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Abstract: Quaternions, which are found in many fields, have been studied for a long time. The interest
in dual quaternions has also increased after real quaternions. Nagaraj and Bharathi developed the
basic theories of these studies. The Serret–Frenet Formulae for dual quaternion-valued functions of
one real variable are derived. In this paper, by making use of the results of some previous studies,
helixes and harmonic curvature concepts in QD3 and QD4 are considered and a characterization for a
dual harmonic curve to be a helix is given.
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1. Introduction

First, some fundamental definitions and concepts related to the algebra of dual quaternions are
given. A real quaternion q has the form

q = d + a~e1 + b~e2 + c~e3.

Let q and q∗ be two real quaternions. A dual quaternion is defined as

q̄ = q + εq∗, ε2 = 0.

If
q = d + a~e1 + b~e2 + c~e3 and q∗ = d∗ + a∗~e1 + b∗~e2 + c∗~e3,

then we can write
q̄ = D + A~e1 + B~e2 + C~e3

where D = d + εd∗, A = a + εa∗, B = b + εb∗ and C = c + εc∗ are dual numbers. The dual numbers D,
A, B and C are called dual components of q̄ [1].

Hence, a quaternion q̄ consists of two parts: the scalar part Sq̄ = D and the vector part ~Vq̄ = A~e1 +

B~e2 + C~e3. That is, q̄ = Sq̄ + ~Vq̄, where Sq̄ is a dual number and ~Vq̄ is a dual vector [1]. From now on,
we show the set of dual quaternions by QD4 .

The sum of two dual quaternions p̄ and q̄ is defined as

p̄ + q̄ = (p + q) + ε(p∗ + q∗),

where p̄ = p + εp∗ and q̄ = q + εq∗ [1].
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The product of two dual quaternions p̄ and q̄ is defined as

p̄× q̄ = p× q + ε(p× q∗ + p∗ × q),

where the operation x on the right hand side is the real quaternion multiplication, that is,

p× q = SpSq + Sp~Vq + Sq~Vp + ~Vp ∧ ~Vq− < ~Vp, ~Vq > .

The conjugation of a dual quaternion q̄ = q + εq∗ is shown by αq̄ and defined by αq̄ = Sq̄ − ~Vq̄, [1].
Let D be the set of dual numbers. The symmetric D valued bilinear form h̃ is defined by

h̃( p̄, q̄) = h(p, q) + ε[h(p∗, q) + h(p, q∗)],

where h is the inner product on real quaternions defined by

h(p, q) =
1
2
(p× αq + q× αp),

for all real quaternions p and q [2,3].
The norm of a dual quaternion p̄ is defined by

‖ p̄‖2 = h̃( p̄, p̄) = p̄× α p̄ or ‖ p̄‖2 = D2 + A2 + B2 + C2,

where ‖ p̄‖2 is a dual number. If we show the real part by Re‖ p̄‖2 and dual part by Du‖ p̄‖2,
then these are:

Re‖ p̄‖2 = d2 + a2 + b2 + c2, Du‖ p̄‖2 = 2(dd∗ + aa∗ + bb∗ + cc∗).

If the norm of a dual quaternion is unit, that is the norm of the real part is one and the norm of
the dual part is zero, then this is called unit dual quaternion and is shown as p̄0. Furthermore, it can be
expressed as

p̄0 = D0 + A0~e1 + B0~e2 + C0~e3,

where
d2

0 + a2
0 + b2

0 + c2
0 = 1,

d0d∗0 + a0a∗0 + b0b∗0 + c0c∗0 = 0.

If p̄ + α p̄ = 0, then p̄ is called a dual spatial-quaternion. A dual spatial-quaternion may be
considered as a dual vector in D3. Dual quaternions p̄ and q̄ are called h̃-ortogonally if and only if
h̃( p̄, q̄) = 0 .

