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Abstract: In this paper, non-Fourier heat conduction in a cylinder with non-homogeneous boundary
conditions is analytically studied. A superposition approach combining with the solution structure
theorems is used to get a solution for equation of hyperbolic heat conduction. In this solution,
a complex origin problem is divided into, different, easier subproblems which can actually be
integrated to take the solution of the first problem. The first problem is split into three sub-problems
by setting the term of heat generation, the initial conditions, and the boundary condition with
specified value in each sub-problem. This method provides a precise and convenient solution to the
equation of non-Fourier heat conduction. The results show that at low times (t = 0.1) up to about
r = 0.4, the contribution of T1 and T3 dominate compared to T2 contributing little to the overall
temperature. But at r > 0.4, all three temperature components will have the same role and less impact
on the overall temperature (T).

Keywords: heat conduction; non-fourier; solution structure theorems; superposition approach

1. Introduction

In recent years, some studies have focused on the deviation from the classical Fourier heat transfer
equation. In the classical theory of conduction heat transfer based on Fourier’s law, the thermal heat
flux is a linear relationship with the gradient of temperature and the heat wave propagation speed is
assumed to be unlimited (Equation (1)).

q∗ = −k∇T∗ (1)

where k is the coefficient of thermal conductivity and T∗ is temperature. When this equation is combined
into the balance equation of energy,

∇·q∗ = −ρcp
∂T∗

∂t∗
(2)

The classical parabolic heat conduction equation is derived,

∂T∗

∂t∗
= α∇2T∗ (3)
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where α = k
ρcP

, ρ, and cP are thermal diffusivity, density, and specific heat, respectively. Also, the effect
of any thermal disturbance on the medium is instantaneously sensed through the entire molecular
network. In the majority of engineering applications such as material processing (welding, cutting,
forming, etc.), applying high power laser radiation, cryogenic applications, and materials which
experience the high heat transfer rates [1–4], this equation is very useful. However, at very low times
and very high thermal fluxes and very low temperatures close to absolute zero, the Fourier law has
poor accuracy, and considering the effects of non-Fourier in describing the heat dissipation process and
prediction of temperature distribution, non-Fourier are more reliable in these situations. Fourier’s
failure to exactly predict the temperature field in sufficiently high heat flux and low temperature
engineering usages is because it assumes that thermal energy transport is occurring at an infinite
propagation speed [2,5]. As a result, a more advanced method, in the situation of the thermal waves
finite propagation speed, is required to analyze the high temperature gradients. Usually, when the
infinite propagation speed was assumed, the temperature was calculated more than its actual values
and it causes some errors in temperature prediction.

A modified equation of non-Fourier heat flux has been developed by Cattaneo [6] and Vernotte [7]
in the present form,

q∗ + τ0
∂q∗

∂t∗
= −k∇T∗ (4)

where τ0 is known thermal relaxation time. If the relaxation time ignores, τ0 = 0, the law of the
non-Fourier model is converted to the Fourier law. The energy equation is derived as follow,

−
∂
→
q
∗

∂r∗
+

.
g′′′ = ρcp

∂T∗

∂t∗
(5)

In the Equation (5),
.
g′′′ expresses the rate of internal generation of energy. Inserting Equation (4)

into Equation (5), the equation of hyperbolic heat transfer, containing source the term, derived,

α∇2T∗ =
∂T∗

∂t∗
+ τ0

∂2T∗

∂t∗2
+ Q(r, t) (6)

where the source term is Q(r, t). Different solution procedures for Equation (6) with different boundary
and initial conditions for finite media can be found in literature.

The analytical, numerical, and experimental methods were used in many researches for analysis
and calculating the rate of heat transfer in applied physics problems [8–10]. Using the heat sources
such as lasers and microwaves at very small times of applying the heat or high frequencies has a great
deal of application in analytical physics, applied sciences, and engineering. In fast and short processes
and rapid and concentrated conduction heat transfer, the order of space and time is very small. So, the
law of Fourier equation which assumed that heat propagates at an infinite velocity, cannot be used [11].

