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Abstract: In 1969, based on the concept of the Hausdorff metric, Nadler Jr. introduced the notion
of multivalued contractions. He demonstrated that, in a complete metric space, a multivalued
contraction possesses a fixed point. Later on, Nadler’s fixed point theorem was generalized by many
authors in different ways. Using a method given by Angrisani, Clavelli in 1996 and Mureşan in 2002,
we prove in this paper that, for a class of convex multivalued left A-contractions in the sense of Nadler
and the right A-contractions with a convex metric, the fixed points set is non-empty and compact.
In this paper we present the fixed point theorems for convex multivalued left A-contractions in the
sense of Nadler and right A-contractions on the geodesic metric space. Our results are particular
cases of some general theorems, to the multivalued left A-contractions in the sense of Nadler and
right A-contractions, and particular cases of the results given by Rus (1979, 2008), Nadler (1969),
Mureşan (2002, 2004), Bucur, Guran and Petruşel (2009), Petre and Bota (2013), etc., and are applicable
in many fields, such as economy, management, society, biology, ecology, etc.

Keywords: fixed point; convex multivalued left A-contraction; right A-contraction; geodesic metric
space; regular golbal-inf function
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1. Introduction

Fixed point theory plays a major role, not only in functional and nonlinear analysis, in solving
problems from the theory of differential and integral equations, partial or random differential equations,
differential and integral inclusions, functional equations, the approximation methods but also in
management, economics, finances, computer science, and other fields [1].

The field of fixed point theory is based on the works of Poincaré, Lefschetz-Hopf, and
Leray-Schauder. Their theory has been of high importance in the topological field, as well as for
the degree theory.

The metric theory consists of making successive approximations in order to reveal the existence
and the uniqueness of the solution. Mathematician Banach improved this theory by expanding its use
to more than ordinary differential equations and integral equations. Banach’s fundamental fixed point
theorem was used to create the metric fixed point theory, which implies contraction mappings that are
defined on a complete metric space.

In 1965, Browder, Göhde, and Kirk [2–4] developed the theory of multivalued mappings, which
has applications in the following areas: Convex optimization, differential inclusions, control theory,
management, finances, and economics. In addition, based on Banach’s theory, in 1969 Nadler Jr. [5]
demonstrated that the multivalued version of the theory has a fixed point, by using the concept of the
Hausdorff metric.
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In 2004, Ran and Reurings [6] demonstrated how the Banach contraction principle endowed
with a partial order can be used to solve certain matrix equations. Similarly, in 2007, Nieto and
Rodrigues-López [7] showed how the extension to the Banach contraction principle can be used to
solve differential equations, however, Jachymski (2007) [8] used graphs instead of a partial order and
obtained a more general version of the previous extensions.

Espinola and Nicolae in 2015 [9], also Nicolae and 2011 [10], and Leustean [11], used some
fixed-point theorems in geodesic metric spaces.

Our results are particular cases of some general theorems, to the multivalued left A-contractions
in the sense of Nadler and right A-contractions, and particular cases of the results given by Rus [12,13],
Nadler [5], Mureşan [14,15], Bucur, Guran and Petruşel [16], and Petre and Bota [17], etc.

2. Literature Review

In the past years, an increasing number of papers has been published on the topic of fixed points
of multivalued operators, using different methods [18].

Based on the concept of the Hausdorff metric, Nadler Jr. (1969) [5] introduced the notion of
multivalued contractions and demonstrated that, in a complete metric space, a multivalued contraction
possesses a fixed point.

Later on, Nadler’s fixed point theorem was generalized in different ways by many authors.
For example, in 2015, using an axiomatic approach of the Pompeiu-Hausdorff metric, Coroian

(2015) [19] studied the properties of the fractal operator generated by a multivalued contraction.
Aydi, Abbas, and Vetro, in their paper published in 2012 [20], also obtained a version of the Nadler

fixed point theorem. They extended Nadler’s fixed point theorem, obtaining results for multivalued
mappings defined on complete partial metric spaces.

In 2013, Petre and Bota [17] using the concept of a generalized Pompeiu–Hausdorff functional
presented some fixed and strict fixed point theorems in generalized b-metric spaces.

In 1996, Angrisani and Clavelli [21], using the class of regular-global-inf functions, presented a
new method to prove fixed point theorems. We will use this method to multivalued left A-contractions
in the sense of Nadler and the concept of the generalized metric space in the Perov’ sense, and we
prove the compactness of the fixed points set of the considered mappings.

