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Abstract: A family of explicit symplectic partitioned Runge-Kutta methods are derived with effective
order 3 for the numerical integration of separable Hamiltonian systems. The proposed explicit
methods are more efficient than existing symplectic implicit Runge-Kutta methods. A selection of
numerical experiments on separable Hamiltonian system confirming the efficiency of the approach is
also provided with good energy conservation.
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1. Introduction

Over the last few decades, a lot of progress has been made in developing numerical methods for
ordinary differential equations (ODEs), which can produce efficient, reliable and qualitatively correct
numerical solutions by preserving some qualitative features of the exact solutions [1,2]. This field of
research is called geometric numerical integration. In this paper, we are oriented to obtain numerical
approximation of Hamiltonian differential equations of the form,

dp
dt

= −∂H
∂q

,
dq
dt

=
∂H
∂p

, (1)

where H is known as the Hamiltonian or the total energy of the system and q and p are generalized
coordinates and generalized momenta respectively. The autonomous Hamiltonian systems have two
important properties; one is that the total energy remains constant,

dH
dt

=
∂H
∂p
· ∂p

∂t
+

∂H
∂q
· ∂q

∂t
= 0.

The second important property is that the phase flow is symplectic which imply that the motion
along the phase curve retains the area of a bounded sub-domain in the phase space. We need such
numerical methods which can mimic both properties of the Hamiltonian systems. For this we use
symplectic numerical methods to solve system of Equation (1). The symplectic methods are numerically
more efficient than non-symplectic methods for integration over long interval of time [3]. Among
the class of one step symplectic methods, the implicit symplectic Runge–Kutta (RK) methods were
developed and presented in [4].
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For general explicit RK methods, it is known that up to order 4, number of stages required in a RK
method are equal to the order of the method whereas, for order ≥5, number of stages become greater
than the order of the method. Thus for example, an RK method of order 5 needs at least 6 stages and
an RK method of order 6 requires at least 17 stages and so on. The more the number of stages are,
the more costly the method is.

Butcher [5] tried to overcome this complexity of order barrier by presenting the idea of effective
order. He implemented his idea on RK method of order 5 and was able to construct explicit RK
methods of effective order 5 with just 5 internal stages [5]. Later on, the idea was extended to construct
diagonally extended singly implicit RK methods for the numerical integration of stiff differential
equations [6–9]. Butcher also used the effective order technique on symplectic RK methods for the
numerical integration of Hamiltonian systems [10,11].

A RK method v has an effective order q if we have another RK method w, known as the starting
method, such that wvnw−1 has an order q. The method w is used only once in the beginning followed
by n iterations of the main method v and the method w−1, known as the finishing method is used only
once at the end.

For separable Hamiltonian systems, it is advantageous to solve some components of the
differential-equation with one RK method and solve other components of differential equation with
another RK method and collectively they are termed as partitioned Runge–Kutta (PRK) methods. We
have extended the idea of Butcher to construct symplectic effective order PRK methods which are
explicit in nature and hence are less costly than symplectic implicit RK methods. For the effective order
PRK methods, we construct two main PRK methods, two starting and two finishing PRK methods
such that the two starting methods are applied once at the beginning followed by n iterations of the
main PRK methods and the two finishing methods are used at the end.

2. Algebraic Structure of PRK Methods

We are concerned with the numerical solution of separable Hamiltonian systems,(
u
v

)′
=

(
k(v)
r(u)

)
, u(t0) = u0, v(t0) = v0, k, r : IRN → IRN , (2)

using two s-stages RK methods M = [a b c] and M̃ = [ã b̃ c̃],

Ui = un + h
s−1

∑
j=1

aijk(Vj), Vi = vn + h
s

∑
j=1

ãijr(Uj), i = 1, 2, ..., s,

un+1 = un + h
s

∑
j=1

bjk(Vj), vn+1 = vn + h
s

∑
j=1

b̃jr(Uj),

where Ui and Vi are the stages for the u and v variables, bi and b̃i are quadrature weights, ci and c̃i
are quadrature nodes, A = (aij)s×s and Ã = (ãij)s×s are matrices of s-stage PRK methods M and M̃,
respectively. Here M is an explicit RK method and M̃ is an implicit RK method. Similarly, we can
define two PRK methods S = [A B C] and S̃ = [Ã B̃ C̃], termed as starting methods. The four PRK
methods can be represented by Butcher tableaux as,

c a

bT
,

c̃ ã

b̃T
,

C A

BT
, and

C̃ Ã

B̃T
.



