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Abstract: In power engineering, the Ybus is a symmetric N × N square matrix describing a power
system network with N buses. By partitioning, manipulating and using its symmetry properties,
it is possible to derive the KGL and YGGM matrices, which are useful to define a loss minimisation
dispatch for generators. This article focuses on the case of constant-current loads and studies the
theoretical framework of a second order optimization method for analytic loss minimization by taking
into account the symmetry properties of Ybus. We define an appropriate matrix functional of several
variables with complex elements and aim to obtain the minimum values of generator voltages.
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1. Introduction

Electrical power system calculations rely heavily on Ybus, a symmetric square N × N matrix,
which describes a power system network with N buses. It represents the nodal admittance of the buses
in a power system, see Figure 1.

Figure 1. On the left: The red arrows in this network diagram indicate where overloading of power
lines could occur in the case2382wp power system, due to short-term fluctuations in (notionally)
renewable generator outputs. On the right: The diagram shows the nesta case2224 edin test power
system, see [1,2].

By taking advantage of its symmetry properties, it is useful to split the Ybus into sub-matrices
and separately quantify the connectivity between load and generation nodes in the network; see [3].
This idea has been also further applied to several power engineering problems [4–7]. Currents (I)
and voltages (V) in an electrical power system are related by the symmetric admittance matrix, Ybus,
in such a way as to group generator (G) and load (L) nodes separately (see [8,9]):[

IG
IL

]
= Ybus

[
VG
VL

]
, (1)
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where IG, VG ∈ Cm, IL, VL ∈ Cn and:

Ybus =

[
YGG YGL
YLG YLL

]
.

Since Ybus is symmetric, we have YLG = YT
GL; where YGG ∈ Cm×m, YLL ∈ Cn×n, YLG = YT

GL ∈
Cn×m and n + m = N with n 6= m. The kernel of Ybus is known and has dimension one, unless the grid
graph is disconnected. From this, one can conclude that YLL is invertible. The use of a pseudo-inverse
could be considered only if all nodes are loads. Let ZLL = Y−1

LL . Then, we can define ([10,11]) two
useful sub-matrices:

YGGM = YGG + YGLFLG, (2)

and:
FLG = −ZLLYLG = −KT

GL. (3)

Using (2) and (3), we give (1) the form:[
VL
IG

]
=

[
ZLL FLG
KGL YGGM

] [
IL
VG

]
,

from where more insightfully, one can use to derive an expression for this optimal generator dispatch:

IG = KGL IL + YGGMVG. (4)

Furthermore, by using these expressions, we can arrive at VT
G IG = VT

G KGL IL + VT
G YGGMVG and

IT
L VL = IT

L ZLL IL + IT
L FLGVG. Then (see [12–14]), given that generator powers will be positive and

loads negative, the total system loss is given by the sum VT
G IG + IT

L VL = VT
G YGGMVG + VT

G (YGLZLL −
YT

LGZT
LL)IL + IT

L ZT
LL IL. From the three components in this sum, the circulating current loss is directly

a consequence of generator voltage mismatches, i.e., it depends on the product YGGMVG. How may
in general generator voltage mismatches be avoided? It is trivial to achieve a consistent ‖YGGMVG‖1

profile, as voltage magnitudes are directly controlled by arbitrary set points using automatic reactive
power control. Under minimum loss condition, the work in [4] implies that VG is homogeneous, and by
obtaining the min ‖YGGMVG‖1, the second term of (4), corresponding to current circulated between
generators, reduces with the ideal conditions being: IG = KGL IL ≈ SOpt