Bucur, Guran and Petruşel (2009) [16] extended some old fixed point theorems and obtained
some results on fixed points of multivalued operators on generalized metric spaces. Other results
for generalized contractions in complete metric spaces were demonstrated by Kikkawa and Suzuki
(2008) [22]. In the year 2011, Rezapour and Amiri [23] used Kikkawa’s method and obtained new
theorems on fixed points for multivalued operators defined on generalized metric spaces.

In another paper by Rezapour and Amiri [24], published in 2012, the authors obtained new
theorems on fixed points for multivalued operators defined on generalized metric spaces by providing
different conditions for [16] published in 2009.

Thus, there have been demonstrated fixed point theorems of multivalued operators on different
types of spaces.

Some authors obtained new fixed-point results in partial metric spaces, while other authors have
obtained new fixed point results in b-metric spaces.

As known, the Banach contraction principle shows that a contraction defined on a complete
metric space always has a unique fixed point. In addition, this principle shows that the fixed point
can be approximated by using Picard’s iterates. W. A. Kirk (see reference [25]) discusses for the
first time the fixed-point theory in CAT(0) spaces (Cartan-Alexandrov-Toponogov spaces), which is
known to be a geodesic metric space. W. A. Kirk demonstrated that a non-expansive mapping with
a compact and convex domain, subset of the CAT(0) space, always has a fixed point. Many others
specialists demonstrated new fixed point theorems for various types of mappings in the CAT(0) space
(for example, references [26–35]).
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In this paper, we mention that the notion of convergent sequence, open subset and closed subset,
Cauchy sequence, completeness, for a geodesic metric space, are analogous to those for metric spaces
that are usually used.

Our results are particular cases of some general theorems, for the convex multivalued left
A-contractions in the sense of Nadler, particular cases of the results given by Petruşel (1996, 2004), Rus
(1979, 2008), Bucur, Guran and Petruşel (2009), and Mureşan (2002), etc.

3. Preliminaries

For (X, d) a metric space, we denote by:
P(X)—the set of all subsets of X, which are nonempty;
Pc(X)—the set of all compact subsets of X, which are nonempty.
Based on these subsets we consider the operators:
D : P(X)× P(X)→ [0, ∞), D(Z, Y)in f {d(x, y) : x ∈ Z, y ∈ Y}, Z being part o f X —the

gap functional;
H : P(X)× P(X)→ [0, ∞), H(Z, Y)max

{
supx∈Zin fy∈Yd(x, y), supy∈Yin fx∈Zd(x, y)

}
—the

Pompeiu-Hausdorff functional.
In addition, for Z ∈ Pc(X), we have diam(Z) = sup{d(x, y) : x, y ∈ Z} and αK(Z) =

in f {ε > 0 : Z = Ui∈I Zi, diam Zi ≤ ε} the Kuratowski measure of noncompactness.
Let there be a real valued function F : X → R . For any p ∈ R we denote Lp = {x ∈ X : F(x) ≤ p}

the p-level set and in f F = {F(x) : x ∈ X}.

Definition 1. (see reference [14]) Functional F : X → R is known as regular-global-inf (r.g.i.) in x ∈ X
if and only if F(X) > in f F implies that there is a p > in f F such that D

(
x, Lp

)
> 0. Functional F is called

r.g.i.in X if is r.g.i.in any x ∈ X.

Proposition 1. (see [14])
(i) Let Z,Y ∈ Pc(X). For any x ∈ Z and q > 1 exists y ∈ Y with d(x, y) ≤ qH(Z, Y);
(ii) For all (X, d), a complete metric space, we obtain that (Pc(X), H) is also a complete metric space.

Proposition 2. (see [14])
Let (X, d) is a complete metric space and F : X → [0, ∞) is a r.g.i. function in X. If lim

p↓in f F
αK
(

Lp
)
= 0

then the set of the global minimum point of F is nonempty and compact.

Definition 2. (see [16])
We consider X a set, X 6= ∅. In addition, we consider the vector space of vectors with positive real

components Rm
+, equipped with the usual component-wise partial order. The application d : X× X → Rm

+

which satisfies the usual axioms of the metric is defined as a generalized metric in the sense of Perov.

We mention that the generalized metric in Perov’ sense is in fact a particular case of the K-metric.
Let (X, d) be a generalized metric space in Perov’sense. Here, if v, r ∈ Rm, v(v1, v2, . . . , vm) and

r(r1, r2, . . . , rm), then by v ≤ r we mean vi ≤ ri, for each i ∈ {1, 2 . . . , m}, while v < r stands for vi < ri,
for each i ∈ {1, 2 . . . , m}. In addition, |v| = (|v1|, |v2|, . . . , |vm|). If u, v ∈ Rm, with u(u1, u2, . . . , um)

and v(v1, v2, . . . , vm), then max(u, v)(max(u1, v1), max(u2, v2), . . . , max(um, vm)) and, if c ∈ R then
vi ≤ c, for each i ∈ {1, 2 . . . , m}.

