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Abstract: In this paper we present a two-step solver for nonlinear equations with a nondifferentiable
operator. This method is based on two methods of order of convergence 1 +

√
2. We study the local

and a semilocal convergence using weaker conditions in order to extend the applicability of the solver.
Finally, we present the numerical example that confirms the theoretical results.
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1. Introduction

A plethora of real-life applications from various areas, including Computational Science and
Engineering, are converted via mathematical modeling to equations valued on abstract spaces such
as n-dimensional Euclidean, Hilbert, Banach, and other spaces [1,2]. Then, researchers face the great
challenge of finding a solution x∗ in the closed form of the equation. However, this task is generally very
difficult to achieve. This is why iterative methods are developed to provide a sequence approximating
x∗ under some initial conditions.

Newton’s method, and its variations are widely used to approximate x∗ [1–14]. There are problems
with the implementation of these methods, since the invertibility of the linear operator involved is,
in general, costly or impossible. That is why secant-type methods were also developed which are

derivative-free. In these cases however, the order of convergence drops from 2 to
1 +
√

5
2

.
Then, one considers methods that mix Newton and secant steps to increase the order of

convergence. This is our first objective in this paper. Moreover, the study of iterative methods
involves local convergence where knowledge about the solution x∗ is used to determine upper bounds
on the distances and radii of convergence. The difficulty of choosing initial points is given by local
results, so they are important. In the semilocal convergence we use knowledge surrounding the initial
point to find sufficient conditions for convergence. It turns out that in both cases the convergence
region is small, limiting the applicability of iterative methods. That is why we use our ideas of
the center-Lipschitz condition, in combination with the notion of the restricted convergence region,
to present local as well as semilocal improvements leading to the extension of the applicability of
iterative methods.

The novelty of the paper is that since the new Lipschitz constants are special cases of older ones,
no additional cost is required for these improvements (see also the remarks and numerical examples).
Our ideas can be used to improve the applicability of other iterative methods [1–14].

By E1, E2 we consider Banach spaces and by Ω ⊆ E1 a convex set. F : Ω → E2 is differentiable
in the Fréchet sense, G : Ω → E2 is a continuous but its differentiability is not assumed. Then, we
study equation

H(x) = 0, for H(x) = F(x) + G(x). (1)
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This problem was considered by several authors. Most of them used one-step methods for finding
an approximate solution of (1), for example, Newton’s type method [14], difference methods [4,5] and
combined methods [1–3,11].

We proposed a two-step method [6,10,12] to numerically solve (1)

xn+1 = xn −
[

F′
( xn + yn

2

)
+ Q(xn, yn)

]−1
(F(xn) + G(xn)),

yn+1 = xn+1 −
[

F′
( xn + yn

2

)
+ Q(xn, yn)

]−1
(F(xn+1) + G(xn+1)), n = 0, 1, . . .

(2)

with Q(x, y) a first order divided difference of the operator G at the points x and y. This method relates
to methods with the order of convergence 1 +

√
2 [7,13].

If Q : Ω × Ω → L(E1, E2), gives Q(x, y)(x − y) = G(x) − G(y) for all x, y with x 6= y, then,
we call it a divided difference.

Two-step methods have some advantages over one-step methods. First, they usually require
fewer number of iterations for finding an approximate solution. Secondly, at each iteration, they solve
two similar linear problems, therefore, there is a small increase in computational complexity. That is
why they are often used for solving nonlinear problems [2,6,8–10,12,13].

In [6,10,12] the convergence analysis of the proposed method was provided under classical and
generalized Lipschitz conditions and superquadratic convergence order was shown. Numerical results
for method (2) were presented in [10,12].

2. Local Convergence

Let S(x∗, ρ) = {x : ‖x− x∗‖ < ρ}.
From now on by differentiable, we mean differentiable in the Fréchet sense. Moreover, F, G are

assumed as previously.

