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Abstract: In the practical reality of face recognition applications, the human face can have only a
limited number of training images. However, it is known that, in general, increasing the number of
training images also increases the performance of face recognition systems. In this case, a new set of
training samples can be generated from the original samples, using the symmetry property of the
face. Although many face recognition methods have been proposed in the literature, a robust face
recognition system is still a challenging task. In this paper, recognition performance was improved
by using the property of face symmetry. Moreover, the effects of illumination and pose variations
were reduced. A Two-Dimensional Discrete Wavelet Transform, based on the Local Binary Pattern,
which is a new approach for face recognition using symmetry, has been presented. The method
has three main stages, preprocessing, feature extraction, and classification. A Two-Dimensional
Discrete Wavelet Transform with Single-Level and Gaussian Low-Pass Filter were used, separately,
for preprocessing. The Local Binary Pattern, Gray Level Co-Occurrence Matrix, and the Gabor filter
were used for feature extraction, and the Euclidean Distance was used for classification. The proposed
method was implemented and evaluated using the Olivetti Research Laboratory (ORL) and Yale
datasets. This study also examined the importance of the preprocessing stage in a face recognition
system. The experimental results showed that the proposed method had a recognition accuracy of
100%, for both the ORL and Yale datasets, and these recognition rates were higher than the methods
in the literature.

Keywords: face recognition; symmetry; Wavelet Transform; Local Binary Pattern; Gray-Level
Co-Occurrence Matrix; Gabor

1. Introduction

Robust and accurate face recognition (FR) is one of the most important problems in computer
vision applications. In the literature, there are several methods used for FR, including holistic, local,
and hybrid methods [1,2]. However, recent research has revealed that a symmetry-based dataset for
FR is a useful method to increase the performance of the FR system; thus, it is possible to realize FR
using the property of face symmetry [3].

The property of face symmetry is useful for solving two main problems in FR that are still
prevalent—the limited number of face training samples and the variations in poses and facial
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expressions, in addition to the lighting conditions. The proposed method uses the property of face
symmetry to reduce the effect of these two problems.

In this study, the Local Binary Pattern (LBP) [4–6], the Gray Level Co-Occurrence Matrix
(GLCM) [7], and the Gabor Filter [8] were used for feature extraction, since these methods performed
well for a texture feature extraction that could be used for the FR [9–11]. Moreover, any two methods
from the list could be combined [8,12], such as LBP with GLCM, in order to make the feature extraction
operation more robust. The images of the face were enhanced, before extracting their features.
This enhancement operation was accomplished by a preprocessing step using well-known techniques,
namely the Gaussian low-pass filter (GLPF) [13], Difference of Gaussian (DoG) [14], and the Discrete
Wavelet Transform (DWT) [15]. The proposed method was analyzed using two benchmark facial
datasets, namely the Olivetti Research Laboratory (ORL) [16] and Yale [17] datasets. These datasets
were widely used to test the performance of the FR methods [3,18,19]. The method had three main
stages: Preprocessing, Feature Extraction, and Classification. The Two-Dimensional Discrete Wavelet
Transform (2-D DWT), GLPF, and DoG, were used for preprocessing. The LBP, GLCM, and Gabor filter
were used for feature extraction. Finally, the Euclidean Distance was used for classification, as shown
in Figure 1.
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2. Literature Review

FR is among the most important and well-studied problems in computer vision [20]. However,
illumination and pose variations are still some open problems that need to be solved. Facial images are
taken in environments that are usually not under control, which contain variations in viewpoint and
illumination; therefore, these two factors play a vital role in the efficiency of recognition. Developing
an algorithm that can handle variations in illumination, pose, facial expression, and occlusion, etc.,
altogether, still seems to be a very challenging task.

There are many studies related to FR, such as the authors of Reference [21], who have presented a
robust method for FR, using a sparse representation-based classification (SRC). Although the results
were good, the method had a high computational cost. Zhang et al. in Reference [22] proposed an
SRC-based classification algorithm, based on the Gabor feature, by combining the features from SRC
and Gabor. Furthermore, they succeeded in reducing the complexity of computation and improving
the FR rate. Mairal et al. [23] added a new step to SRC for signals, by successfully using their method
to recognize a handwritten digit and to classify the textures. In Reference [24], the authors mapped the
facial images to the so-called face subspace. Here, Locality Preserving Projections (LPP) were used
to calculate a basis set, called Laplacian Faces. Linear Discriminant Analysis (LDA) has been used in
Reference [25] to construct a subspace on which the inter-person variance was optimally large, while the
intra-person variance was efficiently small. The main disadvantage of this technique, the same as that
of Principal Component Analysis (PCA) [26], was the data-space Euclidean consideration, since the
method fails when data points lie in a nonlinear subspace, which is usually true with multimodally
distributed facial images.