In a generalized metric space in the sense of Perov, the concepts of convergent sequence, Cauchy
sequence, completeness, and also the concepts of open and closed subsets are defined similarly to
those in a metric space. If x0 ∈ X and r ∈ Rm

+ with ri > 0 for each i ∈ {1, 2 . . . , m} we will denote
by B(x0, r){x ∈ X : d(x0, x) < r} the open ball centred in x0 with the radius r(r1, r2, . . . , rm) and
by B(x0, r){x ∈ X : d(x0, x) ≤ r} the closed ball centred in x0 with the radius r. If T : X → P(X)
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is a multivalued operator, then we denote by Fix(T) the fixed point of T. We have Fix(T) :=
{x ∈ X : x ∈ T(x)}.

Notice that a generalized Pompeiu-Hausdorff functional can be introduced by the setting
of a generalized metric space in the sense of Perov. Namely, if (X, d) is a generalized metric
space in the sense of Perov with d(d1, d2, . . . , dm) and if Hi denotes the Pompeiu-Hausdorff metric
on Pc(X) generated by di (where i ∈ {1, 2 . . . , m}) then we denote by H : Pc(X)× Pc(X)→ Rm

+ ,
H(H1, H2, . . . , Hm) the vector-valued Pompeiu-Hausforff metric on Pc(X).

Definition 3. (see [16]) For A ∈ Mm,m(R+), a matrix convergent to zero and for which

H(T(x), T(y)) ≤ Ad(x, y), f or all x, y ∈ Y

is said that any A multivalued operator T : Y ⊂ X→Pc(X) is a multivalued left A-contraction in the sense
of Nadler.

Definition 4. If (X, d) is a metric space and x, y are two fixed elements from X with d(x; y) = l, a geodesic path
from x to y is defined as an isometry c:[0; l]→ c([0; 1]) ⊂ X for which c(0) = x, c(l) = y. The set c([0; 1]) of a
geodesic path between two points x and y is defined as a geodesic segment. It is said that a metric space (X, d) is
a geodesic space if between every two points x and y of X there is a geodesic segment.

In the specialty literature, a geodesic segment between the two points x, y is denoted by
[x; y]. A point z in [x; y] is equal by (1 − α)x ⊕ α y with α ∈ [0; 1]. Thus, [x; y] :=
{(1− α)x ⊕ α y : α ∈ [0; 1]}. The metric d is a convex function, and a closed ball B[x, r] := {y;
d(y, x) ≤ r}, r > 0 is a set metrically convex.

Notice that for m = 1 we get the well-known concept of contraction mapping defined by S. B.
Nadler Jr. (1969). We also point out that, by the properties of the functional H, if T is a multivalued left
A-contraction, then T is a multivalued left A-contraction in the sense of Nadler.

The following definition expresses a dual concept.

Definition 5. (see reference [16]) Let Y ⊂ X and T : Y→P(X) be a multivalued operator. Thus, T is called a
multivalued right A-contraction if A ∈ Mm,m(R+) is a matrix convergent to zero and

(H(T(x), T(y)))t ≤ (d(x, y))t A, f or all x, y ∈ Y.

In a particular case, if (X, d) is a generalized metric space in the sense of Perov, then it can be a
geodesic metric space.

Observation 1. (see reference [16]) Notice that since
[
(d(x, y))t A

]t
= Atd(x, y), the right A-contraction

condition on the multivalued operator T is equivalent to the left At—contraction condition given in Definition 3.
In addition, a matrix A converges to zero if and only if matrix At converges to zero (due to the fact that A and At

have the same eigenvalues) and [(I − A)−1]
t

=
(

I − At)−1.

Thus, a matrix A is convergent to zero if and only if An → 0 as n→ ∞ .

Lemma 1. (see [26,27]) If (X, d) is a geodesic metric space, we have the following inequality

d((1− α)x ⊕ a y, z) ≤ (1− α)d(x, z) + αd(y, z), f or all α ∈ [0; 1] and x, y, z ∈ X.
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Definition 6. Let (X, d) be a geodesic metric space. We say that A multivalued operator T : Y ⊂ X→Pc(X) is
a multivalued left A-contraction in the sense of Nadler in relation to a convex metric, if A ∈ Mm,m(R+) is a
matrix convergent to zero and

H((1− α)T(x) ⊕ α T(y), T(z)) ≤ Ad((1− α)x ⊕ α y, z)

for all x, y ∈ Y.

