24] proposed a similar umbral approach under the area of nonclassical umbral calculus which is called q-umbral calculus. Recently, Kim et al. [5] introduced the q-Sheffer polynomials (qSP) sκ,q(z) for (v(τ),u(τ)) by means of the following generation function:


1v(u−1(τ))eq(zu−1(τ))=∑κ=0∞sκ,q(z)τκ[κ]q!,forallz∈C,



(17)




where u−1(τ) is the compositional inverse of u(τ).



In addition, the q-Sheffer polynomials may be alternatively defined as:


ϕq(τ)eq(zH(τ))=∑κ=0∞sκ,q(z)τκ[κ]q!,



(18)




where


ϕq(τ)=∑κ=0∞ϕκ,qτκ[κ]q!andH(τ)=∑κ=0∞Hκ,qτκ[κ]q!.



(19)







In view of Equations (17) and (18), we have


ϕq(τ)=1v(u−1(τ))andH(τ)=u−1(τ).



(20)







The q-Sheffer polynomials for the pair (ϕ(τ),τ)q is called the q-Appell polynomials Aκ,q(z) and for the pair (1,H(τ))q becomes the q-associated Sheffer polynomials sκ,q(z).



Recently, Duran et al. [25] introduced the q-Hermite polynomials (qHP) Hκ,q(z) by means of the following generating function:


eq([2]qzτ)eq(−τ2)=∑κ=0∞Hκ,q(z)τκ[κ]q!.



(21)







In [25], (p,q)-number is defined by [x]p,q=px−qxp−q. It is worth noting that [x]p,q=c[x]q for some constant c in p. Thus, there is no need to deal with the family of (p,q)-Sheffer–Appell polynomials.



In the present article, a new family of q-Sheffer–Appell polynomials (qSAP) is introduced by means of generating functions, series and determinant definitions. Further, some results are obtained for some members of this family. In the next section, the q-Sheffer–Appell polynomials are introduced by means of the generating functions and series definition. In addition, the determinant definition and many interesting properties of these q-hybrid special polynomials are derived. In Section 3, we consider some members of q-Sheffer–Appell polynomials and obtain the determinant definitions and some other properties of these members. In Section 4, the class of 2D q-Sheffer–Appell polynomials (2DqSAP) is also introduced. In Section 5, the graphs of some members of q-Sheffer–Appell polynomials and 2D q-Sheffer–Appell polynomials are plotted for different values of indices by using Matlab.




2. q-Sheffer–Appell Polynomials


In this section, the generating function, series definition and determinant definition for the q-Sheffer–Appell polynomials sAκ,q(z) are introduced.



To establish the generating function for the qSAP by making use of replacement technique, the following result is proved:

Theorem 1.

The following generating function for the q-Sheffer–Appell polynomials sAκ,q(z) holds true:


Aq(τ)ϕq(τ)eq(zH(τ))=∑κ=0∞sAκ,q(z)τκ[κ]q!.



(22)











Proof. 

By expanding the q-exponential function eq(zτ) in the left hand side of Equation (15) and then replacing the powers of z, i.e., z0,z,z2,…,zκ, by the corresponding polynomials s0,q(z),s1,q(z),s2,q(z),…,sκ,q(z) in the left hand side and z by s1,q(z) in the right hand side of the resultant equation, we have


Aq(τ)1+s1,q(z)τ[1]q!+s2,q(z)τ2[2]q!+…+sκ,q(z)τκ[κ]q!+…=∑κ=0∞Aκ,q(s1,q(z))τκ[κ]q!.



(23)







Further, summing up the series in left hand side and then using Equation (18) in the resultant equation, we get


Aq(τ)ϕq(τ)eq(zH(τ))=∑κ=0∞Aκ,q(s1,q(z))τκ[κ]q!.



(24)







Finally, indicating resultant qSAP by sAκ,q(z), that is


Aκ,q(s1,q(z))=sAκ,q(z),



(25)




the assertion in Equation (22) is proved. □





Next, we introduce the series definition for the qSAP sAκ,q(z) by proving the following result:

Theorem 2.

The q-Sheffer–Appell polynomials sAκ,q(z) are defined by the following series definition:


sAκ,q(z)=∑ν=0κκνqAν,qsκ−ν,q(z).



(26)











Proof. 