Symmetry 2019, 11, 142 3 of 14

We need to find the composed methods MS and M̃S̃ , which are given by the Butcher tableaux,

c A 0

C + ∑s
i=1 bi b A

bT BT

,

c̃ Ã 0

C̃ + ∑s
i=1 b̃i b̃ Ã

b̃T B̃T

. (3)

The composition asserts to carry out the calculations with starting methods S and S̃ firstly and
applying the PRK methods M and M̃ to the output. To explain the composition (3), we consider four
PRK methods with two stages each given as,

c1 a11 a12

c2 a21 a22

b1 b2

,

c̃1 ã11 ã12

c̃2 ã21 ã22

b̃1 b̃2

,

C1 A11 A12

C2 A21 A22

B1 B2

,

C̃1 Ã11 Ã12

C̃2 Ã21 Ã22

B̃1 B̃2

.

Solving the differential equation u
′
= k(v), we take the first step going from u0 to u1 using starting

method S. We then take the second step going from u1 to u2 using main method M. The equations are
given as,

U1 = u0 + a11h k(V1) + a12h k(V2), U1 = u1 + A11h k(V1) + A12h k(V2),

U2 = u0 + a21h k(V1) + a22h k(V2), U2 = u1 + A21h k(V1) + A22h k(V2),

u1 = u0 + b1h k(V1) + b2h k(V2), u2 = u1 + B1h k(V1) + B2h k(V2).

The composition MS means that we are going from u0 to u2 using the composed method MS
given as,

U1 = u0 + a11h k(V1) + a12h k(V2),

U2 = u0 + a21h k(V1) + a22h k(V2),

U1 = u0 + b1h k(V1) + b2h k(V2) + A11h k(V1) + A12h k(V2),

U2 = u0 + b1h k(V1) + b2h k(V2) + A21h k(V1) + A22h k(V2),

u2 = u0 + b1h k(V1) + b2h k(V2) + B1h k(V1) + B2h k(V2).

(4)

The Butcher table for the above composed PRK methods is as follows

c1 a11 a12 0 0

c2 a21 a22 0 0

C1+∑ bi b1 b2 A11 A12

C2+∑ bi b1 b2 A21 A22

b1 b2 B1 B2

Similarly, the composition M̃S̃ can be obtained and is represented by the following Butcher table

c̃1 ã11 ã12 0 0

c̃2 ã21 ã22 0 0

C̃1+∑ b̃i b̃1 b̃2 Ã11 A12

C̃2+∑ b̃i b̃1 b̃2 Ã21 Ã22

b̃1 b̃2 B̃1 B̃2

A numerical scheme has order p, if after one iteration, the numerical solution matches with the
Taylor’s series of the exact solution to the extent that the remainder term has O(hp+1). The comparison
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of the numerical solution with the Taylor’s series of the exact solution provides order conditions which
must be satisfied to obtain a particular order numerical method. Thus for order 3 method, we have the
following order conditions:

∑
i

bi = 1, (5)

∑
i

b̃i = 1, (6)

∑
i

bi c̃i =
1
2

, (7)

∑
i

b̃ici =
1
2

, (8)

∑
i

bi c̃2
i =

1
3

, (9)

∑
i

b̃ic2
i =

1
3

, (10)

∑
i,j

bi,j ãijcj =
1
6

, (11)

∑
i,j

b̃iaij c̃j =
1
6

. (12)

3. Rooted Trees for PRK Methods and Order Conditions

There is a graph theoretical approach to study order conditions of RK methods due to Butcher [12].
We first study the basic concepts from graph theory and then relate the graphs to the order conditions
of RK methods.