Although there exists many studies [14,27,28] on invariant representations for handling certain
variations, apparently, a generic approach to model different variations at once, has not yet come
to light. It has been known for a long time that feature-based methods, such as elastic bunch graph
matching, are promisingly successful against many factors, including variations of illumination and
viewpoint [29]. Nevertheless, their extreme sensitivity to feature extraction and the measurement of
extracted features makes them unreliable [30]. Many authors have studied the effect of variations in
illumination conditions on FR [14,28,30–33]. As a result, appearance-based methods have dominated
the literature.

FR with LBP has been proposed by Ahonen et al. [6], in which the algorithm was not sensitive
to light, and accordingly, this point was considered to be the robustness of their study. The authors
of Reference [34] used discriminative dictionary learning and SRC, along with the Gabor filter bank
and the LBP, for feature extraction, and reduced the influences of illumination changes. One of the
milestones for FR under variations, could be stated as the Fisherfaces and Eigenfaces [25] technique,
which is insensitive to illumination variations. A good improvement has been recommended in
Reference [35], in which local linear transformations were used instead of one global transformation.
Although the technique suggests different mapping functions for different pose classes, it could
not treat the case of critical variations. Facial images with different poses, facial expressions,
and illumination conditions were studied and the performances of the recognition were shown
to be higher, compared to the Fisherfaces or Eigenfaces [36].

Pose variation has also been studied in Reference [37], by using view-based Eigenfaces.
For each view, Eigenfaces were calculated and applied as separate transformations into a standard
lower-dimensional subspace. The authors in Reference [38] introduced Eigen features, in which a
feature-based scheme was incorporated. In fact, their performance highly depended on discretization,
where the Eigen light-field technique was used to define the subspace of poses. Moreover, uncommon
poses could be treated by this technique.

The authors of Reference [39] combined the generalized photometric stereo and Eigen light field
concept to generate a generic method which was also insensitive to illumination changes. The authors
of Reference [40] presented a method to arrange the variation of poses and illumination, including
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shadows and reflections; however, the computational cost in their method decreased the efficiency of
the recognition system, since they generated 3D models from 2D images.

Shashua et al. proposed a method in Reference [31], based on the illumination invariant signature
image, since they showed that it was possible, even in bad conditions, to use a small dataset to generate
more images with varying illumination. However, their method was not appropriate when the images
included some shadows. Then, Zhou et al. in Reference [32] reduced the effect of the shadow issued,
by utilizing extra limitations on the albedo.

Georghiades et al. showed that in Reference [30], when the pose was fixed, all possibilities of
illumination in the image space had a convex cone. In addition, they used their method to reconstruct
the shape and albedo of the face by training the system using only a few images, with different
directions of light. The authors proved in Reference [41] that all possible illumination variations
were accomplished using only a nine-dimensional linear subspace, by using spherical harmonics.
The authors of Reference [42] examined different illumination conditions and also hypothetically
analyzed the subspace for images of a convex Lambertian object.

The authors of Reference [43] proposed a nonlinear subspace approach using the tensor
representation of faces in different cases, including facial expressions, illuminations, and poses,
since they used the n mode tensor Singular Value Decomposition (SVD), to generate an image base.
Even though this technique gave good results, it still requires several images under different variations,
for each training identity.

Another nonlinear subspace analysis has been proposed in Reference [44], using the manifold
assumption in which a gallery manifold for each identity was stored in the database. To define a test
identity with several new poses, first its probe manifold was constructed, by its identity being defined
using a manifold-to-manifold distance. The method was fairly good, but the necessity for various
images of the test person, could be considered a disadvantage.

In Reference [45], the illumination invariance was analyzed, using a ridge regression technique
to overcome the matrix inversion that was required in the symmetric bilinear model. The authors
of Reference [46] introduced a modified asymmetric model to overcome pose variations. However,
the performance of their method was affected by the discretization resolution of the pose space.

One of the most important properties in nature, and particularly in human faces, is that of
symmetry. Many authors have noticed its role [47,48]. It has been observed that the human face is
almost symmetrical, so the use of this property for face detection (FD) and FR has been previously
studied [49], where the authors have developed a technique to automatically compute bilateral
symmetry axis and use it in their research.

Zhao and Chellappa in Reference [50] used the symmetry of the face to reduce the effects of
illumination in FD. It has been shown that symmetry was also useful for extracting the facial profile in
facial recognition techniques [51,52]. The authors of Reference [53] successfully applied the symmetry
property to FD, and they concluded that the expressions of the face were also symmetrical. Thus,
the benefit of this property has been used for FR, in our study.