Let p̄ and q̄ be two unit dual spatial-quaternions. If p̄ and q̄ are unit dual vectors, then we have

h̃( p̄, q̄) = cos φ, φ = ψ + εψ∗,

where φ is the dual angle between p̄ and q̄ quaternions [1].
In this study, a dual quaternion valued function of a single real variable is called a dual

quaternionic curve. Let I be an open interval in R, then a dual quaternionic curve in QD4 is in
the form

β̃(s) = γ4(s) + γ1(s)~e1 + γ2(s)~e2 + γ3(s)~e3 + ε[γ∗4(s) + γ∗1(s)~e1 + γ∗2(s)~e2 + γ∗3(s)~e3]

Throughout the work, we assume that all curves are given with arc-length parameter. Let

β(s) = γ1(s)~e1 + γ2(s)~e2 + γ3(s)~e3 + ε[γ∗1(s)~e1 + γ∗2(s)~e2 + γ∗3(s)~e3]
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be a spatial-quaternionic curve parameterized by arc-length. With {T, N1, N2} being the Frenet frame
field along β, the Serret–Frenet Formulae of dual spatial-quaternionic curve β is given by Ṫ

Ṅ1

Ṅ2

 =

 0 K 0
−K 0 R

0 −R 0


 T

N1

N2

 (1)

and (T, N1, N2, R, K) is the Frenet Apparatus of the curve β in QD3 , where T = t + εt∗, N1 = n1 + εn∗1 ,
N2 = n2 + εn∗2 , K = k + εk∗ and R = r + εr∗ are the principal curvature and torsion of β, respectively.
Moreover, k and r are the principal curvature and torsion of the curve in R3, which are determined by
the real part of β, respectively [4].

Theorem 1. Let the quaternionic curve

β̃(s) = D(s) + A(s)~e1 + B(s)~e2 + C(s)~e3

be derived from the dual spatial-quaternionic curve

β(s) = A(s)~e1 + B(s)~e2 + C(s)~e3.

Then, the Serret–Frenet Formulas for the curve β̃ in QD4 can be derived in the terms of help of the
Serret–Frenet vectors of β so we have

˙̃T
˙̃N1
˙̃N2
˙̃N3

 =


0 K̃ 0 0
−K̃ 0 K 0

0 −K 0 R− K̃
0 0 −(R− K̃) 0




T̃
Ñ1

Ñ2

Ñ3

 , (2)

where (T̃, Ñ1, Ñ2, Ñ3, K̃, K, R− K̃) is the Frenet Apparatus for the curve β̃ such that K and R are principal
curvature and torsion of the dual spatial-quaternionic curve β, respectively [5].

2. Dual Spatial-Quaternionic Helixes and Harmonic Curvatures

Definition 1. Let β : I 7→ QD3 be a spatial-quaternionic curve that is parameterized by arc-length s and u be a
constant unit dual vector in QD3 . If

h̃(β̇(s), u) = cosφ = cos(ϕ + εϕ∗) = constant, for each s ∈ I ϕ 6= π

2
, (3)

then β is called a dual spatial-quaternionic helix in QD3 . Let u = u0 + εu∗0 be a constant unit dual vector in
QD3 , {T, N, B} be the Frenet frame field along the spatial-quaternionic curve

β(s) = γ1(s)~e1 + γ2(s)~e2 + γ3(s)~e3 + ε[γ∗1(s)~e1 + γ∗2(s)~e2 + γ∗3(s)~e3],

and β̇(s) = T(s), T(s) = T0(s) + εT∗0 (s). In addition, the conjugations of T and u = u0 + εu∗0 dual
spatial-quaternions are αT(s) = αT0(s) + εαT∗0 (s) and αu = −u0 − εu∗0 , respectively.

Thus, from Equation (3), we get

h̃(T(s), u) = h(T0(s), u0) + ε[h(T∗0 (s), u0) + h(T0(s), u∗0)], (4)
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where h represents the inner-product on real quaternions. From Equations (3) and (4), we obtain

h̃(T(s), u) = cosϕ± εϕ∗sinϕ

= cosφ.

Corollary 1. Let
γ(s) = γ1(s)~e1 + γ2(s)~e2 + γ3(s)~e3

be a helix in R3 and u be a constant unit spatial-quaternion. If ϕ∗ = constant, then the dual spatial-quaternionic
curve β given by

β(s) = γ1(s)~e1 + γ2(s)~e2 + γ3(s)~e3 + ε[γ∗1(s)~e1 + γ∗2(s)~e2 + γ∗3(s)~e3]

is also a dual spatial-quaternionic helix , where ϕ∗ is the distance between the lines correspond the dual vectors
T(s) and u [3].