A graph with non-cyclic representation consisting of vertices and edges with one vertex acting as
root is called as rooted tree. The rooted trees whose vertices are either black or white are known as
bi-color rooted trees. The trees having black color root is termed as t, while the white rooted trees are
represented by t̃. The order of a tree is total number of vertices in a tree. Whereas, the density γ(t) is
the product of number of vertices of a tree and their sub-trees, when we remove the root.

Example 1. Consider a bi-color tree with order 5 and γ(t) = 5× 4× 2 = 40.

The repeated differentiation of Equation (2) gives

u(1) = k(v), v(1) =r(u),

u(2) =
∂k
∂v

r, v(2) =
∂r
∂u

k,

u(3) =
∂2k

∂v ∂v
(r, r) +

∂k
∂v

∂r
∂u

k, v(3) =
∂2r

∂u ∂u
(k, k) +

∂r
∂u

∂k
∂v

r,

...
...

(13)

The terms on the right hand side of Equation (13) are called elementary differentials and can be
represented graphically with the help of bi-color rooted trees. Thus k is represented by a black vertex
and r is represented by a white vertex, whereas the differentiation is represented by an edge between
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two vertices. According to the nature of the differential Equation (2) in which k depends only on v
and r depends only on u, we only consider trees in which a black vertex has a white child and vice
versa [13]. Such trees are given in Tables 1 and 2. The elementary differentials can be represented by
bi-color rooted trees as shown in Table 3.

Table 1. Composition rule for trees with black vertex root.

ti Tree (βα)(ti) (Eβ)(ti)

t1 β1 + α1 β1 + 1

t2 β2 + β̃1α1 + α2 β2 + β1 +
1
2

t3 β3 + β̃2
1α1 + 2β̃1α2 + α3 β3 + 2β2 + β1 +

1
3

t4 β4 + β1α2 + β̃2α1 + α4 β4 + β2 +
1
2

β1 +
1
6

Table 2. Composition rule for trees with white vertex root.

ti Tree (β̃α̃)(ti) (Eβ̃)(ti)

t̃1 β̃1 + α̃1 β̃1 + 1

t̃2 β̃2 + β1α̃1 + α̃2 β̃2 + β̃1 +
1
2

t̃3 β̃3 + β2
1α̃1 + 2β1α̃2 + α̃3 β̃3 + 2β̃2 + β̃1 +

1
3

t̃4 β̃4 + β̃1α̃2 + β2α̃1 + α̃4 β̃4 + β̃2 +
1
2

β̃1 +
1
6

Table 3. Elementary differentials and elementary weights of bi-color rooted trees.

t Elementary Differentials Φ(t) t̃ Elementary Differentials Φ(t̃)

k bi r b̃i

∂k
∂v

r bi c̃i
∂r
∂u

k b̃ici

∂2k
∂v ∂v

(r, r) bi c̃2
i

∂2r
∂u ∂u

(k, k) b̃ic2
i

∂k
∂v

∂r
∂u

k bi ãijcj
∂r
∂u

∂k
∂v

r b̃iaij c̃j

The terms on left hand side from Equations (5)–(12) are called elementary weights Φ(t) and Φ(t̃).
The elementary weights are nonlinear expressions of the coefficients of PRK methods and can be
related to bi-color rooted trees as shown in Table 3 [12,13]. A PRK method is of order p iff

Φ(t) =
1

γ(t)
, and Φ(t̃) =

1
γ(t̃)

,

for all bi-color rooted trees t and t̃ of order less than or equal to p [13].



Symmetry 2019, 11, 142 6 of 14

Let the elementary weight functions of the methods M and M̃ are α and α̃, respectively such that
α maps trees t and α̃ maps trees t̃ to expression in terms of method coefficients as follows

α( ) = ∑ bi c̃i
2, α̃( ) = ∑ b̃ici

2.

Similarly, we can define elementary weight functions β and β̃ for the starting methods S and
S̃, respectively. The composition of PRK methods in terms of their elementary weights is βα and β̃α̃

given as

βα( ) = β3 + 2β̃1α2 + β̃2
1α1 + α3, (14)

where the right hand side of Equation (14) contains terms from Table 4 which has tree u as a sub-tree
of tree t and t \ u is the remaining tree when u is removed from t.