The FR algorithms suffer from two problems. First, in general, there is only a limited number
of training images. Second, the existence of variations in illumination and poses, in addition to
facial expressions, complicates the task. Although there have been a number of proposed methods to
overcome these problems using the property of symmetry in face, such problems are still considered
open and are not yet solved. A recent method has been proposed by the authors of References [3,54],
wherein, they improve the rate of FR recognition accuracy by using the symmetry property of the face,
to using Symmetry for Collaborative Representation-Based Classification (SCRC).
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3. Preprocessing Methods

3.1. Wavelet Transforms

Wavelet Transforms were selected for preprocessing, since they examine images in a
time–frequency localization, which helps to implement many methods, based on the wavelet for
image processing [55]. The image was dismantled into two parts, using an LP filter and an HP filter,
and each of these parts was down-sampled by two [56], as illustrated in Figure 2.
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where Lo_D is a low-pass filter, Hi_D is a high-pass filter, ↓ 2 denotes a down-sampling with a
factor of two (keeping the even indexed rows or columns).

3.2. Gaussian Low-Pass Filter (GLPF)

The Gaussian Low-Pass filter or Gaussian smoothing is a filter that results in the smoothing of an
image, by using a Gaussian function. It is used to filter images and reduce image noise [57].

The GLPF is used in many image processing systems that require a pre-preparing for their inputs,
since it reduces the image noise [58] and allows only the lower-frequency components of the image to
pass [13]. The equation of a Gaussian function in two dimensions is given by the following formula:

G(x, y) = 1
2πσ2 e−

x2+y2

2σ2 (1)

where, x and y are, respectively, the distance from the origin, in the horizontal and vertical axes,
σ represents the standard deviation of the Gaussian distribution. Figure 3 shows the Gaussian
Low-Pass Filter for (σ = 2).
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3.3. Difference of Gaussians (DoG)

If there are two copies of the same image and these two copies are being filtered using two
Gaussian filters with different variances σ2

1 and σ2
2 (where σ2 > σ1), to produce two new images, the

result of subtracting these two new images is the DoG [59]. The filtering process is the convolution of
the image with the filter kernel. Filtering the image keeps only the low-frequency spatial information.
Therefore, subtracting one result from the other becomes a bandpass operation [60]. If σ1 = σ and
σ2 = Kσ, then the DoG of image I, for the two-dimensional case, is the function:

Γσ,Kσ(x, y) = I ∗ 1
2πσ2 e−

−(x2+y2)
2σ2 − I ∗ 1

2πK2σ2 e−
−(x2+y2)

2K2σ2 (2)

where Γ is the DoG function, I is the original image.

4. Feature Extraction Methods

4.1. Feature Extraction Using GLCM

The GLCM is one of the methods used for feature extraction. Its concept was introduced by
Harlick et al. [61]. In GLCM, the extracted features depend on the direction (angle θ) and the distance
(D) from the pixel of interest [7], as illustrated in Figure 4.
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and different distances (D) from the pixel of interest.

In this study, a number of values (D = 1, 2, and 3 and θ = 0◦, 45◦, 90◦, and 135◦) were examined to
calculate the best scenario. The used features were the correlations, contrast, maximum probability,
angular second moment, mean, homogeneity, entropy, and dissimilarity [61]. These features were
calculated using the following formulae:

1. Correlation:

f1 = ∑
i

∑
j

(i− µx)
(

j− µy
)

p(x, y)
σxσy

(3)

2. Contrast:
f2 = ∑

i
∑

j
(i− j)2 p(x, y) (4)

3. Maximum probability:

f3 = max
(

p(x, y)
|i× j|

)
(5)

4. Angular Second Moment:
f4 = ∑

i
∑

j
p(x, y)2 (6)
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5. Mean:

f5 =
∑ p(x, y)

i× j
(7)

6. Homogeneity:

f6 = ∑
i

∑
j

(
p(x, y)

1 + |i− j|

)
(8)

7. Entropy:

f7 = ∑
i

∑
j

(
p(x, y)

log p(x, y)

)
(9)

8. Dissimilarity:
f8 = ∑

i
∑

j
|i− j|p(x, y) (10)

where µx is the mean of the column values in the image, µy is the mean of the row values in the
image, p(x,y) denotes the elements of the Gray Level Co-Occurrence Matrix, i and j are, respectively,
the lengths of the row and column of the image [61].

4.2. Feature Extraction Using LBP

One of the most widely used methods to analyze and model texture is the LBP method [9]. It could
be basically described as a 3 × 3 square operator. In each square, the eight-neighborhood pixels were
compared with the one in the center. If the pixel values of the neighbors were greater than or equal
to the pixel value at the center, they were replaced by 1. If not, then their values were replaced by 0.
Then, the new binary values of the neighbors were concatenated to produce one decimal value that
was considered to be a new value for the pixel in the center. The window was passed to the next pixel
and the same operation was repeated. These new decimal values represented the histogram of the
input texture. Equation (11) described the algorithm of the LBP operation:

LBPNP ,R(x,y) =
NP−1

∑
NP=0

s
(

gp − gc

)
2NP (11)

where s is the sign function, NP is the number of neighborhood pixels, gp represents the gray level
value of the neighboring pixels, and gc represents the gray level value of the central pixels. 2P is
required to produce decimal values.