Ozisik and Vick [12] studied the heat propagation in a semi-infinite body with a volumetric
source of energy by solving the thermal wave equation. They found that the classical Fourier’s
law was no longer suitable in obtaining the temperature field at short times. Jiang [13] applied the
method of Laplace transform to study the hyperbolic conduction heat transfer in a hollow sphere
whose boundaries are affected by a sudden change in temperature. Moosaie [14] solved, analytically,
the equation of non-Fourier heat conduction for a finite body with an arbitrary initial condition and
insulated boundaries. His results showed that the time needed for reaching steady state situation
is enhanced with rising the relaxation time τ0. Moosaie [15] investigated a finite body subjected
to an arbitrary non-periodic surface disturbance. Their obtained solution is such that for a given
non-periodic disturbance, analytically if possible, but in general numerically is a straight forward
computational task. Ahmadikia and Riesmanian [16] presented an analytical method for solving the
hyperbolic heat transfer in a blade under periodic boundary conditions applying the Laplace transform
approach. The findings showed that in small blades under rapid phenomena, temperature behavior is
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the non-Fourier wave form. Bamdad et al. [17] studied the non-fluoride effects at extended surfaces.
Their results showed that for all fins at the start times, the point of discontinuity is time, relaxation time,
and cross-section of the dependent fin. In addition, the cross-sectional effects on the amplitude of the
heat wave reflecting from the tip of the fin are such that there is no reflected heat wave in the fins with
concave shape. Lam and Fang [18] presented an analytical method to investigate the heat conduction
in a slab applied by various boundary conditions. They indicated that the solution accuracy depends
on the terms number which were applied in the Fourier series expansion process.

Liu et al. [19] surveyed the non-Fourier heat conduction characteristics in the oil/water emulsions
experimentally. Their results showed that in the ratio of time lag less than one, no thermal waves exist
for oil/water emulsions.

The analysis of non-Fourier heat conduction in infinite hollow cylinders subjected to a heat source,
which is a function of time, was investigated by Daneshjou et al. [20]. They used the Laplace transform
method and demonstrated that their approach is valuable in correctness and exactness. Ma et al. [21]
studied the C-V wave model for a plate which is irradiated by a non-Gaussian laser pulse. The method
of mode superposition was applied for solving the equation. They discussed the dependence of the
wave velocity on relaxation time. The influence of scanning and wave velocity on the temperature
field was also presented. Wankhade et al. [22] investigated the heat transfer response of wet fins
using the models of Fourier and non-Fourier. The method of separation of variables was applied,
and the results showed a considerable deviation in temperature response using the non-Fourier heat
conduction compared to the Fourier model. Also, the effect of fin surface conditions was studied.
Han and Peddieson [23] investigated the Non-Fourier one-dimensional unsteady equation in a body
for medium speeds less than (sub-critical), equal to (critical), and greater than (super-critical) the
thermal wave speed. Liu et al [24] studied a hyperbolic lattice Boltzmann method (HLBM) compare to
the parabolic lattice Boltzmann method (PLBM) to survey the non-Fourier effects. The results show
that the electron temperatures simulated by the two-step HLBM/PLBM and two-temperature models
are not much different from each other and both of them coincide with the experimental data.

Review of this research indicated that various solutions are studied in different works. In each
study, different features of non-Fourier heat conduction were investigated and, therefore, various
results were established which could be useful in its position. However, the shortage of a general
problem with nonzero initial conditions and boundary conditions with internal heat generation in
these studies is observed. In this study, an exact solution is presented to non-Fourier heat conduction
in a cylinder with nonzero initial and boundary conditions. As it will be mentioned later, analytical
solutions of this problem were obtained by applying the theory of solution structure combined with
the superposition method. This approach can be used for obtaining the heat transfer in many physical
applications which solved by different methods [25–31].

2. Formulation

2.1. Hyperbolic Heat Conduction

According to the Figure 1, we assume a cylinder composed of a homogenous heat conducting
material with different boundary conditions at both sides: A symmetry boundary condition in the
cylinder’s central line and convection in the cylinder surface (r = R) with ambient.