Definition 7. If (X, d) is a geodesic metric space, and Y ⊂ X, let T : Y→P(X) be a multivalued operator.
In this case, T is called a multivalued right A-contraction in the sense of Nadler in relation to a convex metric,
where A ∈ Mm,m(R+) is a matrix convergent to zero, then the following inequality takes place

(H((1− α)T(x) ⊕ α T(y), T(z)))t ≤ (d((1− α)x ⊕ α y, z))t A, f or all x, y ∈ Y.

4. Fixed Point Theorems

We now present our new results.

Theorem 1. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm), and T : X→Pc(X) a
convex multivalued left A-contraction in the sense of Nadler in relation to a convex metric if A = (aii) ∈
Mm,m(R+), aii ≤ 1, i ∈ {1, 2 . . . , m}, is a diagonal matrix convergent to zero and

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ aiidi((1− α)x ⊕ α y, z),

i ∈ {1, 2 . . . , m}, for all x, y ∈ X, then Fix(T) 6= ∅ and is compact.

Proof. We define the functional

F : X → [0, ∞) , D(x, T(x))in fi∈{1,2...,m}{di(x, λ) : λ ∈ T(x)},

D(x,) : P(X)→ [0, ∞)

and we prove that:
(i) inf F = 0;
(ii) lim

p↓0
αK
(

Lp
)
= 0;

(iii) F is r.g.i. in X. �

By applying Proposition 2, the conclusion will be obtained.
(i) We take x0 ∈ X and x1 ∈ Tx0.
Considering qi > 1 such that

βi = qiai < 1, i ∈ {1, 2 . . . , m} (1)

from Proposition 2, there will exist an x2 ∈ Tx1 , such that

di(x1, x2) ≤ qi Hi(T(x0), T(x1)) ≤ qiaidi(x0, x1).

Hence, di(x1, x2) ≤ βidi(x0, x1).
Thus, we obtain the sequence (xn)n∈N∗ with the properties:

∈ T(xn−1) (2)
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and
di(xn, xn−1) ≤ βidi(xn−1, xn), for n ∈ N∗ (3)

From (3), F(xn) ≤ βn
i di(x0, x1), which implies inf F = 0.

(ii) Considering x0 ∈ Lp (D(x0, T(x0)) ≤ p), because 0 < βi < 1, we find x1 ∈ T(x0 ) such that
di(x0, x1) ≤ p

βi
and for the sequence (xn)n∈N∗ we will have, from (3), for any n ∈ N∗, the following:

F(xn) ≤ di(xn, xn−1) ≤ pβn
i ≤ p, i ∈ {1, 2 . . . , m}.

Thus, xn ∈ Lp for all n ≥ 1.
Because di(x0, x1) ≤ p

βi
,

di(x0, xn) ≤ di(x0, x1) + di(x1, xn) ≤
p
βi

+
p

βi − 1
f or all n ≥ 1, i ∈ {1, 2 . . . , m},

di(xn, xn−k) ≤
p

βi − 1
f or all n ≥ 1 and k ≥ 1,

we have
αK
(

Lp
)
≤ diam(xn)≤

p
βi

+
p

βi − 1
,

which implies that lim
p↓0

αK
(

Lp
)
= 0.

(iii) We suppose that F is not r.g.i. in X. It results that there exists an x ∈ X with the following
properties:

F(x) > 0 and D
(
x, Lp

)
= 0, for any p > 0. (4)

There will exist a sequence (x′n)n∈N∗ such that

x′n ∈ L 1
n

and di
(

x, x′n
)
≤ 1

n
for all n ≥ 1, i ∈ {1, 2 . . . , m}. (5)

Choosing x′′ ∈ T(x) and x′′n ∈ T(x′n) in anyway we have

di(x, x′′ ) ≤ di
(

x, x′n
)
+ di

(
x′n, x′′n

)
+ di

(
x′′n , x′′

)
, i ∈ {1, 2 . . . , m}.

Considering this inequality in fx′′n ∈T(x′n)
, for all n ∈ N∗ we have:

di(x, x′′ ) ≤ 1
n
+ D

(
x′n, T(x′n)

)
+ D

(
T(x′n), x′′

)
≤ 1

n
+ F

(
x′n
)
+ Hi

(
T
(
x′n
)
, T(x)

)
≤ 2

n
+ aii di

(
x′n, x

)
+ F

(
x′n
)
, i ∈ {1, 2 . . . , m}.