Theorem 1 ([10,12]). Assume (1) has a solution x∗ ∈ Ω, G has a first order divided difference Q in Ω, and

there exist [T(x; y)]−1 =
[

F′
( x + y

2

)
+ Q(x, y)

]−1
for each x 6= y and ‖[T(x; y)]−1‖ ≤ B. Moreover,

assume for each x, y, u, v ∈ Ω, x 6= y

‖F′(x)− F′(y)‖ ≤ 2p1‖x− y‖, (3)

‖F′′(x)− F′′(y)‖ ≤ p2‖x− y‖α, α ∈ (0, 1], (4)

‖Q(x, y)−Q(u, v)‖ ≤ q1(‖x− u‖+ ‖y− v‖). (5)

Assume S(x∗, r∗) ⊂ Ω, where r∗ is the minimal positive zero of

q(r) = 1,
3B(p1 + q1)rq(r) = 1,

q(r) = B
[
(p1 + q1)r +

p2

4(α + 1)(α + 2)
r1+α

]
.

Then, the sequences {xn}n≥0, {yn}n≥0 for x0, y0 ∈ S(x∗, r∗) remain in S(x∗, r∗) with lim
n→∞

xn = x∗, and

‖xn+1 − x∗‖ ≤ B
[
(p1 + q1)‖yn − x∗‖+

p2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖, (6)

‖yn+1 − x∗‖ ≤ B(p1 + q1)
[
‖yn − x∗‖+ ‖xn − x∗‖+ ‖xn+1 − x∗‖

]
‖xn+1 − x∗‖. (7)
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The condition ‖[T(x; y)]−1‖ ≤ B used in [10,12] is very strong in general. That is why in what
follows, we provide a weaker alternative. Indeed, assume that there exists a > 0 and b > 0 such that

‖F′(x∗)− F′(x)‖ ≤ a‖x∗ − x‖, (8)

‖Q(x, y)− G′(x∗)‖ ≤ b(‖x− x∗‖+ ‖y− x∗‖) for each x, y ∈ Ω. (9)

Set c = (a + 2b)‖T−1
∗ ‖, Ω0 = Ω ∩ S(x∗,

1
c
) and T∗ = F′(x∗) + G′(x∗). It follows, for each

x, y ∈ S(x∗, r), r ∈ [0,
1
c
] we get in turn by (8) and (9) provided that T−1

∗ exists

‖T−1
∗ ‖‖T(x; y)− T∗‖ ≤ ‖T−1

∗ ‖
[
‖F′
( x + y

2
)
− F′(x∗)‖+ ‖Q(x, y)− G′(x∗)‖

]
≤ ‖T−1

∗ ‖
[ a

2
(‖x− x∗‖+ ‖y− x∗‖) + b(‖x− x∗‖+ ‖y− x∗‖)

]
≤ ‖T−1

∗ ‖
( a

2
+ b
)
[‖x− x∗‖+ ‖y− x∗‖]

< ‖T−1
∗ ‖

[( a
2
+ b
)
+
( a

2
+ b
)]1

c
= 1. (10)

Then, (10) and the Banach lemma on invertible operators [2] assure T(x; y)−1 exists with

‖T(x; y)−1‖ ≤ B̄ = B̄(r) =
‖T−1
∗ ‖

1− cr
. (11)

Then, Theorem 1 holds but with B̄, p̄1, q̄1, p̄2, r̄1, r̄2, r̄∗ replacing B, p1, q1, p2, r1, r2, r∗, respectively.
Next, we provide a weaker alternative to the Theorem 1.

Theorem 2. Assume x∗ ∈ Ω, exists with F(x∗) + G(x∗) = 0, T−1
∗ ∈ L(E2, E1) and together with conditions

(8) and (9) following items hold for each x, y, u, v ∈ Ω0

‖F′(y)− F′(x)‖ ≤ 2p̄1‖y− x‖,
‖F′′(y)− F′′(x)‖ ≤ p̄2‖y− x‖α, α ∈ (0, 1],

‖Q(x, y)−Q(u, v)‖ ≤ q̄1(‖x− u‖+ ‖y− v‖).

Let r̄1, r̄2 be the minimal positive zeros of equations

q̄(r) = 1,
3B̄( p̄1 + q̄1)rq̄(r) = 1,

respectively, where

q̄(r) = B̄
[
( p̄1 + q̄1)r +

p̄2

4(α + 1)(α + 2)
r1+α

]
and set r̄∗ = min{r̄1, r̄2}. Moreover, assume that S(x∗, r̄∗) ⊂ Ω.