The traditional LBP [6] analyzes the texture of the image and thresholds a 3 × 3 square
neighborhood as the center pixel value. It only uses the sign information to produce the LBP,
as illustrated in Figure 5 [4].

Symmetry 2018, 10, x FOR PEER REVIEW  7 of 22 

 

𝑓 = ∑ 𝑝 𝑥, 𝑦𝑖 𝑗   (7)

6. Homogeneity: 201 𝑓 = 𝑝 𝑥, 𝑦1 + |𝑖 − 𝑗|   (8)

7. Entropy: 202 𝑓 = 𝑝 𝑥, 𝑦log 𝑝 𝑥, 𝑦  (9)

8. Dissimilarity: 203 𝑓 = |𝑖 − 𝑗|𝑝 𝑥, 𝑦   (10)

where 𝜇  is the mean of the column values in the image, 𝜇  is the mean of the row values in 204 
the image, p(x,y) denotes the elements of the Gray Level Co-Occurrence Matrix, i and j are, 205 
respectively, the lengths of the row and column of the image [61]. 206 

4.2. Feature Extraction Using LBP 207 
One of the most widely used methods to analyze and model texture is the LBP method [9]. It 208 

could be basically described as a 3 × 3 square operator. In each square, the eight-neighborhood pixels 209 
were compared with the one in the center. If the pixel values of the neighbors were greater than or 210 
equal to the pixel value at the center, they were replaced by 1. If not, then their values were replaced 211 
by 0. Then, the new binary values of the neighbors were concatenated to produce one decimal value 212 
that was considered to be a new value for the pixel in the center. The window was passed to the next 213 
pixel and the same operation was repeated. These new decimal values represented the histogram of 214 
the input texture. Equation 11 described the algorithm of the LBP operation: 215 

LBP ,R , = s gp − gc 2  1

0
 (11)

where s is the sign function, N  is the number of neighborhood pixels, gp represents the gray 216 
level value of the neighboring pixels, and gc represents the gray level value of the central pixels. 2P is 217 
required to produce decimal values. 218 

The traditional LBP [6] analyzes the texture of the image and thresholds a 3 × 3 square 219 
neighborhood as the center pixel value. It only uses the sign information to produce the LBP, as 220 
illustrated in Figure 5 [4]. 221 

 222 
Figure 5. The Local Binary Pattern (LBP) architecture. 223 

In a newer implementation, the LBP operation has been upgraded to deal with any 224 
neighborhood size, by replacing the square with a circle [9]. This can be described by (N ,R), where 225 

Figure 5. The Local Binary Pattern (LBP) architecture.

In a newer implementation, the LBP operation has been upgraded to deal with any neighborhood
size, by replacing the square with a circle [9]. This can be described by (NP,R), where R is the radius of
the circle used. Figure 6 illustrates an (8, 2) neighborhood. Additionally, there are a number of other
modifications to the LBP [4].



Symmetry 2019, 11, 157 8 of 22

Symmetry 2018, 10, x FOR PEER REVIEW  8 of 22 

 

R is the radius of the circle used. Figure 6 illustrates an (8, 2) neighborhood. Additionally, there are a 226 
number of other modifications to the LBP [4]. 227 

 228 
Figure 6. Circular (8, 2) neighborhood 229 

The term 𝐿𝐵𝑃 ,  is used to describe the LBP operation, where u2 denotes the use of a uniform 230 
pattern. The resulting histogram results in the necessary information distributed in the image, such as 231 
edges, corners, uniform areas, etc. The effective operation must take care of the spatial information in 232 
the image, during the representation. One strategy to accomplish this is to partition the image into a 233 
number of small areas 𝑅 , 𝑅 , … , 𝑅  [6], where 𝑚 is the number of areas. If the size of the histogram 234 
is B, then the length of the feature vector is mB. It is obvious from this relation that the number of areas 235 
m determines the length of the feature vector, which means selecting small areas results in long feature 236 
vectors, leading to extreme use of memory and a slow classification processing. Selecting large areas 237 
causes a loss of spatial information. An example of a preprocessed face image partitioned into thirty-238 
six windows and the resulting face feature histogram are illustrated in Figure 7 [62]. 239 

 240 
Figure 7. Example of a preprocessed face image partitioned into thirty-six windows and its feature 241 
histogram using the Local Binary Pattern (LBP). 242 