In view of Equations (16) and (18), Equation (22) can be written as:


∑ν=0∞Aν,qτν[ν]q!∑κ=0∞sκ,q(z)τκ[κ]q!=∑κ=0∞sAκ,q(z)τκ[κ]q!,



(27)




which on using the Cauchy product rule [26] gives


∑κ=0∞∑ν=0κκνqAν,qsκ−ν,q(z)τκ[κ]q!=∑κ=0∞sAκ,q(z)τκ[κ]q!.



(28)







Now, comparing the coefficients of identical powers of τ in above equation, we arrive at our assertion in Equation (26). □





Theorem 3.

The q-Sheffer–Appell polynomials sAκ,q(z) satisfy the following linear homogeneous recurrence relation:


sAκ,q(z)=1[κ]q∑ν=0κκνq(αν+zβν)sAκ−ν,q(z),



(29)




where


τAq(qτ)Dq,τϕq(τ)+ϕq(τ)Dq,τAq(τ)Aq(τ)ϕq(τ)=∑κ=0∞ακτκ[κ]q!,τAq(qτ)ϕq(qτ)Dq,τH(τ)Aq(τ)ϕq(τ)=∑κ=0∞βκτκ[κ]q!.



(30)









Proof. 

Consider the generating function


Fq(z,τ)=Aq(τ)ϕq(τ)eq(zH(τ))=∑κ=0∞sAκ,q(z)τκ[κ]q!.



(31)







Taking the q-derivative of Equation (31) partially with respect to τ, we get


Dq,τ(Fq(z,τ))={Aq(qτ)Dq,τϕq(τ)+ϕq(τ)Dq,τAq(τ)}eq(zH(τ))+zAq(qτ)ϕq(qτ)Dq,τH(τ)eq(zH(τ))



(32)







Now, factorizing Fq(z,τ) from its left hand side and after that multiplying both sides by τ, it follows that


     τDq,τ(Fq(z,τ))=Fq(z,τ)τAq(qτ)ϕq(τ)Dq,τAq(τ)Dq,τϕq(τ)Aq(τ)ϕq(τ)+zτAq(qτ)ϕq(qτ)Dq,τH(τ)Aq(τ)ϕq(τ).



(33)







In view of the assumption in Equations (30) and (31), Equation (33) can be expressed as


∑κ=0∞[κ]qsAκ,q(z)τκ[κ]q!=∑κ=0∞sAκ,q(z)τκ[κ]q!∑κ=0∞ακτκ[κ]q!+z∑κ=0∞βκτκ[κ]q!,



(34)




which on using the Cauchy product rule, gives


∑κ=0∞[κ]qsAκ,q(z)τκ[κ]q!=∑κ=0∞∑ν=0κκνq(αν+zβν)sAκ−ν,q(z)τκ[κ]q!.



(35)







Finally, equating the coefficients of identical powers of τ in above equation and after that dividing both sides of the resultant equation by [κ]q, we get the assertion in Equation (29). □





Due to the importance of determinant form for the computational and applied purposes, we derive the determinant definition for the qSAP sAκ,q(z).



Theorem 4.

The q-Sheffer–Appell polynomials sAκ,q(z) of degree κ are defined by


sA0,q(z)=1B0,q,



(36)






sAκ,q(z)=(−1)κ(B0,q)κ+11s1,q(z)s2,q(z)…sκ−1,q(z)sκ,q(z)B0,qB1,qB2,q…Bκ−1,qBκ,q0B0,q21qB1,q…κ−11qBκ−2,qκ1qBκ−1,q00B0,q…κ−12qBκ−3,qκ2qBκ−2,q...….....…..000…B0,qκκ−1qB1,q,Bκ,q=−1A0,q∑ν=1κκνqAν,qBκ−ν,q,κ=1,2,3,…,



(37)




where B0,q≠0, B0,q=1A0,q and sκ,q(z)(κ=0,1,2,…,) are the q-Sheffer polynomials of degree κ.





Proof. 

Consider sAκ,q(z) to be a sequence of the qSAP defined by Equation (22) and Aκ,q, Bκ,q be two numerical sequences (the coefficients of q-Taylor’s series expansions of functions) such that


Aq(τ)=A0,q+A1,qτ[1]q!+A2,qτ2[2]q!+…+Aκ,qτκ[κ]q!+…,κ=0,1,2,3,…;A0,q≠0,



(38)






A^q(τ)=B0,q+B1,qτ[1]q!+B2,qτ2[2]q!+…+Bκ,qτκ[κ]q!+…,κ=0,1,2,3,…;B0,q≠0,



(39)




satisfying


Aq(τ)A^q(τ)=1.