Then, the sequences {xn}n≥0, {yn}n≥0 for x0, y0 ∈ S(x∗, r̄∗) remain in S(x∗, r̄∗), lim
n→∞

xn = x∗, and

‖xn+1 − x∗‖ ≤ B̄
[
( p̄1 + q̄1)‖yn − x∗‖+

p̄2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖, (12)

‖yn+1 − x∗‖ ≤ B̄( p̄1 + q̄1)
[
‖yn − x∗‖+ ‖xn − x∗‖+ ‖xn+1 − x∗‖

]
‖xn+1 − x∗‖. (13)

Proof. It follows from the proof of Theorem 1, (10), (11) and the preceding replacements.

Corollary 1. Assume hypotheses of Theorem 2 hold. Then, the order of convergence of method (2) is
1 +
√

1 + α.
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Proof. Let

an = ‖xn − x∗‖, bn = ‖yn − x∗‖, C̄1 = B̄( p̄1 + q̄1), C̄2 =
B̄p̄2

4(α + 1)(α + 2)
.

By (12) and (13), we get

an+1 ≤ C̄1anbn + C̄2a2+α
n ,

bn+1 ≤ C̄1(an+1 + an + bn)an+1 ≤ C̄1(2an + bn)an+1

≤ C̄1(2an + C̄1(2a0 + b0)an)an+1 = C̄1(2 + C̄1(2a0 + b0))anan+1,

Then, for large n and an−1 < 1, from previous inequalities, we obtain

an+1 ≤ C̄1anbn + C̄2a2
naα

n−1

≤ C̄2
1(2 + C̄1(2a0 + b0))a2

nan−1 + C̄2a2
naα

n−1

≤ [C̄2
1(2 + C̄1(2a0 + b0)) + C̄2]a2

naα
n−1. (14)

From (14) we relate (2) to t2 − 2t− α = 0, leading to the solution t∗ = 1 +
√

1 + α.

Remark 1. To relate Theorem 1 and Corollary 2 in [12] to our Theorem 2 and Corollary 1 respectively,

let us notice that under (3)–(5) B1 can replace B in these results, where B1 = B1(r) =
‖T−1
∗ ‖

1− c1r
,

c1 = 2(p1 + q1)‖T−1
∗ ‖.

Then, we have

p̄1 ≤ p1,

p̄2 ≤ p2,

q̄1 ≤ q1,

c ≤ c1,

B̄(t) ≤ B1(t) for each t ∈ [0,
1
c1
),

C̄1 ≤ C1,

C̄2 ≤ C2

and
Ω0 ⊆ Ω

since r∗ ≤ r̄∗, which justify the advantages claimed in the Introduction of this study.

3. Semilocal Convergence

Theorem 3 ([12]). We assume that S(x0, r0) ⊂ Ω, the linear operator T0 = F′
( x0 + y0

2

)
+ Q(x0, y0), where

x0, y0 ∈ Ω, is invertible and the Lipschitz conditions are fulfilled

‖T−1
0 (F′(y)− F′(x))‖ ≤ 2p0‖y− x‖, (15)

‖T−1
0 (Q(x, y)−Q(u, v))‖ ≤ q0(‖x− u‖+ ‖y− v‖). (16)

Let’s λ, µ (µ > λ), r0 be non-negative numbers such that

‖x0 − x−1‖ ≤ λ, ‖T−1
0 (F(x0) + G(x0))‖ ≤ µ, (17)

r0 ≥ µ/(1− γ), (p0 + q0)(2r0 − λ) < 1,
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γ =
(p0 + q0)(r0 − λ) + 0.5p0r0

1− (p0 + q0)(2r0 − λ)
, 0 ≤ γ < 1.

Then, for each n = 0, 1, 2, . . .

‖xn − xn+1‖ ≤ tn − tn+1, ‖yn − xn+1‖ ≤ sn − tn+1,

‖xn − x∗‖ ≤ tn − t∗, ‖yn − x∗‖ ≤ sn − t∗,

where

t0 = r0, s0 = r0 − λ, t1 = r0 − µ,

tn+1 − tn+2 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1− (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]
(tn − tn+1), (18)

tn+1 − sn+1 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1− (p0 + q0)[(t0 − tn) + (s0 − sn)]
(tn − tn+1), (19)

{tn}n≥0, {sn}n≥0 are non-negative, decreasing sequences that converge to some t∗ such that
r0 − µ/(1 − γ) ≤ t∗ < t0; sequences {xn}n≥0, {yn}n≥0 ⊆ S(x0, t∗) and converge to a solution x∗ of
equation (1).