4.3. Feature Extraction Using the Gabor Filter 243 
The Gabor filter is a very helpful tool in image processing, especially in FR [63]. In the spatial 244 

domain, the Gabor filter with two dimensions is the modulation of a Gaussian kernel function, by a 245 
complex sinusoidal plane wave with a center frequency f and orientation θ [64], and is defined as: 246 𝐺 𝑥, 𝑦 = 𝑓𝜋𝛾𝜂 𝑒 𝑒  

𝑥 = 𝑥cos𝜃 + 𝑦sin𝜃 (12)𝑦 = −𝑥sin𝜃 + 𝑦cos𝜃 

where γ and η denote the ratio between the envelope of the Gaussian function with standard 247 
deviation σ and the center frequency, and ϕ defines the phase offset. 248 

The frequency (or wavelength) governs the width of the stripes in the function, and by increasing 249 
the frequency, the stripes become thinner. The orientation governs the rotation of the Gabor envelope 250 

Figure 6. Circular (8, 2) neighborhood.

The term LBPu2

P,R is used to describe the LBP operation, where u2 denotes the use of a uniform
pattern. The resulting histogram results in the necessary information distributed in the image, such as
edges, corners, uniform areas, etc. The effective operation must take care of the spatial information in
the image, during the representation. One strategy to accomplish this is to partition the image into a
number of small areas R0, R1, . . . , Rm−1 [6], where m is the number of areas. If the size of the histogram
is B, then the length of the feature vector is mB. It is obvious from this relation that the number of
areas m determines the length of the feature vector, which means selecting small areas results in long
feature vectors, leading to extreme use of memory and a slow classification processing. Selecting large
areas causes a loss of spatial information. An example of a preprocessed face image partitioned into
thirty-six windows and the resulting face feature histogram are illustrated in Figure 7 [62].
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4.3. Feature Extraction Using the Gabor Filter

The Gabor filter is a very helpful tool in image processing, especially in FR [63]. In the spatial
domain, the Gabor filter with two dimensions is the modulation of a Gaussian kernel function, by a
complex sinusoidal plane wave with a center frequency f and orientation θ [64], and is defined as:

G(x, y) =
f 2

πγη
e(−

x′2+γ2y′2
2σ2 )e(j2π f x′+φ)x′ = x cos θ + y sin θy′ = −x sin θ + y cos θ (12)

where γ and η denote the ratio between the envelope of the Gaussian function with standard deviation
σ and the center frequency, and φ defines the phase offset.

The frequency (or wavelength) governs the width of the stripes in the function, and by increasing
the frequency, the stripes become thinner. The orientation governs the rotation of the Gabor envelope
and the aspect ratio controls the height of the function. For a very large aspect ratio, the envelope
approaches a height of one pixel, and for a very small aspect ratio, the height stretches across the
image. The bandwidth controls the overall size of the Gabor envelope, such that for a large bandwidth,
the envelope increases, allowing more stripes [65].

Figures 8–12 show the effect of changing some parameters for the function of a Gabor.
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Gabor filters have many advantages, such as invariance to rotation, scale, and translation.
Moreover, they are robust against disturbances in images, such as change in illumination [66,67],
and they have been found to be particularly appropriate to extract many features from an image, using
different frequencies and orientation for Gabor filters [65].

They are useful, especially in feature extraction for texture analysis and segmentation. The varying
orientation observes the texture that is oriented in a particular direction, while the varying Gaussian
envelope standard deviation controls the region size of the image that is being analyzed [68].

5. Classification

Although there were many classifiers used for the classification, such as the Euclidean Distance,
the Cosine Distance, Linear Discriminant Analysis, Quadratic Discriminant Analysis, Learning Vector
Quantization, and Support Vector Machines [69]. The Minimum Euclidean Distance classifier was
considered to be one of the most popular classifiers that could be easily designed [70] and widely
used [71,72]. In general, it was used to examine the similarities between objects. In this study, we used
the k-nearest neighbor classifier (for k = 1) with a Euclidean distance function as a distance metric.

5.1. Euclidean Distance

The Euclidean distance d between two points i and j, where I = (i1, i2,..., in) and j = (j1, j2,..., jn),
in Cartesian coordinates, is the length of the straightest line between them. This distance is given by
the formula:

d(i, j) =
√
(i1 − j1)

2 + (i2 − j2)
2 + . . . + (in − jn)

2 =

√
n

∑
k=1

(ik − jk)
2 (13)
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Therefore, if the two points are close to each other, then the value of d is small; otherwise, it is
large. The Euclidean vector is the location of a point in a Euclidean n-space, where the length of this
vector is measured by the formula of the Euclidean norm, given by:

‖I‖ =
√

i21 + i22 + . . . + i2n (14)

This tool is used to test how similar one object (face) is to another, by testing the similarities
between their respective feature vectors.

6. Dataset

The dataset in this study was taken from the ORL and Yale datasets.