(40)







On using Cauchy product rule for the two series production Aq(τ)A^q(τ), we get


Aq(τ)A^q(τ)=∑κ=0∞Aκ,qτκ[κ]q!∑κ=0∞Bκ,qτκ[κ]q!=∑κ=0∞∑ν=0κκνqAν,qBκ−ν,qτκ[κ]q!.











Consequently,


∑ν=0κκνqAν,qBκ−ν,q=1,ifκ=0,0,ifκ>0.



(41)







That is,


B0,q=1A0,q,Bκ,q=−1A0,q∑ν=1κκνqAν,qBκ−ν,q,κ=0,1,2,…



(42)







Next, multiplying both sides of Equation (22) by A^q(t), we get


Aq(τ)A^q(τ)ϕq(τ)eq(zH(τ))=A^q(τ)∑κ=0∞sAκ,q(z)τκ[κ]q!.



(43)







Further, in view of Equations (18), (39) and (40), the above equation can be expressed as


∑κ=0∞sκ,q(z)τκ[κ]q!=∑κ=0∞Bκ,qτκ[κ]q!∑κ=0∞sAκ,q(z)τκ[κ]q!.



(44)







Now, on using Cauchy product rule for the two series in the right hand side of Equation (44), we obtain the following infinite system for the unknowns sAκ,q(z):


B0,qsA0,q(z)=1,B1,qsA0,q(z)+B0,qsA1,q(z)=s1,q(z)B2,qsA0,q(z)+21qB1,qsA1,q(z)+B0,qsA2,q(z)=s2,q(z),⋮Bκ−1,qsA0,q(z)+κ−11qBκ−2,qsA1,q(z)+…+B0,qsAκ−1,q(z)=sκ−1,q(z),Bκ,qsA0,q(z)+κ1qBκ−1,qsA1,q(z)+…+B0,qsAκ,q(z)=sκ,q(z),⋮



(45)







Obviously, the first equation of the system in Equation (45) leads to our first assertion in Equation (36). The coefficient matrix of the system in Equation (45) is lower triangular, thus this assist us to obtain the unknowns sAκ,q(z) by applying Cramer rule to the first κ+1 equations of the system in Equation (45). According to this, we can obtain


sAκ,q(z)=B0,q00…01B1,qB0,q0…0s1,q(z)B2,q21qB1,qB0,q…0s2,q(z)...….....…..Bκ−1,qκ−11qBκ−2,qκ−12qBκ−3,q…B0,qsκ−1,q(z)Bκ,qκ1qBκ−1,qκ2qBκ−2,q…κκ−1qB1,qsκ,q(z)B0,q00…01B1,qB0,q0…00B2,q21qB1,qB0,q…00...….....…..Bκ−1,qκ−11qBκ−2,qκ−12qBκ−3,q…B0,q0Bκ,qκ1qBκ−1,qκ2qBκ−2,q…κκ−1qB1,qB0,q



(46)




where κ=1,2,3,…, which on expanding the determinant in the denominator and taking the transpose of the determinant in the numerator, yields to


sAκ,q(z)=1(B0,q)κ+1B0,qB1,qB2,q…Bκ−1,qBκ,q0B0,q21qB1,q…κ−11qBκ−2,qκ1qBκ−1,q00B0,q…κ−12qBκ−3,qκ2qBκ−2,q...….....…..000…B0,qκκ−1qB1,q1s1,q(z)s2,q(z)…sκ−1,q(z)sκ,q(z).



(47)







Finally, after κ circular row exchanges, i.e., after moving the jth row to the (j+1)th position for j=1,2,3,…,κ−1, we arrive at our assertion in Equation (37). □





Theorem 5.

The following identity for the qSAP sAκ,q(z) holds true:


sAκ,q(z)=1B0,qsκ,q(z)−∑ν=0κ−1κνqBκ−ν,qsAν,q(z),κ=1,2,….



(48)









Proof. 