Next, we present the analogous improvements in the semilocal convergence case. Assume that
for all x, y, u, v ∈ Ω

‖T−1
0 (F′(z)− F′(x))‖ ≤ 2p̄0‖z− x‖, z =

x0 + y0

2
(20)

and

‖T−1
0 (Q(x, y)−Q(x0, y0))‖ ≤ q̄0(‖x− x0‖+ ‖y− y0‖). (21)

Set Ω0 = Ω ∩ S(x0, r̄0), where r̄0 =
1 + λ( p̄0 + q̄0)

2( p̄0 + q̄0)
. Define parameter γ̄ and sequences {t̄n}, {s̄n} for

each n = 0, 1, 2, . . . by γ̄ =
(p0

0 + q0
0)(r̄0 − λ) + 0.5p0

0r̄0

1− ( p̄0 + q̄0)(2r̄0 − λ)
,

t̄0 = r̄0, s̄0 = r̄0 − λ, t̄1 = r̄0 − µ,

t̄n+1 − t̄n+2 =
(p0

0 + q0
0)(s̄n − t̄n+1) + 0.5p0

0(t̄n − t̄n+1)

1− ( p̄0 + q̄0)[(t̄0 − t̄n+1) + (s̄0 − s̄n+1)]
(t̄n − t̄n+1), (22)

t̄n+1 − s̄n+1 =
(p0

0 + q0
0)(s̄n − t̄n+1) + 0.5p0

0(t̄n − t̄n+1)

1− ( p̄0 + q̄0)[(t̄0 − t̄n) + (s̄0 − s̄n)]
(t̄n − t̄n+1). (23)

As in the local convergence case, we assume instead of (15) and (16) the restricted Lipschitz-type
conditions for each x, y, u, v ∈ Ω0

‖T−1
0 (F′(x)− F′(y))‖ ≤ 2p0

0‖x− y‖, (24)

‖T−1
0 (Q(x, y)−Q(u, v))‖ ≤ q0

0(‖x− u‖+ ‖y− v‖). (25)
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Then, instead of the estimate in [12] using (15) and (16):

‖T−1
0 [T0 − Tn+1]‖ ≤

∥∥∥T−1
0

[
F′
( x0 + y0

2

)
− F′

( xn+1 + yn+1

2

)]∥∥∥+ ‖T−1
0 [Q(x0, y0)−Q(xn+1, yn+1)]‖

≤ 2p0

(‖x0 − xn+1‖+ ‖y0 − yn+1‖
2

)
+ q0(‖x0 − xn+1‖+ ‖y0 − yn+1‖)

= (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖) ≤ (p0 + q0)(t0 − tn+1 + s0 − sn+1)

≤ (p0 + q0)(t0 + s0) = (p0 + q0)(2r0 − λ) < 1, (26)

we obtain more precise results using (20) and (21)

‖T−1
0 [T0 − Tn+1]‖ ≤ ≤ 2p̄0

(‖x0 − xn+1‖+ ‖y0 − yn+1‖
2

)
+ q̄0(‖x0 − xn+1‖+ ‖y0 − yn+1‖)

≤ ( p̄0 + q̄0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖)
≤ ( p̄0 + q̄0)(t̄0 − t̄n+1 + s̄0 − s̄n+1)

≤ ( p̄0 + q̄0)(t̄0 + s̄0) = ( p̄0 + q̄0)(2t̄0 − λ) < 1,

since

Ω0 ⊆ Ω,

p̄0 ≤ p0,

q̄0 ≤ q0,

p0
0 ≤ p0,

q0
0 ≤ q0,

γ̄ ≤ γ,

and r̄0 ≥ r0. (27)

Then, by replacing p0, q0, r0, γ, tn, sn, (26) with p0
0, q0

0 (at the numerator in (18) and (19)), or p̄0, q̄0

(at the denominator in (18) and (19)), and with r̄0, γ̄, t̄n, s̄n, (27) respectively, we arrive at the following
improvement of Theorem 3.

Theorem 4. Assume together with (17), (20), (21), (24), (25) that r̄0 ≥ µ(1− γ̄), ( p̄0 + q̄0)(2r̄0 − λ) < 1
and γ̄ ∈ [0, 1]. Then, for each n = 0, 1, 2, . . .