G . This is equivalent to the
loss-minimizing formula presented in [4] and gives two terms for IG, which the system operator can
control by generator dispatch. We used ‖ · ‖1 because of its properties in robustness and sparsity.
However, in general, the proposed method could also work by replacing this norm with ‖ · ‖2.
Loss minimization in power systems is usually achieved using optimization techniques. There are
several methods in the literature that avoid matrix factorizations and have low memory requirements;
however, in most of these methods, which are usually first order methods, essential information is
missing, and practical convergence is slow. In this article, we propose a second order method that
aims to be memory efficient, provide effective computational results and have noticeable progress
towards a solution. Note that when loads are constant-power, their current IL becomes a function
of their voltages, and therefore, the different terms in (4) cannot be treated independently. Hence, in
a case like that, it would not be clear whether the proposed solution would minimize losses when
constant-power loads are present. For this reason, in this article, we focus on and apply the results to
the case of constant-current loads.

2. Mathematical Background

We are interested in the following optimization problem:

minimize ‖YGGMVG‖1, subject to: AVG = b,
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where:

A =

[
YGG
YLG

]
, b =

[
IG
IL

]
−
[

YGL
YLL

]
VL,

and YGGM, YGG ∈ Cm×m, VG, IG −YGLVL ∈ Cm, YLL ∈ Cn×n, VL, IL −YLLVL ∈ Cn. Let:

YGGM = W, and YGGMVG = Y ∈ Cm, with Y =


y1

y2
...

ym

 .

In the next section with the main results, we will apply a second order optimization method,
i.e., we will use derivatives of first and second order. However, the `1-norm is not differentiable.
Many researchers in the literature use first order optimization methods and apply appropriate
smoothing to the problem by using the Huber function. In our case, this is not possible since the
Huber function is differentiable, but not twice differentiable. Hence, we propose to replace the `1-norm
with the pseudo-Huber function [15,16], see Figure 2. The pseudo-Huber function parametrized with
µ > 0 is:

Ψµ(WVG) = µ
m

∑
i=1

(

√
1 +

yi ȳi
µ2 − 1). (5)

Figure 2. A comparison between the l1 norm, the Huber & the pseudo–Huber function, and the l1
norm & pseudo–Huber function for different values of µ; see [15,16].

The gradient of the pseudo-Huber function Ψµ(WVG) is then given by:

∇Ψµ(WVG) =
1

2µ

[ y1√
1+ y1 ȳ1

µ2

, ..., ym√
1+ ymȳm

µ2

, ȳ1√
1+ y1 ȳ1

µ2

, ..., ȳm√
1+ ymȳm

µ2

] [
W̄
W

]
(6)

and the Hessian is given by:

∇2Ψµ(WVG) =
1

4µ

[
W̄T WT

]
(diag

[
Ŷ1, ..., Ŷm, ˆ̄Y1, ..., ˆ̄Ym

] [ W
W̄

]
+

+ diag
[

Y∗1 , ..., Y∗m, Ȳ∗1 , ..., Ȳ∗m
] [ W̄

W

]
), (7)

where:
Ŷi =

1√
(1 + y1 ȳ1

µ2 )3
+

1√
1 + y1 ȳ1

µ2
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and:

Y∗i = − 1
µ2

y2
i√

(1 + y1 ȳ1
µ2 )3

.

The following lemma shows that the gradient of the function Ψµ(WVG) is bounded.

Lemma 1. The gradient ∇Ψµ(WVG) satisfies:

−2Km1m ≤ ∇Ψµ(WVG) ≤ 2Km1m,

where 1m is a vector of ones of length m, and:

K = max1≤i≤m,1≤j≤n

[
Rewij, Imwij

]
.

Proof. Since:

(Reyi)
2 ≤ (µ)2 + (Reyi)

2 + (Imyi)
2, and (Imyi)

2 ≤ (µ)2 + (Reyi)
2 + (Imyi)

2

we get
1
µ

yi√
1 + y1 ȳ1

µ2

=
Reyi√

µ2 + y1ȳ1
+ i

Imyi√
µ2 + y1ȳ1

,

or equivalently,
1
µ

yi√
1 + y1 ȳ1

µ2

≤ 1 + i, and
1
µ

ȳi√
1 + y1 ȳ1

µ2

≤ 1− i.