Expanding the determinant in Equation (37) with respect to the (κ+1)th row and using a similar approach used in ([27], Theorem 3.1), the assertion in Equation (48) is proved. □






3. Examples


Several members belonging to the q-Sheffer–Appell family sAκ,q(z) can be derived by making suitable selections for the functions Aq(τ), ϕq(τ) and H(τ). The q-Hermite polynomials (qHP) Hκ,q(z)[25] are one of the important members of q-Sheffer family. In addition, the q-Bernoulli polynomials Bκ,q(z), q-Euler polynomials Eκ,q(z) and q-Genocchi polynomials Gκ,q(z) are considerable members of the q-Appell family. In this section, we introduce the q-Hermite–Bernoulli polynomials HBκ,q(z), q-Hermite–Euler polynomials HEκ,q(z) and q-Hermite–Genocchi polynomials HGκ,q(z) by means of the generating functions, series definitions and also explore other properties of these members.



3.1. q-Hermite–Bernoulli Polynomials


Since, for Aq(τ)=τeq(τ)−1, the qAP Aκ,q(z) reduce to the qBP Bκ,q(z) (Table 1(I)) and for ϕq(τ)=eq(−τ2),H(τ)=[2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of Aq(τ),ϕq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHBP HBκ,q(z). In view of Equation (22), the generating function for the qHBP HBκ,q(z) is given as:


τeq(τ)−1eq([2]qzτ)eq(−τ2)=∑κ=0∞HBκ,q(z)τκ[κ]q!.



(49)







In view of Equation (26), the qHBP HBκ,q(z) of degree κ are defined by the series:


HBκ,q(z)=∑ν=0κκνqBν,qHκ−ν,q(z).



(50)







In view of Equation (48), the following identity for the qHBP HBκ,q(z) holds true:


HBκ,q(z)=1B0,qHκ,q(z)−∑ν=0κ−1κνqBκ−ν,qHBν,q(z),κ=1,2,….



(51)







Further, by taking sκ,q(z)=Hκ,q(z), B0,q=1 and Bj,q=1[j+1]q(j=1,2,3,…) in Equations (36) and (37), we obtain the determinant definition of the qHBP HBκ,q(z) given as:

Definition 1.

The q-Hermite–Bernoulli polynomialsHBκ,q(z) of degree κ are defined by


HB0,q(z)=1,



(52)






HBκ,q(z)=(−1)κ1H1,q(z)H2,q(z)…Hκ−1,q(z)Hκ,q(z)11[2]q1[3]q…1[κ]q1[κ+1]q0121q1[2]q…κ−11q1[κ−1]qκ1q1[κ]q001…κ−12q1[κ−2]qκ2q1[κ−1]q...….....…..000…1κκ−1q1[2]q,κ=1,2,3,…,



(53)




where Hκ,q(z)(κ=0,1,2,3,…) are the q-Hermite polynomials of degree κ.







Theorem 6.

The q-Hermite–Bernoulli polynomials HBκ,q(z) satisfy the following q-recurrence relations:


Dq,zHBκ,q(z)=[2]q[κ]qHBκ−1,q(z),



(54)






Dq,z(k)HBκ,q(z)=[2]qk[κ]q![κ−k]q!HBκ−k,q(z).



(55)









Proof. 

Applying the q-derivative with respect to z to both sides of Equation (49), we get


∑κ=0∞Dq,zHBκ,q(z)τκ[κ]q!=[2]qττeq(t)−1eq([2]qzτ)eq(−τ2)=[2]q∑κ=0∞[κ]qHBκ−1,q(z)τκ[κ]q!.



(56)







Now, equating the coefficient of like powers of τ in both sides of the above equation, we get the assertion in Equation (54). Similarly, on applying the q-derivative with respect to z to both sides of Equation (49) k times, we get the assertion in Equation (55). □






3.2. q-Hermite–Euler Polynomials


Since, for Aq(τ)=[2]qeq(τ)+1, the qAP Aκ,q(z) reduce to the qEP Eκ,q(z) (Table 1(II)) and for ϕq(τ)=eq(−τ2),H(t)=[2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of Aq(τ),ϕq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHEP HEκ,q(z). In view of Equation (22), the generating function for the qHEP HEκ,q(z) is given as:


[2]qeq(τ)+1eq([2]qzτ)eq(−τ2)=∑κ=0∞HEκ,q(z)τκ[κ]q!.



(57)







In view of Equation (26), the qHEP HEκ,q(z) of degree κ are defined by the series:


HEκ,q(z)=∑ν=0κκνqEν,qHκ−ν,q(z).