From (5), aii ≤ 1, i ∈ {1, 2 . . . , m}, and x′n ∈ L 1
n

we have:

di(x, x′′ ) ≤ 1
n
+

aii
n

+
1
n
≤ 4

n

Then, in the last inequality, considering in fx′′∈Tx, we obtain that F(x) = 0. That is a contradiction
with Equation (4). Then, F is r.g.i. in X.

From Observation 1 and Theorem 1 we obtain the following dual result:
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Theorem 2. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm), and T : X→Pc(X) a convex
multivalued right A-contraction in relation to a convex metric if A = (aii) ∈ Mm,m(R+), aii ≤ 1, i ∈
{1, 2 . . . , m}, is a diagonal matrix convergent to zero and

Hi(T(x), T(y)) ≤ di(x, y)aii, i ∈ {1, 2 . . . , m}, f or all x, y ∈ X,

then the set Fix(T) of the fixed point of T is nonempty and compact.

Proof. The proof is analogous to the proof from Theorem 1. �

Theorem 3. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm),x0 ∈ X and r =

(r1, r2, . . . , rm) > 0. Let T : B(x0, r)→Pc(X) be a convex multivalued left A-contraction in the sense
of Nadler in relation to a convex metric. If A = (aii) ∈ Mm,m(R+), aii ≤ 1, i ∈ {1, 2 . . . , m}, is a diagonal
matrix convergent to zero and

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ aiidi((1− α)x ⊕ α y, z), i ∈ {1, 2 . . . , m},

for all x, y ∈ X.
Supposing that:
(i) for v, r∈ Rm

+ the following inequality is satisfied v(I − A)−1 ≤ (I − A)−1r, it results that v ≤ r;
(ii) there is an x1 ∈ Tx0 so that d(x0, x1)(I − A)−1 ≤ r.
Then T has at least one fixed point.

Proof. The proof is analogous to the proof from [16].
If x0 ∈ X with x1 ∈ T(x0), we suppose that the following inequality is satisfied

d(x0, x1)(I − A)−1 ≤ r ≤ (I − A)−1r. In this case, according to (i), we have x1 ∈ B(x0, r).
Thus, if we apply the contraction definition, we obtain that there is an x2 ∈ T(x1) for which
d(x1, x2) ≤ Ad(x0, x1). We obtain that d(x1, x2)(I − A)−1 ≤ A d(x0, x1)(I − A)−1 ≤ Ar. We
mention that x2 ∈ B(x0, r). From d(x0, x2) ≤ d(x0, x1) + d(x1, x2) we obtain a new inequality,
d(x0, x2)(I − A)−1 ≤ d(x0, x1)(I − A)−1 + d(x1, x2)(I − A)−1 ≤ Ir + Ar ≤ (I − A)−1r, from which
results that, according to (i), d(x0, x2) ≤ r. Thus, by mathematical induction, we create the sequence
(xn)n∈N in B(x0, r) with the following properties:

(a) xn+1 ∈ T(xn), n ∈ N;
(b) d(x0, xn)(I − A)−1 ≤ (I − A)−1r, ∈ N, that means (by (i)) d(x0, xn) ≤ r;
(c) d(xn, xn+1)(I − A)−1 ≤ Anr, n ∈ N.
By (c) we get that d

(
xn, xn+p

)
(I − A)−1 ≤ An(I − A)−1r, n, p ∈ N∗.

Thus, the sequence (xn)n∈N is Cauchy in the complete geodesic metric space
(

B(x0, r), d
)
.

We denote by x* its limit in B(x0, r).
We prove that x∗ ∈ T(x∗). If n ∈ N∗, for each xn ∈ T(xn−1) there exists un∈ T(x∗) such that

d(xn, un) ≤ A d(xn−1, x∗).
On the other hand d(x∗, un) ≤ d(x∗, xn) + d(xn, un) ≤ d(x∗, xn) + A d(xn−1, x∗)→ 0 as n→ ∞ .

Hence, lim
n→∞

un = x∗.

Since un∈ T(x∗) for n ∈ N∗ and knowing that T(x∗) is closed, it results that x∗ ∈ T(x∗). The proof
is complete. �

Theorem 4. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm),x0 ∈ X and r =

(r1, r2, . . . , rm) > 0. Let T : B(x0, r)→Pc(X) be a convex multivalued right A-contraction in relation
to a convex metric. If A = (aii) ∈ Mm,m(R+), aii ≤ 1, i ∈ {1, 2 . . . , m}, is a diagonal matrix convergent to
zero and

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ aiidi((1− α)x ⊕ α y, z), i ∈ {1, 2 . . . , m},
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for all x, y ∈ X.
Supposing that:
(i) for v, r∈ Rm

+ the following inequality is satisfied (I − A)−1v ≤ r(I − A)−1, it results that;
(ii) there is an x1 ∈ T(x0) so that (I − A)−1d(x0, x1) ≤ r.
Then T has at least one fixed point.