Then,

∇Ψµ(WVG) ≤
1
2

[
1 + i, ..., 1 + i, 1− i, ..., 1− i

] [ W̄
W

]
,

or equivalently,
∇Ψµ(WVG) ≤

1
2

[
(1 + i)∑m

i=1 w̄i1 + (1− i)∑m
i=1 wi1, ..., (1 + i)∑m

i=1 w̄in + (1− i)∑m
i=1 win

]
,

or equivalently,

∇Ψµ(WVG) ≤
[

∑m
i=1(w̄i1 + wi1), ..., ∑m

i=1(w̄in + win)
]
≤ 2Km1n.

Furthermore, in a similar way, it can be proven that −2Km1n ≤ ∇Ψµ(WVG). The proof is
completed.

Lemma 2. The Hessian matrix ∇2Ψµ(WVG) satisfies:

0In ≤ ∇2Ψµ(WVG) ≤
1
µ

LIn,

where L = 1
4

∥∥∥[ W̄T WT
]∥∥∥ (2 ∥∥∥∥∥

[
W
W̄

]∥∥∥∥∥+
∥∥∥∥∥
[

W̄
W

]∥∥∥∥∥).
Proof. It is known that for every induced norm ‖·‖, we have:

λ ≤
∥∥∥∇2Ψµ(WVG)

∥∥∥ ,
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where λ ≥ 0 is a random eigenvalue of ∇2Ψµ(WVG). Observe that:

∣∣Ŷi
∣∣ ≤

∣∣∣∣∣∣ 1√
(1 + y1 ȳ1

µ2 )3

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1√

1 + y1 ȳ1
µ2

∣∣∣∣∣∣ ≤ 2,

and:

|Y∗i | =

∣∣∣∣∣∣∣∣
|yi |2
µ2∣∣∣1 + y1 ȳ1

µ2

∣∣∣ 3
2

∣∣∣∣∣∣∣∣ ≤ 1

because:
|yi|2

µ2 ≤ 1 +
y1ȳ1

µ2 ≤ (1 +
y1ȳ1

µ2 )
3
2 .

Thus: ∥∥∥∇2Ψµ(WVG)
∥∥∥ ≤

1
4µ

∥∥∥[ W̄T WT
]∥∥∥ (∥∥∥diag

[
Ŷ1, ..., Ŷm, ˆ̄Y1, ..., ˆ̄Ym

]∥∥∥ ∥∥∥∥∥
[

W
W̄

]∥∥∥∥∥+
+
∥∥∥diag

[
Y∗1 , ..., Y∗m, Ȳ∗1 , ..., Ȳ∗m

]∥∥∥ ∥∥∥∥∥
[

W̄
W

]∥∥∥∥∥),
or equivalently, ∥∥∥∇2Ψµ(WVG)

∥∥∥ ≤ 1
µ

L.

The proof is completed.

The next lemma shows that the Hessian matrix of the pseudo-Huber function is Lipschitz
continuous.

Lemma 3. The Hessian matrix ∇2Ψµ(WVG) is Lipschitz continuous:∥∥∥∇2Ψµ(z)−∇2Ψµ(y)
∥∥∥ ≤ 1

µ2 M ‖z− y‖ .

where:

M =
1
2

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W
W̄

]∥∥∥∥∥+ 2
∥∥∥[ W̄T WT

]∥∥∥ ∥∥∥∥∥
[

W̄
W

]∥∥∥∥∥ .