(58)







In view of Equation (48), the following identity for the qHEP HEκ,q(z) holds true:


HEκ,q(z)=1B0,qHκ,q(z)−∑ν=0κ−1κνqBκ−ν,qHEν,q(z),κ=1,2,….



(59)







Further, by taking sκ,q(z)=Hκ,q(z), B0,q=1 and Bj,q=12(j=1,2,3,…) in Equations (36) and (37), we obtain the determinant definition of the qHEP HEκ,q(z) given as:

Definition 2.

The q-Hermite–Euler polynomialsHEκ,q(z) of degree κ are defined by


HE0,q(z)=1,



(60)






HEκ,q(z)=(−1)κ1H1,q(z)H2,q(z)…Hκ−1,q(z)Hκ,q(z)11212…12120121q12…κ−11q12κ1q12001…κ−12q12κ2q12...….....…..000…1κκ−1q12,κ=1,2,3,…,



(61)




where Hκ,q(z)(κ=0,1,2,3,…) are the q-Hermite polynomials of degree κ.







Theorem 7.

The q-Hermite–Euler polynomials HEκ,q(z) satisfy the following q-recurrence relations:


Dq,zHEκ,q(z)=[2]q[κ]qHEκ−1,q(z),



(62)






Dq,z(k)HEκ,q(z)=[2]qk[κ]q![κ−k]q!HEκ−k,q(z).



(63)









Proof. 

Using a similar approach used in the proof of Theorem 6, we are led to the assertions in Equations (62) and (63). □






3.3. q-Hermite–Genocchi Polynomials


Since, for Aq(τ)=[2]qτeq(τ)+1, the qAP Aκ,q(z) reduce to the qGP Gκ,q(z) (Table 1(III)) and for ϕq(τ)=eq(−τ2),H(t)=[2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), for the same choices of Aq(τ),ϕq(τ) and H(τ), the qSAP sAκ,q(z) reduce to qHGP HGκ,q(z) which in view of Equation (22) can be defined by means of following generating functions:


[2]qτeq(τ)+1eq([2]qzτ)eq(−τ2)=∑κ=0∞HGκ,q(z)τκ[κ]q!.



(64)







In view of Equation (26), the qHGP HGκ,q(z) of degree κ are defined by the series:


HGκ,q(z)=∑ν=0κκνqGν,qHκ−ν,q(z).



(65)







In view of Equation (48), the following identity for the qHGP HGκ,q(z) holds true:


HGκ,q(z)=1B0,qHκ,q(z)−∑ν=0κ−1κνqBκ−ν,qHGν,q(z),κ=1,2,….



(66)







Further, by taking sκ,q(z)=Hκ,q(z), B0,q=1 and Bj,q=12[j+1]q(j=1,2,3,…) in Equations (36) and (37), we obtain the determinant definition of the qHGP HGκ,q(z) given as:

Definition 3.

The q-Hermite–Genocchi polynomials HGκ,q(z) of degree κ are defined by


HG0,q(z)=1,



(67)






HGκ,q(z)=(−1)κ1H1,q(z)H2,q(z)…Hκ−1,q(z)H1,q(z)112[2]q12[3]q…12[κ]q12[κ+1]q0121q12[2]q…κ−11q12[κ−1]qκ1q12[κ]q001…κ−12q12[κ−2]qκ2q12[κ−1]q...….....…..000…1κκ−1q12[2]q,κ=1,2,3,…,



(68)




where Hκ,q(z)(κ=0,1,2,3,…) are the q-Hermite polynomials of degree κ.







Theorem 8.

The q-Hermite–Genocchi polynomials HGκ,q(z) satisfy the following q-recurrence relations:


Dq,zHGκ,q(z)=[2]q[κ]qHGκ−1,q(z),



(69)






Dq,z(k)HGκ,q(z)=[2]qk[κ]q![κ−k]q!HGκ−k,q(z).



(70)









Proof. 

Using a similar approach used in the proof of Theorem 6, we are led to the assertions in Equations (69) and (70). □





In the next section, we introduce a new class of the 2D q-Sheffer–Appell polynomials by means of generating function and series representation.