Proof. The proof is analogous to the proof from Theorem 3.
If x0 ∈ X with x1 ∈ T(x0), we suppose that the following inequality is satisfied

(I − A)−1d(x0, x1) ≤ r ≤ r(I − A)−1. In this case, according to (i), we have x1 ∈ B(x0, r).
Thus, if we apply the contraction definition, we obtain that there is an x2 ∈ T(x1) for which
d(x1, x2) ≤ d(x0, x1)A. We obtain that (I − A)−1d(x1, x2) ≤ (I − A)−1 d(x0, x1)A ≤ rA. We
mention that x2 ∈ B(x0, r), From d(x0, x2) ≤ d(x0, x1) + d(x1, x2) we obtain a new inequality,
(I − A)−1d(x0, x2) ≤ (I − A)−1 d(x0, x1) + (I − A)−1d(x1, x2) ≤ rI + rA ≤ r(I − A)−1, from which
results that, according to (i), d(x0, x2) ≤ r. Thus, by mathematical induction, we create the sequence
(xn)n∈N in with the following properties:

(a) xn+1 ∈ T(xn), n ∈ N;
(b) (I − A)−1d(x0, xn) ≤ r(I − A)−1, ∈ N, that means (by (i)) d(x0, xn) ≤ r;
(c) (I − A)−1d(xn, xn+1) ≤ rAn, n ∈ N.
By (c) we get that (I − A)−1d

(
xn, xn+p

)
≤ r(I − A)−1 An, n, p ∈ N∗.

Thus, the sequence (xn)n∈N is Cauchy in the complete geodesic metric space
(

B(x0, r), d
)
.

We denote by x* its limit in B(x0, r).
We prove that x∗ ∈ T(x∗). If n ∈ N∗, for each xn ∈ T(xn−1) there exists un∈ T(x∗) such that

d(xn, un) ≤ d(xn−1, x∗)A.
On the other hand d(x∗, un) ≤ d(x∗, xn) + d(xn, un) ≤ d(x∗, xn) + d(xn−1, x∗)A→ 0 as n→ ∞ .

Hence lim
n→∞

un = x∗.

Since un ∈ T(x∗) for n ∈ N∗ and knowing that T(x∗) is closed, it results that x∗ ∈ T(x∗). The proof
is complete. �

Definition 8. (see [26,27]) Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm) a convex metric.
A function T : X→Pc(X) we said to be a multivalued Lipschitz operator of X into Pc(X) if and only if

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ adi((1− α)x ⊕ α y, z), i ∈ {1, 2 . . . , m}, f or all x, y ∈ X,

where a ≥ 0 is a fixed real number (Hi denotes the Pompeiu-Hausdorff metric on Pc(X) generated by di (where
i ∈ {1, 2 . . . , m}) and H : Pc(X)× Pc(X)→ Rm

+ , H(H1, H2, . . . , Hm) the vector-valued Pompeiu-Hausforff
metric on Pc(X)).

If T has a Lipschitz constant a < 1, then T is called a multivalued contraction mapping
(Nadler, 1969).

Theorem 5. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm). If →Pc(X) be a convex
multivalued left A-contraction in the sense of Nadler in relation to a convex metric. If A = (aii) ∈
Mm,m(R+), aii ≤ 1, i ∈ {1, 2 . . . , m}, is a diagonal matrix convergent to zero and if 0 < a < 1 be a
Lipschitz constant for T:

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ adi((1− α)x ⊕ α y, z) ≤ Hi((1− α)T(x) ⊕ α T(y), T(z)) + a,

i ∈ {1, 2 . . . , m}, f or all x, y ∈ X,

then T has a fixed point.
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Proof. Let a < 1 be a Lipschitz constant for T and let x0 ∈ X. Choose x1 ∈ T(x0). Since T(x0), T(x1) ∈
Pc(X) and x1 ∈ T(x0), there is a point x2 ∈ T(x1) such that:

Hk(T(x0), T(x1)) ≤ adk(x1, x2) ≤ Hk(T(x0), T(x1)) + a.

Now, since T(x1), T(x2) ∈ Pc(X) and x2 ∈ Tx1, there is a point x3 ∈ T(x2) such that:

Hk(T(x1), T(x2)) ≤ adk(x2, x3) ≤ Hk(T(x1), T(x2)) + a2.

Continuing in this way we create a sequence (xi)i∈N∗ of points of X such that xi+1 ∈ T(xi) and

Hk(T(xi−1), T(xi)) ≤ adk(xi, xi+1) ≤ Hk(T(xi−1), T(xi)) + ai, f or all i ∈ N∗.