Proof.∥∥∥∇2Ψµ(z)−∇2Ψµ(y)
∥∥∥ =

∥∥∥∥∥
∫ 1

0

∇2Ψµ(y + s(z− y))
ds

ds

∥∥∥∥∥ ≤
∥∥∥∥∥
∫ 1

0

∇2Ψµ(y + s(z− y))
ds

∥∥∥∥∥ ds,

or equivalently,
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∥∥∇2Ψµ(z)−∇2Ψµ(y)
∥∥ ≤

≤ 1
4µ

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W
W̄

]∥∥∥∥∥ ∫ 1
0

∥∥∥ d
ds diag

[
Ẑ1, ..., Ẑm, ˆ̄Z1, ..., ˆ̄Zm

]∥∥∥ ds+

+ 1
4µ

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W̄
W

]∥∥∥∥∥ ∫ 1
0

∥∥∥ d
ds diag

[
Z∗1 , ..., Z∗m, Z̄∗1 , ..., Z̄∗m

]∥∥∥ ds.

,

where:
Ẑi =

1√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2 )3
+

1√
1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

,

and:

Z∗i = − 1
µ2

[yi + s(zi − yi)]
2√

(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]
µ2 )3

.

Furthermore: ∥∥∥∥ d
ds

(diag
[

Ẑ1, ..., Ẑm, ˆ̄Z1, ..., ˆ̄Zm

]
)

∥∥∥∥ =

=

∥∥∥∥vec(
d
ds

(diag
[

Ẑ1, ..., Ẑm, ˆ̄Z1, ..., ˆ̄Zm

]
)

∥∥∥∥
∞
=

= max
∣∣∣∣[ d

ds
(diag

[
Ẑ1, ..., Ẑm, ˆ̄Z1, ..., ˆ̄Zm

]
)]ii

∣∣∣∣ =
= max

∣∣∣∣∣∣∣∣[
d
ds

1√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2 )3
+

1√
1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

]ii

∣∣∣∣∣∣∣∣ =

= max

∣∣∣∣∣∣∣∣(−
3
2

1√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2 )5
− 1

2
(

1√
1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

)3)

∣∣∣∣∣∣∣∣ ·
·
∣∣∣∣( 1

µ2 ([yi + s(zi − yi)][ȳi − z̄i] + [yi − zi][ȳi + s(z̄i − ȳi)])

∣∣∣∣ ≤
≤ 1

µ2 ‖z− y‖max(

∣∣∣∣∣∣∣∣
3
2

[yi + s(zi − yi)]√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2 )5

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1
2

[yi + s(zi − yi)]√
1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

)3

∣∣∣∣∣∣∣∣+

+

∣∣∣∣∣∣∣∣[
3
2

[ȳi + s(z̄i − ȳi)]√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2 )5

∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣
1
2
(

[ȳi + s(z̄i − ȳi)]√
1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

)3)

∣∣∣∣∣∣∣∣)
≤ 1

µ2 ‖z− y‖ µ

2
92

25
√

5
<

1
µ
‖z− y‖ ,

or equivalently, ∥∥∥∥ d
ds

(diag
[

Ẑ1, ..., Ẑm, ˆ̄Z1, ..., ˆ̄Zm

]
)

∥∥∥∥ ≤ 1
µ
‖z− y‖ (8)
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and: ∥∥∥∥ d
ds

(diag
[

Z∗1 , ..., Z∗m, Z̄∗1 , ..., Z̄∗m
]
)

∥∥∥∥ =

=

∥∥∥∥vec(
d
ds

(diag
[

Z∗1 , ..., Z∗m, Z̄∗1 , ..., Z̄∗m
]
)

∥∥∥∥
∞
=

= max
∣∣∣∣[ d

ds
(diag

[
Z∗1 , ..., Z∗m, Z̄∗1 , ..., Z̄∗m

]
)]ii

∣∣∣∣ =
= max

∣∣∣∣∣∣∣∣
d
ds

(− 1
µ2

[yi + s(zi − yi)]
2√

(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]
µ2 )3

)

∣∣∣∣∣∣∣∣ ≤

1
µ2 ‖y− z‖max

∣∣∣∣∣∣∣∣∣∣
2[yi + s(zi − yi)]√

(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]
µ2

3
2

∣∣∣∣∣∣∣∣∣∣
+

+
3

µ2

∣∣∣∣∣∣∣∣∣∣
[yi + s(zi − yi)]