6.1. The ORL Dataset

The ORL is a well-known face dataset that is used to test FR algorithms. It has 400 images of
40 distinct persons, 10 images for each person. The dataset is varied in many aspects. First, the images
are taken at different times during the lives of the people. Second, the images include different
variations and different facial expressions, such as closed or open eyes. Some of the people are smiling,
others are not. In addition, there are a number of people wearing spectacles while others are not
wearing spectacles. Furthermore, a number of the images include up to twenty degrees of tilting and
rotation of the face [3].

A number of face images from the ORL dataset are illustrated in Figure 13.

Symmetry 2018, 10, x FOR PEER REVIEW  11 of 22 

 

𝑑 𝑖, 𝑗 = 𝑖1 − 𝑗1
2 + 𝑖2 − 𝑗2

2 + ⋯ + 𝑖 − 𝑗 2 = 𝑖 − 𝑗 2

1

 (13)

Therefore, if the two points are close to each other, then the value of d is small; otherwise, it is 280 
large. The Euclidean vector is the location of a point in a Euclidean n-space, where the length of this 281 
vector is measured by the formula of the Euclidean norm, given by: 282 ‖𝐼‖ = 𝑖1

2 + 𝑖2
2+. . . +𝑖𝑛2  (14)

This tool is used to test how similar one object (face) is to another, by testing the similarities 283 
between their respective feature vectors. 284 

6. Dataset 285 
The dataset in this study was taken from the ORL and Yale datasets. 286 

6.1. The ORL Dataset 287 
The ORL is a well-known face dataset that is used to test FR algorithms. It has 400 images of 40 288 

distinct persons, 10 images for each person. The dataset is varied in many aspects. First, the images 289 
are taken at different times during the lives of the people. Second, the images include different 290 
variations and different facial expressions, such as closed or open eyes. Some of the people are 291 
smiling, others are not. In addition, there are a number of people wearing spectacles while others are 292 
not wearing spectacles. Furthermore, a number of the images include up to twenty degrees of tilting 293 
and rotation of the face [3]. 294 

A number of face images from the ORL dataset are illustrated in Figure 13. 295 

 296 
Figure 13. Sample images from the Olivetti Research Laboratory (ORL) Dataset 297 

6.2. The Yale Dataset 298 
In this dataset, there exists 165 images for 15 unique people, 11 images for each person with 299 

different cases, such as normal, sad, sleepy, etc. The dataset includes many variations of pose, 300 
illumination, and expression [3]. A number of images from the Yale dataset are illustrated in Figure 14. 301 

Figure 13. Sample images from the Olivetti Research Laboratory (ORL) Dataset.

6.2. The Yale Dataset

In this dataset, there exists 165 images for 15 unique people, 11 images for each person with
different cases, such as normal, sad, sleepy, etc. The dataset includes many variations of pose,
illumination, and expression [3]. A number of images from the Yale dataset are illustrated in Figure 14.
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7. Experiments and Results

This section shows some results obtained from simulations using MATLAB 2015b.
The experiments were implemented on images from the ORL and Yale datasets, using the proposed
method. The proposed method was compared with the performance of PCA [26], Collaborative
Representation-Based Classification (CRC) [73], SRC [21], and SCRC [3,54].

The FR system consisted of three stages. The first stage was the Preprocessing Stage, in which the
2-D DWT, the GLPF, and the DoG were used separately. The second stage was the Feature Extraction
Stage, where the LBP, the GLCM, and the Gabor Filter were examined; all these algorithms were
first tested separately, then, the two methods from the list were combined in the Feature Extraction
Stage. In the final stage (the Classification Stage), the Euclidean distance was used as a classifier.
The procedure was carried out and tested using the Original Training Samples (OTS) and the Original
with Symmetrical Training Samples (OSTS) from the ORL and the Yale datasets.

7.1. Generating New Images

In order to increase the size of the training data, new training images were generated using the
property of face symmetry, since those images reflect some part of the face that is not shown by the
original images, as illustrated in Figure 15.
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Figure 15. (a) Original image; (b) left side; (c) right side; (d) mirror of left side; (e) mirror of right side;
(f) integrating left side with mirror; (g) integrating right side with mirror; and (h) Discrete Wavelet
Transform (DWT) of the original image in the first level.

7.2. Experiments on the ORL Dataset

In the experiment, one, two, up to nine face images of each person from the ORL dataset with
size 112 × 92 were used, respectively, as the training samples and the rest of images were used as
the testing samples. The features of the training and testing images were extracted using the LBP,
the GLCM, and the Gabor Filter. Each image had one feature vector, f = [ f1, f2 · · · fm], where m is the
number of one-image features.
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The feature vector of the test image was compared with the feature vectors of the training images,
using the Euclidean distance classifier. The person who had a training image feature vector with a
minimum Euclidean distance was considered to be the result of recognition. The experiments were
run ten times, with random image selection in each experiment. The recognition rate was calculated as
the average of each set of these experiments.