We note that

adk(xi, xi+1) ≤ Hk(T(xi−1), T(xi)) +ai ≤ adk(xi, xi+1) + ai

≤ a[Hk(T(xi−2), T(xi−1)) + ai−1] + ai

≤ a2dk(xi−2, xi−1) + 2ai ≤ . . .
≤ aidk(x0, x1) + iai,

for all i ∈ N∗. Hence

dk
(

xi, xi+j
)
≤ dk(xi, xi+1) + dk(xi+1, xi+2) + . . . + dk

(
xi+j−1, xi+j

)
≤ aidk(x0, x1) + iai + ai+1dk(x0, x1) + (i + 1)ai+1

+... + ai+j−1dk(x0, x1) + (i + j− 1)ai+j−1

=

(
i+j−1

∑
n=i

an

)
dk(x0, x1) +

i+j−1

∑
n=1

nan,

for all i, j ≥ 1, k ∈ {1, 2 . . . , m}.
It follows that the sequence (xi)i∈N∗ is a Cauchy sequence. Since (X, d) is complete, the sequence

(xi)i∈N∗ converges to a point x0 ∈ X. Therefore, the sequence (T(xi))i∈N∗ converges to T(x0) and,
since xi ∈ T(xi−1) for all i, it follows that x0 ∈ T(x0). This completes the proof of the theorem. �

Theorem 6. Let (X, d) be a complete geodesic metric space, d(d1, d2, . . . , dm). If T : X→Pc(X) is a
convex multivalued right A-contraction in relation to a convex metric. If A = (aii) ∈ Mm,m(R+), aii ≤ 1,
i ∈ {1, 2 . . . , m}, is a diagonal matrix convergent to zero and if 0 < a < 1 is a Lipschitz constant for T:

Hi((1− α)T(x) ⊕ α T(y), T(z)) ≤ adi((1− α)x ⊕ α y, z) ≤ Hi((1− α)T(x) ⊕ α T(y), T(z)) + a,

i ∈ {1, 2 . . . , m}, f or all x, y ∈ X,

then T has a fixed point.

Proof. The proof is analogous to the proof from Theorem 5. �

Theorem 7. Let (X, d) be a geodesic metric space, d(d1, d2, . . . , dm), let Ti : X→Pc(X) be a convex
multivalued left A-contraction in the sense of Nadler in relation to a convex metric, A = (aii) ∈
Mm,m(R+), aii ≤ 1, i ∈ {1, 2 . . . , m}, is a diagonal matrix convergent to zero and let T0 : X→Pc(X) be a
convex left A-contraction in the sense of Nadler in relation to a convex metric. If the sequence (Ti)i∈N∗ converges
pointwise to T0 and if

(
xij
)

j∈N∗ is a convergent subsequence of (xi)i∈N∗ , then
(
xij
)

j∈N∗ converges to a fixed
point of T0.
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Proof. Let x0 = lim
j→∞

xij and let ε(ε1, ε2, . . . , εm) > 0. We choose an integer M such that

Hk
(
Tij
(

xij
)
, T0(x0)

)
< εk

2 and Ad
(

xij, x0
)
< ε

2 for all k ∈ {1, 2 . . . , m}, j ≥ M.
Then, if j ≥ M,

H
(
Tij
(

xij
)
, T0(x0)

)
≤ H

(
Tij
(
xij
)
, Tij(x0)

)
+ H

(
Tij(x0), T0(x0)

)
< Ad

(
xij, x0

)
+ H

(
Tij(x0), T0(x0)

)
< ε.

This proves that lim
j→∞

Tij
(

xij
)
= T0(x0). Therefore, since xij ∈ Tij

(
xij
)

for each j = 1,2,... it follows

that x0 ∈ T0(x0). This proves the theorem. �

Theorem 8. Let (X, d) be a geodesic metric space, d(d1, d2, . . . , dm), let Ti : X→Pc(X) be a convex
multivalued right A-contraction in relation to a convex metric, A = (aii) ∈ Mm,m(R+), aii ≤ 1, i ∈
{1, 2 . . . , m}, is a diagonal matrix convergent to zero and let T0 : X→Pc(X) be a convex left A-contraction
in the sense of Nadler in relation to a convex metric. If the sequence (Ti)i∈N∗ converges pointwise to T0

and if
(

xij
)

j∈N∗ is a convergent subsequence of (xi)i∈N∗ , then
(
xij
)

j∈N∗ converges to a fixed point of T0.