Definition 2. Let β : I 7→ QD3 be a regular dual spatial-quaternionic curve with arc-length parameter s and
T(s), N1(s) and N2(s) be the Frenet vectors of β at β(s). With u being a constant unit dual spatial-quaternion,
the function H̃ given by

H̃ : I 7→ ID, h̃(N2(s), u) = H̃(s)cosφ (5)

is called harmonic curvature function of β and the dual number H̃(s) is called the harmonic curvature at β(s)
with respect to u, where φ is the dual angle between the dual vectors u = u0 + εu∗0 and T(s), [3].

Now, we can give the theorem that gives the harmonic curvature in terms of the curvatures of β.

Theorem 2. Let β : I 7→ QD3 be a dual spatial-quaternionic helix with arc-length parameter s. The harmonic
curvature H̃(s) of β can be given by

H̃(s) =
K(s)
R(s)

, (6)

where K and R the principal curvature and the torsion of β, respectively.

Proof. Let T, N1 and N2 be the Frenet vector fields of the spatial-quaternionic helix β and u be a
constant unit dual vector. With φ being the dual angle between T(s) and u, we have

h̃(T(s), u) = cosφ = constant, φ = ϕ + εϕ∗. (7)

By differentiating from the last equation, we get

h̃(Ṫ(s), u) = 0. (8)

From Equations (1) and (8), we obtain

h̃(N1(s), u) = 0. (9)

By differentiating from Equation (9), we get

h̃(Ṅ1(s), u) = 0. (10)

Taking account of Equations (1) in (10), we obtain

− K(s)h̃(T(s), u) + R(s)h̃(N2(s), u) = 0. (11)
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Using Equations (4) and (5) in Equation (11), we get

H̃(s) =
K(s)
R(s)

. (12)

Thus, the proof is completed.

Theorem 3. Let β : I 7→ QD3 be a dual spatial-quaternionic helix with arc-length parameter s. If the harmonic
curvature at the point β(s) is H̃(s) and {T(s), N1(s), N2(s)} is Frenet frame field for this curve, then β is a
dual space-quaternionic helix if and only if H̃2(s) =constant.

Proof. (⇒) If β is a dual space-quaternionic helix, then there is a unit constant u dual vector satisfying
the equality

h̃(β̇(s), u) = cosφ = constant,∀s ∈ I.

This dual vector expressed in the terms of T(s), N1(s), N2(s) bases of dual space quaternionic β

curve at the point β(s) is given by

u = h̃(T(s), u)T(s) +
2

∑
i=1

h̃(Ni(s), u)Ni(s). (13)

If the considered ‖T(s)‖ = ‖N1(s)‖ = ‖N2(s)‖ = 1 , ‖u‖ = 1, with the use of Equations (4)
and (5), we obtain,

‖u‖2 = h̃(u, u) = u× αu

1 = [h̃(T(s), u)T(s) +
2

∑
i=1

h̃(Ni(s), u)Ni(s)]× α[h̃(T(s), u)T(s) +
2

∑
i=1

h̃(Ni(s), u)Ni(s)]

1 = cos2 φ‖T(s)‖2 + H̃(s)cos2φT(s)× αN2(s)

+ H̃(s)cos2φN2(s)× αT(s) + H̃(s)cos2φ‖N2(s)‖2

Since ‖T(s)‖ = ‖N2(s)‖ = 1, T(s)× αN2(s) = −N1(s) and N2(s)× αT(s) = N1(s), we obtain

H̃2(s)cos2φ = 1− cos2φ

H̃2(s) =
sin2 φ

cos2 φ
= tan2 φ = constant. (14)

(⇐) Conversely, let us consider H̃2(s) = a (constant) for β dual space-quaternionic curve. In this
case, there is a φ angle that satisfies tan2 φ = a. Then, we define a dual space quaternion u as

u = cos φT(s) + H̃(s)N2(s) cos φ. (15)

According to this equality,

(1) Dual space-quaternionic u is constant.
(2) u is unit.

(1) We show that dual space u is constant: By taking derivative of Equation (15) with respect to s,
we obtain

1
cos φ

du
ds

= Ṫ(s) + ˙̃H(s)N2(s) + H̃(s)Ṅ2(s). (16)

Here, if we consider the equalities Ṫ(s) = K(s)N1(s), Ṅ2(s) = −R(s)N1(s) and ˙̃H(s) = 0 from
H̃(s) = K(s)

R(s) , then we obtain,
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1
cos φ

du
ds

= K(s)N1(s) + ˙̃H(s)N2(s) + H̃(s)(−R(s)N2(s)) = 0. (17)

Furthermore, u is a constant dual space-quaternion.
(2) We show that dual space-quaternion u is unit:

‖u‖2 = h̃(u, u) = u× αu = cos2 φ(1 + tan2 φ) = 1.