‖xn − xn+1‖ ≤ t̄n − t̄n+1, ‖yn − xn+1‖ ≤ s̄n − t̄n+1, (28)

‖xn − x∗‖ ≤ t̄n − t∗, ‖yn − x∗‖ ≤ s̄n − t∗, (29)

with sequences {t̄n}n≥0, {s̄n}n≥0 given in (22) and (23) decreasing, non-negative sequences that converge to
some t∗ such that r0 − µ/(1− γ̄) ≤ t∗ < t̄0. Moreover, sequences {xn}n≥0, {yn}n≥0 ⊆ S(x0, t̄∗) for each
n = 0, 1, 2, . . ., and lim

n→∞
xn = x∗.
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Remark 2. It follows (27) that by hypotheses of Theorem 3, Theorem 4, and by a simple inductive argument
that the following items hold

tn ≤ t̄n,

sn ≤ s̄n,

o ≤ t̄n − t̄n+1 ≤ tn − tn+1,

o ≤ s̄n − t̄n+1 ≤ sn − tn+1,

and t∗ ≤ t̄∗.

Hence, the new results extend the applicability of the method (2).

Remark 3. If we choose F(x) = 0, p1 = 0, p2 = 0. Then, the estimates (6) and (7) reduce to similar ones
in [7] for the case α = 1.

Remark 4. Section 3 contains existence results. The uniqueness results are omitted, since they can be found
in [2,6] but with center-Lipschitz constants replacing the larger Lipschitz constants.

4. Numerical Experiments

Let E1 = E2 = R3 and Ω = S(x∗, 1). Define functions F and G for v = (v1, v2, v3)
T on Ω by

F(v) =
(
ev1 − 1,

e− 1
2

v2
2 + v2, v3

)T ,

G(v) =
(
|v1|, |v2|, |v3|

)T ,

and set H(v) = F(v) + G(v). Moreover, define a divided difference Q(·, ·) by

Q(v, v̄) = diag
( |v̄1| − |v1|

v̄1 − v1
,
|v̄2| − |v2|

v̄2 − v2
,
|v̄3| − |v3|

v̄3 − v3

)
if vi 6= v̄i, i = 1, 2, 3. Otherwise, set Q(v, v̄) = diag(1, 1, 1). Then, T∗ = 2diag(1, 1, 1), so ‖T−1

∗ ‖ = 0.5.

Notice that x∗ = (0, 0, 0)T solves equation H(v) = 0. Furthermore, we have Ω0 = S(x∗,
2

e + 1
), so

p1 =
e
2

, p2 = e, q1 = 1, B = B(t) =
1

2(1− c1t)
,

b = 1, α = 1, a = e− 1, p̄1 = p̄2 =
1
2

e
2

e+1 , q̄1 = 1
and Ω0 is a strict subset of Ω. As well, the new parameters and functions are also more strict than
the old ones in [12]. Hence, the aforementioned advantages hold. In particular, r∗ ≈ 0.2265878 and
r̄∗ ≈ 0.2880938.

Let’s give results obtained by the method (2) for approximate solving the considered system of
nonlinear equations. We chose initial approximations as x0 = (0.1; 0.1; 0.1)d (d is a real number) and
y0 = x0 + 0.0001. The iterative process was stopped under the condition ‖xn+1 − xn‖ ≤ 10−10 and
‖H(xn+1)‖ ≤ 10−10. We used the Euclidean norm. The obtained results are shown in Table 1.
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Table 1. Value of ‖xn − xn−1‖ for each iteration.

n d = 1 d = 10 d = 50

1 0.1694750 1.4579613 5.9053855
2 0.0047049 0.3433874 1.9962504
3 0.0000005 0.0112749 1.3190118
4 4.284 × 10−16 0.0000037 1.0454772
5 2.031× 10−14 0.4157737
6 0.0260385
7 0.0000271
8 1.389 × 10−12

5. Conclusions

The convergence region of iterative methods is, in general, small under Lipschitz-type conditions,
leading to a limited choice of initial points. Therefore, extending the choice of initial points without
imposing additional, more restrictive, conditions than before is extremely important in computational
sciences. This difficult task has been achieved by defining a convergence region where the iterates lie,
that is more restricted than before, ensuring the Lipschitz constants are at least as small as in previous
works. Hence, we achieve: more initial points, fewer iterations to achieve a predetermined error
accuracy, and a better knowledge of where the solution lies. These are obtained without additional cost
because the new Lipschitz constants are special cases of the old ones. This technique can be applied to
other iterative methods.
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