4. 2D q-Sheffer–Appell Polynomials


Recently, Keleshteri and Mahmudov [27] introduced the 2D q-Appell polynomials (2DqAP) {Aκ,q(z1,z2)}κ=0∞, which are defined by means of the generating functions:


Aq(τ)eq(z1τ)Eq(z2τ)=∑κ=0∞Aκ,q(z1,z2)τκ[κ]q!,0<q<1,



(71)




where


Aq(τ)=∑κ=0∞Aκ,qτκ[κ]q!,Aq(τ)≠0;A0,q=1



(72)




and Aκ,q:=Aκ,q(0,0) denotes the 2D q-Appell numbers.



Some members of the 2D q-Appell polynomials are listed in Table 2.



The approach used in the previous section is further exploited to introduce the 2D q-Sheffer–Appell polynomials (2DqSAP) and the focus is on deriving its generating functions and series definitions.



To establish the generating function for the 2DqSAP, the following result is proved:

Theorem 9.

The following generating function for the 2D q-Sheffer–Appell polynomials sAκ,q(z1,z2) holds true:


Aq(τ)ϕq(τ)eq(z1H(τ))Eq(z2τ)=∑κ=0∞sAκ,q(z1,z2)τκ[κ]q!.



(73)











Proof. 

By expanding the first q-exponential function eq(z1τ) in the left hand side of Equation (71) and then replacing the powers of z1 i.e., z10,z1,z12,…,z1κ by the corresponding polynomials s0,q(z1),s1,q(z1),s2,q(z1),…,sκ,q(z1) in the left hand side and z1 by s1,q(z1) in the right hand side of the resultant equation, we have


Aq(τ)1+s1,q(z1)τ[1]q!+s2,q(z1)τ2[2]q!+…+sκ,q(z1)τκ[κ]q!+…Eq(z2τ)=∑κ=0∞Aκ,q(s1,q(z1),z2)τκ[κ]q!.



(74)







Further, summing up the series in left hand side and then using Equation (18) in the resultant equation, we get


Aq(τ)ϕq(τ)eq(z1H(τ))Eq(z2τ)=∑κ=0∞Aκ,q(s1,q(z1),z2)τκ[κ]q!.



(75)







Finally, denoting the resultant qSAP in the right hand side of the above equation by sAκ,q(z1,z2), that is


Aκ,q(s1,q(z1),z2)=sAκ,q(z1,z2),



(76)




the assertion in Equation (22) is proved. □





Theorem 10.

The 2D q-Sheffer–Appell polynomials sAκ,q(z1,z2) are defined by the following series definitions:


sAκ,q(z1,z2)=∑ν=0κκνqqν(ν−1)2z2νsAκ,q(z1).



(77)









Proof. 

Using Equations (11) and (1) in Equation (73), we get


∑κ=0∞sAκ,q(z1)τκ[κ]q!∑ν=0∞qν(ν−1)2z2ντν[ν]q!=∑κ=0∞sAκ,q(z1,z2)τκ[κ]q!.



(78)







Now, using the Cauchy product rule in the left hand side of the above equation and then equating the coefficients of like powers of τ in both sides of the resultant equation, we get the assertion in Equation (77). □





Since for ϕq(τ)=eq(−τ2),H(τ)=[2]qτ the qSP sκ,q(z) reduce to qHP Hκ,q(z), by making same choices for the functions ϕq(τ) and H(τ) in Equations (73) and (77), we get


Aq(τ)eq([2]qz1τ)eq(−τ2)Eq(z2τ)=∑κ=0∞HAκ,q(z1,z2)τκ[κ]q!,



(79)






HAκ,q(z1,z2)=∑ν=0κκνqqν(ν−1)2z2νHAκ,q(z1).



(80)







Certain members belonging to the 2D q-Appell family are given in Table 2. By making suitable choices for the functions Aq(t) in Equations (79) and (80), the generating functions and series definitions for the corresponding member belonging to the 2D q-Hermite–Appell family can be obtained. The resultant 2D q-Hermite–Appell polynomials (2DqHAP) along with their generating functions and series definitions are given in Table 3.




5. Graphical Representation


In this section, the shapes of some members of the q-Sheffer–Appell polynomials and 2D q-Sheffer–Appell polynomials are displayed with the help of Matlab.



To draw the graphs of qHBP HBκ,q(z), qHEP HEκ,q(z) and qHGP HGκ,q(z), we considered the first four values of q-Hermite polynomials Hκ,q(z) [25]; the expressions of these polynomials are listed in Table 4.