Thus, ‖u‖ = 1. Moreover, we obtain

h̃(T(s), u) =
1
2
[T(s)× αu + u× αT(s)]

=
1
2
[cos φ‖T(s)‖2 + H̃(s) cos φT(s)× αN2(s)

+ cos φ‖T(s)‖2 + H̃(s) cos φN2(s)× αT(s)] = cos φ = constant

Thus, it is shown that β is a dual space-quaternionic helix.

Here, T̃ = t̃ + εt̃∗, Ñ1 = ñ1 + εñ∗1 , Ñ2 = ñ2 + εñ∗2 , Ñ3 = ñ3 + εñ∗3 , K̃ = k̃ + εk̃∗, K = k + εk∗,
R− K̃ = (r̃ + εr̃∗)− (k̃ + εk̃∗).

3. Dual Quaternionic Helixes in QD4 and The Harmonic Curvatures of Them

Definition 3. Let β̃ : I 7→ QD4 be a dual quaternionic curve such that the tangent vector T̃ of β̃ has unit length
along β̃ and u be a constant unit dual spatial-quaternion. If

h̃( ˙̃β(s), u) = cos φ = constant, for ∀s ∈ I, (18)

then β̃ is called a dual quaternionic helix [3].

Theorem 4. Let β̃ : I 7→ QID3 be a dual space quaternionic helix. On the condition,

β(s) = A(s)~e1 + B(s)~e2 + C(s)~e3; A(s), B(s), C(s) ∈ ID,

each dual quaternionic helix derived from β,

β̃(s) = A(s)~e1 + B(s)~e2 + C(s)~e3 + D(s); D(s) ∈ ID

is also a dual quaternionic helix with the same axis of β [2].

Definition 4. Let β̃ : I 7→ QID4 be a regular dual quaternionic curve parameterized by arc-length s and u
be constant unit dual spatial-quaternion. Let {T(s), N1(s), N2(s), N3(s)} be the Frenet frame field along β̃.
With φ = φ(s) being the angle between T(s) and u, the function H̃i : I 7→ ID, (i = 1, 2), defined by

h̃(Ñi+1(s), u) = H̃i(s)cosφ (19)

is called the harmonic curvature function of β̃, of order i. We define also H̃0 = 0.

We can give the theorem as follows:

Theorem 5. Let β̃ : I 7→ QD4 be a dual quaternionic curve with the arc-length parameter s. Then, there are the
following relations between the curvatures and harmonic curvatures:

H̃1(s) =
K̃(s)
K(s)

and H̃2(s) =
˙̃H1(s)

(R− K̃)(s)
.
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Proof. Let u be a constant unit dual spatial-quaternion and T̃(s), Ñ1(s), Ñ2(s) and Ñ3(s) be the Frenet
vectors of β̃ at the point β̃(s). Since β̃(s) is a helix, we have

h̃(T̃(s), u) = cosφ = constant

By differentiating from the last equation, we obtain that

h̃( ˙̃T(s), u) = 0. (20)

From Equation (2), H̃0 = 0 and Equation (20), we obtain h̃(Ñ1(s), u) = 0. By differentiating the
last equation, we have

h̃( ˙̃N1(s), u) = 0. (21)

By using Equation (2) in Equation (21), we obtain

− K̃(s)h̃(T̃(s), u) + K(s)h̃(Ñ2(s), u) = 0. (22)

Since
h̃(Ñ2(s), u) = H̃1(s)cosφ, (23)

from Equation (22) and the last equation, we obtain

H̃1(s) =
K̃(s)
K(s)

,

where K̃(s) and K(s) are the first and second curvatures of β̃, respectively. By differentiating
Equation (23), we get

h̃( ˙̃N2(s), u) = ˙̃H1(s)cosφ. (24)

From Equations (2) and (24), we obtain

− K(s)h̃(Ñ1(s), u) + (R− K̃)(s)h̃(Ñ3(s), u) = ˙̃H1 cos φ. (25)

Considering Equations (19) from (25), we get

H̃2(s) =
˙̃H1(s)

(R− K̃)(s)

or
H̃2(s) = ˙̃H1(s)σ̃3(s). (26)

Thus, the proof is completed.