3√
(1 + [yi+s(zi−yi)][ȳi+s(z̄i−ȳi)]

µ2

5
2

∣∣∣∣∣∣∣∣∣∣
≤

≤ 32
25µ
‖z− y‖ < 2

µ
‖z− y‖ ,

or equivalently, ∥∥∥∥ d
ds

(diag
[

Z∗1 , ..., Z∗m, Z̄∗1 , ..., Z̄∗m
]
)

∥∥∥∥ ≤ 2
µ
‖z− y‖ . (9)

From (8) and (9), we get:

∥∥∥∇2Ψµ(z)−∇2Ψµ(y)
∥∥∥ ≤ 1

4µ

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W
W̄

]∥∥∥∥∥ 1
µ
‖z− y‖+

1
4µ

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W̄
W

]∥∥∥∥∥ 2
µ
‖z− y‖ ,

or equivalently, ∥∥∥∇2Ψµ(z)−∇2Ψµ(y)
∥∥∥ ≤ 1

µ2 M ‖z− y‖ ,

where:

M =
1
2

∥∥∥[ W̄T WT
]∥∥∥ ∥∥∥∥∥

[
W
W̄

]∥∥∥∥∥+ 2
∥∥∥[ W̄T WT

]∥∥∥ ∥∥∥∥∥
[

W̄
W

]∥∥∥∥∥ .

The proof is completed.

3. Main Results

In this section, we will present our main results and the proposed optimization method. We begin
with a proposition that will be useful in the main Theorem.

Proposition 1. The ith row of the matrix YGGM, given in (2), sums to di, ∀ = 1, 2, ..., m; where di is the sum
of the ith row of the matrix YGG + YGL as defined in (1).
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Proof. From (3):
FLG = −ZLLYLG,

whereby multiplying by 1n, we get:

FLG


1
1
...
1

 = −ZLLYLG


1
1
...
1

 .

Let ci be the sum of the ith row of the matrix YLL + YLG as defined in (1). Then:

FLG


1
1
...
1

 = −ZLL(


c1

c2
...

cm

−YLL


1
1
...
1

),

or equivalently,

FLG


1
1
...
1

 = YLL


1
1
...
1

− ZLL


c1

c2
...

cm

 .

For the sum of each row of YGGM, we have:

YGGM


1
1
...
1

 = (YGG + YGLFLG)


1
1
...
1

 = YGG


1
1
...
1

+ YGL(


1
1
...
1

− ZLL


c1

c2
...

cm

),

or equivalently,

YGGM


1
1
...
1

 = (YGG + YGL)


1
1
...
1

−YGLZLL


c1

c2
...

cm

 ,

or equivalently, from [10]:

YGGM


1
1
...
1

 =


d1

d2
...

dm

 .

The proof is completed.

Theorem 1. We consider the following optimization problem:

minimizeVG ‖YGGMVG‖1, subject to: AVG = b, (10)

where:

A =

[
YGG
YLG

]
, b =

[
IG
IL

]
−
[

YGL
YLL

]
VL,
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and YGGM, YGG ∈ Cm×m, IG − YGLVL ∈ Cm, YLG ∈ Cn×m, IL − YLLVL ∈ Cn. Then, by using a second
order optimization method, an approximate solution of (10) in respect of VG ∈ Cm is given by the solution of the
linear system:

ÃVG = γ∇ψµ(YGGMV(0)
G ) + A∗(AV(0)

G − b) + ÃV(0)
G , (11)

where Ã = [γ∇2ψµ(YGGMV(0)
G ) + A∗A], γ and µ are a priori-chosen scalars, ψµ(YGGMV(0)

G ) is the
pseudo-Huber function given by (5) and:

V(0)
G =


1
1
...
1

 , YGGMV(0)
G =


d1

d2
...

dm

 ,

where di is the sum of the ith row of the matrix YGG + YGL as defined in (1).