Table 4. Calculation for the term βα(t3).

Tree No Cut First Cut Second Cut Third Cut All Cuts

t

u

t \ u
term β3 β̃1α2 β̃1α3 β̃2

1α1 α3

The order condition related to the tree for the composed method (4) is

bi c̃2
i + Bi(C̃i + b̃i)

2 = bi c̃2
i + 2b̃iBiC̃i + b̃2

i Bi + BiC̃2
i ,

= β3 + 2β̃1α2 + β̃2
1α1 + α3,

= βα( ).

4. Effective Order PRK Methods

Let M and S be two RK methods together with an inverse method S−1. The effective order q
means that the composition SMS−1 has order q [6]. For PRK methods, we are interested to construct
methods M,M̃, S, S̃ together with the inverse methods S−1 and S̃−1 such that the compositions SMS−1

and S̃M̃S̃−1 have the effective order q which implies βα(t) = Eβ(t) and β̃α̃(t̃) = Eβ̃(t̃) for all trees of
order q [12], where E is the exact flow for which corresponding order conditions are satisfied. The terms
are given in Tables 1 and 2.
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A method of effective order 3 is obtained by comparing two columns of Tables 1 and 2 each for
trees up to order 3. Thus we have

α1 =1, (15)

α̃1 =1, (16)

α2 =
1
2

, (17)

α̃2 =
1
2

, (18)

α3 =
1
3
+ 2β2, (19)

α̃3 =
1
3
+ 2β̃2, (20)

α4 =
1
6
+ β2 − β̃2, (21)

α̃4 =
1
6
+ β̃2 − β2. (22)

By eliminating β and β̃ values, Equations (19)–(22) become

6α4 + 3α̃3 − 3α3 =1, (23)

6α̃4 + 3α3 − 3α̃3 =1. (24)

5. Symplectic PRK Methods with Effective Order 3

The flow of a Hamiltonian system (2) is symplectic and it is a well known fact that the discrete
flow by symplectic Runge-Kutta methods is symplectic [14]. The PRK method M and M̃ for separable
Hamiltonian system (2) is symplectic if the following condition is satisfied [14]

diag(b)ã + aTdiag(b̃)− bb̃ = 0. (25)

Moreover, the composition of two symplectic RK methods is symplectic [10,15].
For symplectic PRK methods, the trees related to order conditions can be divided into superfluous

and non-superfluous bi-color trees. Unlike RK methods, the superfluous bi-color trees of PRK methods
also contribute one order condition together with one condition from non-superfluous bi-color tree [14].
Since, the underlying bi-color tree of the rooted trees t2 and t̃2 is superfluous. So, we can ignore the
condition (18) because it is automatically satisfied. Moreover, the underlying bi-color trees of t3, t4,
t̃3 and t̃4 are non-superfluous, we can either take α3 or α̃4 and also α4 or α̃3 resulting in reducing
Equations (23) and (24) to α3 = 1

3 and α̃3 = 1
3 . Now consider the following Butcher table for methods

M and M̃ which satisfy the symplectic condition (25)

0 0

b1 b1

b1 + b2 b1 b2

b1 b2 b3

b̃1 b̃1

b̃1 + b̃2 b̃1 b̃2

b̃1 + b̃2 + b̃3 b̃1 b̃2 b̃3

b̃1 b̃2 b̃3

(26)
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The Equations (15)–(17) and (23)–(24) after simplification can be written in terms of elementary
weights as

3

∑
i=1

bi = 1, (27)

3

∑
i=1

b̃i = 1, (28)

b1b̃1 + b2(b̃1 + b̃2) + b3 =
1
2

, (29)

b̃2
1b1 + b2(b̃1 + b̃2)

2 + b3(b̃1 + b̃2 + b̃3)
2 =

1
3

, (30)

b̃2b2
1 + b̃3(b1 + b2)

2 =
1
3

. (31)