Theorem 6. Let β̃ : I 7→ QD4 be a dual quaternionic helix with arc-length parameter s,
{T̃(s), Ñ1(s), Ñ2(s), Ñ3(s)} be Frenet frame field for this curve at the point β̃(s) and H̃i(s), i = 1, 2 be
the harmonic curvature. Then, β̃ is a quaternionic helix⇔ ∑2

i=1 H̃2
i (s) = constant.

Proof. (⇒) Let us consider β̃ : I 7→ QD4 is a helix. Then, there is a unit and constant dual
space-quaternion u for curve β̃, which satisfies

h̃( ˙̃β(s), u) = cos φ = constant, ∀s ∈ I. (27)



Symmetry 2019, 11, 125 8 of 9

This dual space quaternion is expressed as

u = h̃(T̃(s), u)T̃(s) +
3

∑
i=1

h̃(Ñi(s), u)Ñi(s)

in terms of the base β̃(s). From Equations (18) and (19), since T̃(s), Ñ1(s), Ñ2(s), Ñ3(s) and u are units,
we obtain

‖u‖2 = h̃(u, u) = u× αu

1 = [h̃(T̃(s), u)T̃(s) +
3

∑
i=1

h̃(Ñi(s), u)Ñi(s)]× α[h̃(T̃(s), u)T̃(s)

+
3

∑
i=1

h̃(Ñi(s), u)Ñi(s)]. (28)

Hence,
2

∑
i=1

H̃2
i (s) = tan2 φ = constant. (29)

(⇐): Let us receive ∑2
i=1 H̃2

i (s) = tan2 φ = a (constant) for β̃ : I 7→ QD4 dual quaternionic curve.
In this case, there is a dual angle φ satisfying tan2 φ = a. According to this, the dual space quaternion
defined as

u = cos φT̃(s) +
3

∑
i=2

H̃i−1(s) cos φÑi(s) (30)

is a constant and unit quaternion.
(1) Let us once again show u is constant: By taking derivative of Equation (30) with respect to s,

we obtain
1

cos φ

du
ds

= ˙̃T(s) +
3

∑
i=2

˙̃Hi−1(s)Ñi(s) +
3

∑
i=2

H̃i−1(s) ˙̃Ni(s). (31)

On the other hand, if we rewrite for i = 2 Equation (19),

h̃(Ñ3(s), u) = H̃2(s) cos φ (32)

and we re-derive with respect to s, we obtain

h̃( ˙̃N3(s), u) = ˙̃H2(s) cos φ

˙̃H2(s) = −(R− K̃)(s)H̃1(s). (33)

By using Equations (2) and (24) in Equation (31) with ˙̃H1(s) = (R− K̃)(s)H̃2(s),

1
cos φ

du
ds

= K̃(s)Ñ1(s) + (R− K̃)(s)H̃2(s)Ñ2(s)− (R− K̃)(s)H̃1(s)Ñ3(s)

+
K̃(s)
K(s)

(−K̃(s)Ñ1(s) + (R− K̃)(s)Ñ3(s)

+
H̃1(s)

(R− K̃)(s)
(−(R− K̃)(s)Ñ2(s))

1
cos φ

du
ds

= 0.

Hence, u is constant space quaternion.
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(2) Let us show u is unit: We can write,

‖u‖2 = h̃(u, u) = u× αu

= [cos φT̃(s) +
3

∑
i=2

H̃i−1(s) cos φÑi(s)]× [cos φT̃(s) +
3

∑
i=2

H̃i−1(s) cos φÑi(s)] = 1

thus, ‖u‖ = 1.
On the other hand, using the definition of u, we can find

h̃(T̃(s), u) =
1
2
[T̃(s)× αu + u× αT̃(s)]

h̃(T̃(s), u) = cos φ = constant.

Thus, we obtain β̃ is a helix and hence the proof is completed.

Corollary 2. The equations of derivative of the harmonic curvatures given by Equations (26) and (33) for dual
quaternionic curve in matrix form are expressed as[

˙̃H1
˙̃H2

]
=

[
0 (R− K̃)

−(R− K̃) 0

] [
H̃1

H̃2

]
. (34)
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