The heat is conducted through the cylinder in r-direction, where one dimensional heat conduction
dominates. This problem was solved for L/r > 10 and a one-dimensional assumption for this problem is
reasonable. For simplifying the solution, by using the following parameters, we can non-dimensionalize
the governing equations,

r =
cr∗

2α
, t =

c2t∗

2α
, T =

kcT∗

α fr
, T∞ =

kcT∞∗

α fr
, q =

q∗

fr
, g =

4α
.
g′′′

c fr
(7)
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Figure 1. A schematic illustration of the problem.

Combining the Equations (4)–(6) with Equation (7), we can derive the non-dimensional form of
non-Fourier heat conduction equations as follows,

∂q
∂t

+
∂T
∂r

= −2q (8)

∂T
∂t

+
∂q
∂r

=
g
2

(9)

∂2T
∂t2 + 2

∂T
∂t

=
∂2T
∂r2 + f (r, t) (10)

where f (r, t) as a total internal heat generation in system can be determined as follows,

f (r, t) =
1
2
∂g
∂t

+ g (11)

For the problem situation, the boundary conditions are defined as follows,

∂T(0, t)
∂r

= 0 (12)

−
∂T(1, t)
∂r

= m(T − T∞), m =
−2αh

kc
(13)

T∞ is the dimensionless ambient temperature and m is the convection heat transfer coefficient.
The initial conditions are considered to be,

T(r, 0) = ϕ(r) (14)

∂T(r, 0)
∂t

= ψ(r) =
g0

2
(15)

These conditions can be derived from Equation (9). In Equations (14) and (15), ϕ and ψ
are dimensionless initial condition function and dimensionless initial rate of temperature change
function, respectively.
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In this paper, g as an internal energy generation will be defined as [11],

g(r) = g0 exp(−µr) (16)

or
g(r) = g0 exp(−µr) exp(−t) (17)

where

g0 =
2I0µ(1−R)

fr
(18)

where µ is the absorption coefficient, I0 is the amplitude of laser density, and R is the solid surface
reflectivity. This model assumes no spatial variations of g0 in the plane perpendicular to the laser beam.

2.2. Solution Structure Theorems and Superposition Approach

One of the famous and most widely used techniques for solving some types of heat conduction
equations is the superposition method. This method can be used for solving the linear heat transfer
problems with non-homogenous conditions. In this method, an origin problem is split into different
easier subproblems which can be integrated to take a solution to the original problem. The method of
superposition relies upon the assumption that the original problem (Equation (10)) can be divided
into three subproblems by setting the heat generation term (Equation (11)), the initial conditions
(Equations (14) and (15)), and the boundary conditions (Equations (12) and (13)) to different values in
each subproblem:

f (r, t) = ϕ(r) = 0 (19)

f (r, t) = ψ(r) = 0 (20)

ϕ(r) = ψ(r) = 0 (21)

Solutions to these subproblems are assigned as T1, T2, and T3 sequentially. Therefore, the general
solution to the first equation (Equation (10)) is the sum of subproblems one through three, which is

T(r, t) = T1(r, t) + T2(r, t) + T3(r, t)) (22)

It can be seen that T1, T2, and T3 illustrated the independent contributions of the initial rate
of temperature variation, initial condition, and internal heat generation to the temperature field,
respectively. Subproblems one to three can be simply solved by applying the solution structure
theorems [18] once the solution to subproblem one is known. By using the solution structure theorems,
the solutions of subproblems one to three can be determined as follows:

T1(r, t) = F(r, t,ψ(r)) (23)

T2(r, t) = (2 +
∂
∂t
)F(r, t,ϕ(r)) (24)

T3(r, t) =

t∫
0

F(r, t− ξ, f (r, ξ))dξ (25)

where T1(r, t) will be obtained by using the Fourier method. T2(r, t) and T3(r, t) can be simply derived
by using the solution structure theorem. It means that only the solution of subproblem one is needed
to obtain the solutions to subproblems two and three. Finally, the general solution to the first heat
conduction equation is the sum of subproblems one to three.
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2.3. Formulation of the Problem

In the literature, there are a few non-Fourier heat conduction problems with different boundary
conditions but most of them are limited to boundaries with zero temperature or the insulated boundaries.
In this study, we obtain the general analytical solution to hyperbolic heat conduction in a cylinder
composed of a homogenous heat conducing material with different boundary conditions at both sides:
A symmetry boundary condition in the cylinder’s central line and the convection boundary condition
in the cylinder surface (r = R) with ambient.