7.3. Experiments on Symmetrical ORL Dataset

In this experiment, the original and symmetrical images were used for training. The experiment
revealed the use of symmetrical images, along with the original images, improved the accuracy of
FR, as compared to only using the original images as training samples. Figure 16 shows the results of
using the LBP for feature extraction with OTS and OSTS.
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7.4. Using a Preprocessing Stage

In this experiment, three different methods for preprocessing were separately examined with
LBP. First, LBP was used without any preprocessing stage, followed by the GLPF being used for the
preprocessing stage, with a standard deviation of σ = 1 and a window size of 5 pixels. Then the DoG
with σ1 = 0.1, σ2 = 2.0, and a window size of 5 pixels was used for the preprocessing stage. Finally,
the 2-D DWT was also used for the preprocessing stage.

The results showed that the use of GLPF or 2-D DWT as a preprocessing stage improved
the accuracy of FR, as compared to not using any of the preprocessing stages, as in Figure 17.
The experiments were implemented using OSTS.
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Figure 17. Recognition rates using LBP, LBP with Discrete Wavelet Transform (DWT-LBP), LBP with
Gaussian Low-Pass filter (GLPF-LBP), and LBP with Difference of Gaussian (DoG-LBP) methods,
versus size of the training set of the ORL dataset (OSTS).

7.5. The GLCM Method

In this experiment, the GLCM method was used to extract the features. The parameters of the
GLCM method were selected to be D = 1 and θ = 0◦.

7.6. Combining Feature Extraction Methods

In this experiment, two methods were used separately for feature extraction—the LBP and
the GLCM. Then, the two feature vectors obtained from these two methods were normalized
and concatenated to produce one longer feature vector, which was used for training and testing.
The results showed that the combination of the two methods could help to improve the accuracy of FR,
as compared to using one method for feature extraction, as shown in Figure 18. The experiments were
implemented using OSTS.
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7.7. The Gabor Filter Method

In this experiment, the Gabor Filter was examined to extract the features. The parameters of the
Gabor filter bank were set as following. The number of scales was set to 5, the number of orientations
was set to 8, and the number of rows and columns in a 2-D Gabor filter were each set to 39. Additionally,
the parameter of the Gabor function was set as following. The factor of down-sampling along the
rows was set to 4 and the factor of down-sampling along the columns was set to 4. The experiment
revealed that the best results were obtained using the Gabor Filter, as compared to the other methods.
Figure 19 shows the results of the recognition rates for different methods on the OSTS–ORL dataset.
These methods were—the LBP without any preprocessing stage (LBP), the LBP with DWT as a
preprocessing stage (DWT-LBP), the LBP with GLPF as a preprocessing stage (GLPF-LBP), the GLCM,
the LBP combined with the GLCM and the Gabor. For the sake of comparison, the performance of the
PCA has also been shown in the figure.
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Figure 19. Recognition rates using different methods: Principal Component Analysis (PCA), Local
Binary Pattern (LBP), LBP with Discrete Wavelet Transform (DWT LBP), LBP with Gaussian Low-Pass
filter (GLPF–LBP) Gray Level Co-Occurrence Matrix (GLCM), combination of LBP with GLCM
(LBP–GLCM), and the Gabor versus size of the training set of the ORL dataset (OSTS).

7.8. Other Experiments

In order to generalize the proposed method, various cases and situations were examined and
studied. For this purpose, different experiments were carried out, using different preprocessing
techniques and different feature extraction methods. These experiments were implemented to compare
the performance of the FR system when the original training samples (OTS) was used alone and when
the original training samples were used, along with the symmetrical training samples (OSTS). For the
sake of completeness, the results were compared with the methods in the literature. All obtained
results have been summarized in Table 1.

Table 1. The recognition rates of the different methods on the ORL dataset, using the OTS compared
with the OSTS.

Preprocessing
Method

Feature Extraction
Method

No. of Training Images

1 2 3 4 5 6 7 8 9

Recognition Rate %

No LBP
OTS 62.5 75 82.5 82.5 90 90 92.5 92.5 92.5

OSTS 67.5 77.5 87.5 87.5 92.5 95 95 95 95

DWT LBP
OTS 70 80 90 92.5 95 95 95 97.5 97.5

OSTS 72.5 82.5 92.5 95 97.5 97.5 97.5 97.5 97.5

GLPF LBP
OTS 72.5 80 87.5 92.5 95 95 97.5 97.5 97.5

OSTS 75 87.5 90 97.5 97.5 97.5 97.5 100 100

DoG LBP
OTS 50 55 62.5 62.5 65 65 65 67.5 70

OSTS 52.5 60 62.5 67.5 67.5 67.5 67.5 72.5 72.5

No GLCM
OTS 55 65 77.5 77.5 80 87.5 87.5 87.5 90

OSTS 60 67.5 85 85 87.5 90 90 90 90
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Table 1. Cont.