To get the values of 6 unknowns from 5 equations, we have one degree of freedom. Let us take

b̃1 =
2
3

and solve Equations (27)–(31) to get M and M̃ methods as follows

0 0 0

13 +
√

205
12

0 0

13 +
√

205
12

5
6

0

13 +
√

205
12

5
6

−11−
√

205
12

2
3

0 0

2
3

5 +
√

205
30

0

2
3

5 +
√

205
30

5−
√

205
30

2
3

5 +
√

205
30

5−
√

205
30

Derivation of Starting Method

For the starting method, we have the following equations

β1 =0, (32)

β̃1 =0, (33)

β2 =
1
2

α3 −
1
6

, (34)

β̃2 =
1
2

α̃3 −
1
6

. (35)

The starting methods should be symplectic [16]. The solution of (32)–(35) leads us to the following
symplectic staring PRK methods S and S̃ as

0 0 0

1
3

0 0

1
3

2
5

0

1
3

2
5
−11

15

,

1
3

0 0

1
3
−11

18
0

1
3
−11

18
5
18

1
3
−11

18
5
18

.

6. Mutually Adjoint Symplectic Effective Order PRK Methods

A separable Hamiltonian system remains unchanged by changing the role of kinetic and potential
energies, position, and momentum and also inverting the direction of time. For the two PRK method
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tableaux (26) being mutually adjoint, we have b1 = b̃3, b2 = b̃2 and b3 = b̃1 in Equations (27)–(31),
so we have

3

∑
i=1

b̃i = 1, (36)

3

∑
i=1

b̃i = 1, (37)

b̃3b̃1 + b̃2(b̃1 + b̃2) + b̃1 =
1
2

, (38)

b̃2b̃2
3 + b̃3(b̃3 + b̃2)

2 =
1
3

. (39)

Sanz-Serna suggested in [14] to take b̃3 = 0.91966152, which leads us to the following main
methods M and M̃ with effective order 3 with just 3 stages

0 0 0

0.91966152 0 0

0.91966152 −0.18799162 0

0.91966152 −0.18799162 0.26833010

,

0.26833010 0 0

0.26833010 −0.18799162 0

0.26833010 −0.18799162 0.91966152

0.26833010 −0.18799162 0.91966152

.

The starting methods S and S̃ for mutually adjoint symplectic effective order PRK method are
constructed by using B1 = B̃3, B2 = B̃2, B3 = B̃1 in Equations (32) to (34) to get

B̃1 + B̃2 + B̃3 = 0, (40)

B̃1B̃3 + B̃2(B̃1 + B̃2) + B̃1(B̃1 + B̃2 + B̃3) ' 0. (41)

By solving Equations (40) and (41) with B̃3 =
1
2

, we get the following S and S̃ methods:

0 0 0

1
2

0 0

1
2
−1

4
0

1
2
−1

4
−1

4

and

−1
4

0 0

−1
4
−1

4
0

−1
4
−1

4
1
2

−1
4
−1

4
1
2

7. Numerical Experiments

The symplectic RK methods should be implicit and hence their computational cost is higher
due to large number of function evaluations. On the other hand, we can use symplectic explicit PRK
methods for Hamiltonian systems with lesser computational cost because of the explicit nature of the
stages. Our derived effective order symplectic PRK methods are explicit and we have used MATLAB
to implement them on Hamiltonian systems for the energy conservation and order confirmation of
these methods.
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7.1. Kepler’s Two Body Problem

Consider Kepler’s two body problem given as

u
′
1 = v1, u1(0) = 1− e,

u
′
2 = v2, u2(0) = 0,

v
′
1 =
−u1

r3 , v1(0) = 0,

v
′
2 =
−u2

r3 , v2(0) =

√
1 + e
1− e

.

where r =
√

u2
1 + u2

2. The energy is given by,

H =
1
2
(v2

1 + v2
2)−

1√
u2

1 + u2
2

.

The exact solution after half revolution is

u1(π) = 1 + e, u2(π) = 0, v1(π) = 0, v2(π) =

√
1− e
1 + e

.