Proof. We have the following optimization problem:

minimizeVG ‖YGGMVG‖1, subject to: AVG = b.

In this case, the optimal solution of the following `1-analysis problem:

minimize fγ(VG) := γ‖YGGMVG‖1 +
1
2
‖AVG − b‖2

2,

is proven to be a good approximation to VG; where γ is an a priori-chosen positive scalar and ‖ · ‖2 is
the Euclidean norm. Let:

YGGMVG = Y ∈ Cm, with Y =


y1

y2
...

ym

 .

Since we will apply a second order optimization method, we will use derivatives of first and
second order. However, the `1-norm is not differentiable. As mentioned in Section 2, we can apply
appropriate smoothing to the problem by using the pseudo-Huber function as defined in (5), which is
a twice-differentiable function. Hence, we propose to replace the `1-norm with the pseudo-Huber
function [15]. By using (5), the pseudo-Huber function parametrized with µ > 0 is:

ψµ(YGGMVG) = ψµ(Y) = µ
m

∑
i=1

(

√
1 +

yi ȳi
µ2 − 1),

where ȳi is the complex conjugate of yi and µ controls the quality of approximation, i.e., for µ → 0,
then ψµ(x) tends to the `1-norm. Our optimization problem is then approximated by:

minimize f µ
γ (VG) := γψµ(YGGMVG) +

1
2
‖AVG − b‖2

2.

Note that f µ
γ : Cm → C. From Lemmas 1 and 2, it can be observed that the Hessian of f µ

γ is
bounded and from Lemma 3 that it is Lipschitz continuous.

A second order approximation of f µ
γ at a given state V(0)

G is:

f̃ µ
γ (VG) = f µ

γ (V
(0)
G ) +∇ f µ

γ (V
(0)
G )∗(VG −V(0)

G ) +
1
2
(VG −V(0)

G )∗∇2 f µ
γ (V

(0)
G )(VG −V(0)

G ).
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With ∗, we denote the conjugate transpose. Note that ∇ f µ
γ (Y0) is m× 1 and ∇2 f µ

γ (Y0) is m×m.
For the optimality condition at Vopt

G , we set:

∇ f̃ µ
γ (V

opt
G )∗ = 01,m,

or equivalently,
∇ f µ

γ (V
(0)
G )∗ + (VG −V(0)

G )∗∇2 f µ
γ (V

(0)
G ) = 01,m,

or equivalently,
∇ f µ

γ (V
(0)
G ) +∇2 f µ

γ (V
(0)
G )(VG −V(0)

G ) = 0m,1.

Hence:

γ∇ψµ(YGGMV(0)
G ) + Y∗GG(AV(0)

G − b) + [γ∇2ψµ(YGGMV(0)
G ) + A∗A](VG −V(0)

G ) = 0m,1,

and consequently:

[γ∇2ψµ(YGGMV(0)
G ) + A∗A](VG −V(0)

G ) = γ∇ψµ(YGGMV(0)
G ) + A∗(AV(0)

G − b).

We may choose V(0)
G = 1m. Then, from Proposition 1:

YGGMV(0)
G =


d1

d2
...

dm

 .

The proof is completed.

4. Conclusions

This work has derived a new optimization method for loss minimization of power systems.
We defined the function of several variables with complex coefficients that describes this optimization
problem and obtained the minimum values of generator voltages, so that the active power losses reduce
the irreducible component, which arises from serving load currents. For this purpose, we proposed
a second order method and provided all the theoretical framework needed. This new result on the
optimization of network topology may bring insights from the established literature on graph analysis
to bear on electrical engineering problems. In particular, several parts in the method proposed are
written generally and in a way that it can be applied to a much bigger class of problems, including
sparsity-promoting fitting problems.
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