Next, setting κ=3 in the determinant definitions in Equations (53), (61) and (68), we have


HB3,q(z)=(−1)31H1,q(z)H2,q(z)H3,q(z)11[2]q1[3]q1[4]q0121q1[2]q31q1[3]q00132q1[2]q,



(81)






HE3,q(z)=(−1)31H1,q(z)H2,q(z)H3,q(z)11212120121q1231q1200132q12



(82)




and


HG3,q(z)=(−1)31H1,q(z)H2,q(z)H3,q(z)112[2]q12[3]q12[4]q0121q12[2]q31q12[3]q00132q12[2]q.



(83)







Now, taking q=13 and using the expressions of the Hκ,q(z) in Table 4, Equations (81)–(83) become


HB3,13(z)=6427z3−5227z2−1039z+1049720,



(84)






HE3,13(z)=6427z3−10481z2−269z+1718,



(85)






HG3,13(z)=6427z3+1127z2−931324z−21295760.



(86)







Similarly, we can obtain the values of HBκ,q(z),HEκ,q(z) and HGκ,q(z) for κ=1,2 and q=13 as:



For κ=2, we get


HB2,13(z)=169z2−43z−199156,



(87)






HE2,13(z)=169z2−89z−32,



(88)






HG2,13(z)=169z2−23z−931624.



(89)







For κ=1, we get


HB1,13(z)=−34+43z,



(90)






HE1,13(z)=−12+43z,



(91)






HG1,13(z)=−38+43z.



(92)







Further, setting κ=3,q=13 in the series definitions of HBκ,q(z1,z2),HEκ,q(z1,z2) and HGκ,q(z1,z2) given in Table 3 and using the expressions of HBκ,q(z), HEκ,q(z) and HGκ,q(z) for κ=1,2,3 from Equations (84)–(92), we have


HB3,13(z1,z2)=6427z13−5227z12−1039z1+1049720+30427z12z2−769z1z2−3781468z2−1936z22+7681z1z22+1729z23,



(93)






HE3,13(z1,z2)=6427z13−10481z12−269z1+1718+30427z12z2−15227z1z2−192z2−1954z22+7681z1z22+1729z23,



(94)






HG3,13(z1,z2)=6427z13+1127z12−931324z1−21295760+30427z12z2−389z1z2−176891872z2−1972z22+7681z1z22+1729z23.



(95)







Now, with the help of Matlab and using Equations (52), (60), (67), (84)–(95), we get the following Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6.




6. Further Remarks


It is worth noting that the results derived in the previous sections can be exploited to establish further new relations.



Let us consider the following relation


[2]q−κDq,zκeq(−[2]qzτ)=(−τ)κeq(−[2]qzτ),



(96)




which, on replacing κ by 2κ and multiplying both sides of the resultant equation by 1[κ]q!, gives


1[κ]q![2]q−2κDq,z2κeq(−[2]qzτ)=1[κ]q!(−τ)2κeq(−[2]qzτ).



(97)







Now, taking summation on both sides of the above equation and then multiplying both sides of the resultant equation by τeq(τ)−1 and using Equation (49), we get


∑κ=0∞HBκ,q(x)τκ[κ]q!=τeq(τ)−1∑κ=0∞[2]q−2κ[κ]q!Dq,z2κeq([2]qxτ),



(98)




where x=−z.



Similarly, we can obtain the following results:


∑κ=0∞HEκ,q(x)τκ[κ]q!=[2]qeq(τ)+1∑κ=0∞[2]q−2κ[κ]q!Dq,z2κeq([2]qxτ),



(99)






∑κ=0∞HGκ,q(x)τκ[κ]q!=[2]qτeq(τ)+1∑κ=0∞[2]q−2κ[κ]q!Dq,z2κeq([2]qxτ),



(100)




where x=−z.




7. Conclusions


We would like to underline that the q-series and q-polynomials have many applications in different fields of mathematics, physics and engineering. In the present article, we demonstrate how a new replacement technique has been adopted to introduce mixed type q-special polynomials and different method to establish their q-recurrence relation.



To extend this new and significant approach, the hybrid class of the q-Sheffer–Appell polynomials and 2D q-Sheffer–Appell polynomials are introduced by means of series expansion and generating functions. The determinant form related to q-Sheffer–Appell polynomials are derived, which are important for the computational and applied purposes. This process can be used to establish further a wide variety of formulas and new relations for several other q-special polynomials.