Proof. Let x0 = lim
j→∞

xij and let ε(ε1, ε2, . . . , εm) > 0. Choose an integer M such that

Hk
(
Tij
(

xij
)
, T0(x0)

)
<

εk
2

and d
(
xij, x0

)
A <

ε

2
for all k ∈ {1, 2 . . . , m}, j ≥ M.

Then, if j ≥ M,

H
(
Tij
(

xij
)
, T0(x0)

)
≤ H

(
Tij
(
xij
)
, Tij(x0)

)
+ H

(
Tij(x0), T0(x0)

)
< d

(
xij, x0

)
A + H

(
Tij(x0), T0(x0)

)
< ε.

This proves that lim
j→∞

Tij
(

xij
)
= T0(x0). Therefore, since xij ∈ Tij

(
xij
)

for each j = 1,2,... it follows

that x0 ∈ T0(x0). This proves the theorem. �

5. Applications

It is well-known that, often, for the study of many processes, having a certain lack of precision,
which arises from economy, management, society, biology, ecology, etc., we are interested in replacing
the following operator equations: 

x1 = F1(x1, x2, . . . , xm)

. . .
xm = Fm(x1, x2, . . . , xm)

,

(where (X, | |) is a complete geodesic metric space and Ti : Xm → X for i ∈ {1, 2 . . . , m}) with the
inclusion system: 

x1 ∈ T1(x1, x2, . . . , xm)

. . .
xm ∈ Tm(x1, x2, . . . , xm)

,

where Ti : Xm → P(Xm) for i ∈ {1, 2 . . . , m} are left A-contractions in the sense of Nadler or right
A-contraction with convex metric.

Theorem 9. Let (X, | |) be a complete geodesic metric space and let Ti : X → Pc(X) for i ∈ {1, 2 . . . , m} be a
convex multivalued left A-contraction in the sense of Nadler with convex metric.
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We suppose there exists 0 ≤ akk ≤ 1, k ∈ {1, 2 . . . , m} such that for each u(u1, u2, . . . , um),
v(v1, v2, . . . , vm)∈ Xm and each yk ∈ Tk(u1, u2, . . . , um), k ∈ {1, 2 . . . , m} there exists zk ∈
Tk(v1, v2, . . . , vm) such that:

|yk − zk| ≤ akk|uk − vk|, k ∈ {1, 2 . . . , m}.

Then, the inclusion system: 
u1 ∈ T1(u1, u2, . . . , um)

. . .
um ∈ Tm(u1, u2, . . . , um)

,

has at least one solution in Xm.

Proof. Consider the multivalued operator T : Xm → P(Xm) given by T(T1, T2, . . . , Tm). Then, the
conditions from the theorem, can be represented in the following form: for each u, v ∈ Xm and each
y ∈ T(u) there exists z∈ T(v) such that

‖y− z‖ ≤ A‖u− v‖.

Hence, Theorem 1. applies with d(u, v) := ‖u− v‖ and implies that T has at least one fixed point
u ∈ T(u). �

Theorem 10. Let (X, | |) be a complete geodesic metric space and Ti : X → Pc(X) for i ∈ {1, 2 . . . , m} be a
convex multivalued right A-contractions with convex metric.

We suppose there exists 0 ≤ akk ≤ 1, k ∈ {1, 2 . . . , m} such that for each u(u1, u2, . . . , um),
v(v1, v2, . . . , vm)∈ Xm and each yk ∈ Tk(u1, u2, . . . , um), k ∈ {1, 2 . . . , m} there exists zk ∈
Tk(v1, v2, . . . , vm) such that:

|yk − zk| ≤ akk|uk − vk|, k ∈ {1, 2 . . . , m}.

Then, the inclusion system: 
u1 ∈ T1(u1, u2, . . . , um)

. . .
um ∈ Tm(u1, u2, . . . , um)

,

has at least one solution in Xm.

Proof. The proof is analogous to the proof from Theorem 9. Hence, Theorem 2. applied to d(u, v) :=
‖u− v‖ implies that T has at least one fixed point u ∈ T(u). �

6. Conclusions

This paper presented the fixed-point theorems for convex multivalued left A-contractions in the
sense of Nadler and right A-contractions on the geodesic metric space. Our results are particular cases
of some general theorems, to the multivalued left A-contractions in the sense of Nadler and right
A-contractions, and particular cases of the results given by Rus (1979, 2008), Nadler (1969), Mureşan
(2002, 2004), Bucur, Guran and Petruşel (2009), and Petre and Bota (2013), and are applicable in many
fields, such as economy, management, society, biology, and ecology.

The application of some fixed-point theorems to nonlinear domains, such as geodesic metric
spaces, has its own importance.
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