Preprocessing
Method

Feature Extraction
Method

No. of Training Images

1 2 3 4 5 6 7 8 9

Recognition Rate %

DWT GLCM
OTS 50 55 60 60 62.5 62.5 62.5 65 62.5

OSTS 57.5 70 70 80 77.5 75 80 80 82.5

DoG GLCM
OTS 37.5 40 40 40 42.5 42.5 45 45 45

OSTS 40 42.5 50 50 50 50 50 52.5 55

GLPF GLCM
OTS 57.5 67.5 80 80 80 82.5 82.5 82.5 82.5

OSTS 57.5 75 82.5 82.5 87.5 90 90 90 90

No LBP–GLCM
OTS 70 82.5 87.5 92.5 92.5 95 95 95 95

OSTS 72.5 85 90 95 95 97.5 97.5 100 100

No Gabor
OTS 87.5 95 100 100 100 100 100 100 100

OSTS 90 97.5 100 100 100 100 100 100 100
No PCA OTS 69 79 84 87 89 95 96 96 95
No CRC OTS 72 84 86 91 91 94 93 94 93
No SRC OTS 76 89 90 94 94 94 95 96 95
No SCRC OSTS 76 90 92 94 94 95 96 96 95

7.9. Experiments on the Yale Dataset

In this experiment, from the Yale dataset, either one, two, or up to ten facial images of size
154 × 154, were chosen for each person, which were then used as the training samples, and the rest
of images were used as the testing samples. These experiments were similar in procedure to those
in the ORL dataset, where a variety of methods were tested for preprocessing and feature extraction.
These methods were tested and examined using the OTS and the OSTS. Many results were obtained
using the different cases, these results have been summarized in Table 2 and Figure 20, along with the
performance of the methods in the literature.Symmetry 2018, 10, x FOR PEER REVIEW  18 of 22 
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Figure 20. Rates of recognition using different methods: Principal Component Analysis (PCA),
Collaborative Representation-Based Classification (CRC), Sparse Representation-Based Classification
(SRC), Collaborative Representation-Based Classification Using Symmetry (SCRC), and the Gabor
Method Using Original and Symmetrical Training Samples (Gabor–OSTS), versus the size of the
training set on the Yale dataset.
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Table 2. The recognition rates of the different methods on the Yale dataset, using the OTS and the OSTS.

Preprocessing
Method

Feature Extraction
Method

No. of Training Images

1 2 3 4 5 6 7 8 9 10

Recognition Rate %

No LBP
OTS 90 93 96 98 100 100 100 100 100 100

OSTS 95 98 100 100 100 100 100 100 100 100

No GLCM
OTS 70 75 87 87 87 87 87 87 87 87

OSTS 75 80 93 93 93 93 93 93 93 93

DWT GLCM
OTS 12 15 18 20 20 20 20 20 20 20

OSTS 20 23 27 30 33 33 33 33 33 33

DoG GLCM
OTS 60 60 73 73 73 73 80 80 80 80

OSTS 65 67 87 87 87 87 87 87 87 87

GLPF GLCM
OTS 80 85 87 87 87 87 87 87 87 87

OSTS 80 93 93 93 93 93 93 93 93 93

No Gabor
OTS 95 97 100 100 100 100 100 100 100 100

OSTS 97 100 100 100 100 100 100 100 100 100
No PCA OTS 69 89 89 93 87 87 98 95 96 100
No CRC OTS 87 93 94 99 98 96 98 95 96 100
No SRC OTS 87 90 90 98 92 92 98 100 100 100
No SCRC OSTS 88 95 97 99 100 100 100 100 100 100

8. Conclusions

This paper presents an effective method to overcome the restricted number of training sets using
the property of face symmetry. The use of this property also reduced the effect of illumination and pose
variations. First, a new set of face images was generated using the left and right halves of each face.
Second, the original and generated samples were preprocessed using the 2-D DWT, GLPF, and DoG;
then the features of these samples were extracted using the LBP, the GLCM, and the Gabor filter
methods. Finally, the Euclidean classifier was used to obtain the results of the recognition. The use
of the GLCM alone is not recommended, but it could support the performance of the LBP by using
the combined features from both methods. It could be well-observed that combining features from
different methods provided a better performance, as opposed to using a single method. The Gabor
filter was indeed a very helpful tool in FR. This paper also showed that the use of the preprocessing
stage in the recognition system improved the accuracy of FR, as compared to not using any of the
preprocessing stages. Although the method was especially effective when the set of training samples
was small, it took more time to process the increased number of training samples.

Author Contributions: Conceptualization, S.A., O.S.G. and J.R.; Writing-Original Draft Preparation, S.A.;
Supervision, O.S.G. and J.R.

Funding: This research received no external funding.
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