The q-difference equation for the two iterated q-Appell and mixed type q-Appell polynomials are established in [29,30]. This aspect may be considered in future investigation.
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Figure 1. Graph of HBκ,q(z). 






Figure 1. Graph of HBκ,q(z).
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Figure 2. Graph of HEκ,q(z). 
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Figure 3. Graph of HGκ,q(z). 
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Figure 4. Surface plot of HB3,13(z1,z2). 
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Figure 5. Surface plot of HE3,13(z1,z2). 
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Figure 6. Surface plot of HG3,13(z1,z2). 
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Table 1. Certain members of q-Appell family.






Table 1. Certain members of q-Appell family.





	S. No.
	Aq(τ)
	Generating Functions
	Polynomials





	I.
	Aq(τ)=τ(eq(τ)−1)
	τ(eq(τ)−1)eq(zτ)=∑κ=0∞Bκ,q(z)τκ[κ]q!
	The q-Bernoulli polynomials [2,18,19]



	II.
	Aq(τ)=[2]q(eq(τ)+1)
	[2]q(eq(τ)+1)eq(zτ)=∑κ=0∞Eκ,q(z)τκ[κ]q!
	The q-Euler polynomials [3,19,20]



	III.
	Aq(τ)=[2]qτ(eq(τ)+1)
	[2]qτ(eq(τ)+1)eq(zτ)=∑κ=0∞Gκ,q(z)τκ[κ]q!,
	The q-Genocchi polynomials [7,19,21]
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Table 2. Some members of 2D q-Appell polynomials.






Table 2. Some members of 2D q-Appell polynomials.





	S. No.
	Aq(τ)
	Generating Functions
	Polynomials





	I.
	Aq(τ)=τ(eq(τ)−1)
	τ(eq(τ)−1)eq(z1τ)Eq(z2τ)=∑κ=0∞Bκ,q(z1,z2)τκ[κ]q!
	The 2D q-Bernoulli polynomials [21,28]



	II.
	Aq(τ)=[2]q(eq(τ)+1)
	[2]q(eq(τ)+1)eq(z1τ)Eq(z2τ)=∑κ=0∞Eκ,q(z1,z2)τκ[κ]q!
	The 2D q-Euler polynomials [21,28]



	III.
	Aq(τ)=[2]qτ(eq(τ)+1)
	[2]qτ(eq(τ)+1)eq(z1τ)Eq(z2τ)=∑κ=0∞Gκ,q(z1,z2)τκ[κ]q!,
	The 2D q-Genocchi polynomials [21,28]
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Table 3. Certain members belonging to the 2DqHAP HAκ,q(z1,z2).






Table 3. Certain members belonging to the 2DqHAP HAκ,q(z1,z2).












	S. No.
	Aq(τ)
	Generating Functions
	Series Definition
	Polynomials





	I.
	τ(eq(τ)−1)
	τ(eq(τ)−1)eq([2]qz1τ)eq(−τ2)Eq(z2τ)
	HBκ,q(z1,z2)
	The 2D q-Hermite–Bernoulli



	
	
	=∑κ=0∞HBκ,q(z1,z2)τκ[κ]q!
	=∑ν=0κκνqqν(ν−1)2z2νHBκ−ν,q(z1)
	polynomials



	II.
	[2]q(eq(τ)+1)
	[2]q(eq(τ)+1)eq([2]qz1τ)eq(−τ2)Eq(z2τ)
	HEκ,q(z1,z2)
	The 2D q-Hermite–Euler



	
	
	=∑κ=0∞HEκ,q(z1,z2)τκ[κ]q!
	=∑ν=0κκνqqν(ν−1)2z2νHEκ−ν,q(z1)
	polynomials



	III.
	[2]qτ(eq(τ)+1)
	[2]qτ(eq(τ)+1)eq([2]qz1τ)eq(−τ2)Eq(z2τ)
	HGκ,q(z1,z2)
	The 2D q-Hermite–Genocchi



	
	
	=∑κ=0∞HGκ,q(z1,z2)τκ[κ]q!,
	=∑ν=0κκνqqν(ν−1)2z2νHGκ−ν,q(z1)
	polynomials
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Table 4. Expressions of the first four Hκ,q(z).






Table 4. Expressions of the first four Hκ,q(z).





	κ
	0
	1
	2
	3





	Hκ,q(z)
	1
	[2]qz
	[2]q2z2−[2]q
	[2]q3z3−[3]q[2]q2z
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