To verify the effective order 3 behavior, we apply the starting methods S and S̃ to perturb initial
values to (ũ1)0, (ũ2)0 and (ṽ1)0, (ṽ2)0, respectively. Then we apply the main methods M and M̃ for n
number of iterations to (ũ1)0, (ũ2)0 and (ṽ1)0, (ṽ2)0, respectively and obtain the numerical solutions
(ũ1)n, (ũ2)n and (ṽ1)n, (ṽ2)n computed at tn = t0 + nh where h is the step-size. We then evaluate
exact solutions at tn to get u1(tn), u2(tn) and v1(tn), v2(tn) and perturb them using starting methods S
and S̃ to obtain ũ1(tn), ũ2(tn) and ṽ1(tn), ṽ2(tn). Finally, to obtain global error, we take the difference
between numerical and exact solutions, i.e., ||ũn − ũ(tn)||. Effective order 3 behavior for symplectic
and mutually adjoint symplectic PRK is confirmed from Tables 5 and 6.

Table 5. Global errors and their comparison: Symplectic Effective order PRK method.

h n Global Error Ratio
π

225
225 7.7741637102284× 10−04

8.927465
π

450
450 8.7081425338124× 10−05

8.475956
π

900
900 1.02739357736254× 10−05

8.063877
π

1800
1800 1.27406905909534× 10−06

We calculate the ratio of global errors calculated at step length h,
h
2

,
h
4

and
h
8

. For method of order
p, ratio should approximately be 2p [12].

The next experiment is to verify the energy conservation behaviour of the symplectic methods.
In this experiment, the step-size h = 2π/1000 is used for 105 iterations. Figures 1 and 2 depict good
conservation of energy with symplectic and mutually adjoint symplectic effective order PRK methods,
respectively. Whereas, the energy error was bounded above by 10−13 and 10−14, respectively.
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Figure 1. Energy error for the Kepler’s Problem (e = 0) with symplectic effective PRK method using
step size h = 2π/1000 for 105 steps.

Table 6. Global errors and their comparison: Mutually adjoint symplectic Effective order PRK method.

h n Global Error Ratio
π

40
40 4.635890382086× 10−03

7.963129
π

80
80 5.82169473987045× 10−04

8.062262
π

160
160 7.22091971134495× 10−05

7.836579
π

320
320 9.21437776243649× 10−06
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Figure 2. Energy error for the Kepler’s Problem (e = 0) with mutually adjoint symplectic effective PRK
method using step-size h = 2π/1000 for 105 steps.
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7.2. Harmonic Oscillator

The motion of a unit mass attached to a spring with momentum u and position co-ordinates v
defines the Hamiltonian system

v
′
= u u

′
= v

The energy is given by

H=
u2

2
+

v2

2

The exact solution is [
u(t)
v(t)

]
=

[
cos(t) − sin(t)
sin(t) cos(t)

] [
u(0)
v(0)

]
We have applied the symplectic PRK and mutually adjoint symplectic PRK methods with step-size

h = 2π/1000 with 105 iteration in this experiment. We have obtained good energy conservation as
shown in Figures 3 and 4 by symplectic effective order PRK and mutually adjoint symplectic effective
order PRK methods, respectively.

0 100 200 300 400 500 600 700

Time

-1.5

-1

-0.5

0

0.5
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er

gy
 e
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Figure 3. Energy error for the Harmonic oscillator problem (e = 0) with symplectic effective PRK
method using step size h = 2π/1000 for 105 steps.
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Figure 4. Energy error for the Harmonic oscillator problem (e = 0) with mutually adjoint symplectic
effective PRK method using step size h = 2π/1000 for 105 steps.

8. Conclusions

In this paper, the composition of two PRK methods is elaborated in terms of Butcher tableaux as
well as in terms of their elementary weight functions. The effective order conditions are provided for
PRK methods and 3 stage effective order 3 symplectic PRK methods are constructed and successfully
applied to separable Hamiltonian systems with good energy conservation. It is worth mentioning that
we are able to construct mutually adjoint symplectic effective order 3 PRK methods with just 3 stages,
whereas an equivalent method of order 3 with 4 stages is given in [16]. In dynamical solar systems,
we deal with many problems which are described by Hamiltonian systems, like, Kepler’s two body
problem and more realistic Jovian five body problem. These symplectic methods are much useful for
such types of physical phenomena to observe their positions and energy conservation.
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