Let us first consider the solution to subproblem one. This subproblem is solved with the condition
f (r, t) = ϕ(r) = 0. As a result, the equation of this subproblem and the initial conditions and boundary
conditions are as bellow:

∂2T1

∂t2 + 2
∂T1

∂t
=
∂2T1

∂r2 (26)

∂T1(0, t)
∂r

= 0 (27)

−
∂T(1, t)
∂r

= m(T − T∞), m =
−2αh

kc
(28)

T1(r, 0) = 0 (29)

∂T1(r, 0)
∂t

= ψ(r) (30)

Using the Fourier series expansion theory, the general form of solution of equation is,

T1(r, t) = T∞ + 1
2

[
1− e−2t

] 1∫
0
(ψ(ζ) − T(∞))dζ+

∞∑
n=0

e−2t

γn


∫ 1

0 ζ(ψ(ζ)−T(∞)J0(λnζ)dζ)
λ2

n+m2

2λ2
n

J02(λn)

 sin(γnt)J0(λnr)
(31)

Now, by using the solution structure theorems, we have

T2(r, t) = T∞ +
1∫

0
ϕ(ζ) − T(∞)dζ+

∞∑
n=1


∫ 1

0 rϕ(ζ)−T(∞)J0(λnr)dζ
λ2

n−m2

2λ2
n

J2
0(λn)

×[
e−t

γn
[sin(γnt) + γn cos(γnt)]

]
J0(λnr)

(32)

T3(r, t) = T∞ +
t∫

0

1
2

(
1− e−2(t−ξ)

)[∫ 1
0 f (ζ)dζ

]
dξ+

∫ t
0

 ∞∑n=0

e−(t−ξ)
γn


∫ 1

0 r f (ζ)J0(λnr)dζ
λ2

n+m2

2λ2
n

J2
0(λn)

 sin(γn(t− ξ))J0(λnr)

dξ
(33)

where
J0(λn)

J1(λn)
=
λn

m
(34)

J0 and J1 are the first order Bessel functions and was obtained by solving the Equation (34).
Also,

γn =

√
λ2

n − 1 (35)

Ultimately, the temperature field within the slab can be obtained as,

T(x, t) = T1(r, t) + T2(r, t) + T3(r, t))
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3. Results and Discussions

In this paper, the temperature field in a one dimensional cylinder with non-zero initial and
boundary condition are examined. The values g0 = 100, µ = 5, T0 = 2.5, and T∞ = 1.8 were selected.
It can be concluded that all the profiles of temperature from T1(r, t) to T3(r, t) are in the infinite series
form. By using a relative error test, we can write:∣∣∣Tn+1(r, t) − Tn(r, t)

∣∣∣∣∣∣Tn+1(r, t)
∣∣∣ < ε (36)

where Tn+1(r, t) and Tn(r, t) are two consecutive partial sums for the temperature, and ε = 10−6 is the
relative error for this study. We showed that the original partial differential equation is split into three
subproblems, subproblems one through three demonstrating the contributions of initial rate of change
in temperature, initial condition, and internal heat generation, which are given by Equations (31) to
(35), respectively.

It can be noted from these equations that all the temperature profiles from T1(r, t) to T3(r, t) are in
the form of an infinite series.

Figure 2 shows the contribution of different components of temperature at various times for a
one dimensional cylinder with non-zero initial and boundary condition. According to the Figure 2a,
it can be seen that at small times (t = 0.1) up to about r = 0.4, the contribution of T1 and T3 dominate
compared to T2 which contributes little to the overall temperature. But at r > 0.4, all three temperature
components will have the same role and less impact on the overall temperature.

Figure 2b shows that T2 still does not have much effect on the overall temperature and acts
approximately uniformly with a constant value. T1 and T3 still have a downward trend, but T3, because
of is related to the temperature component of internal heat generation, is dominant.

The downward trend of T1 and T3 will be continued to r = 0.5 and r = 0.8, respectively. After these
points, significant variations were not seen. Also, in the areas near the center of the cylinder, where the
source term generates the energy, the overall temperature has larger values compared to its values at t = 0.1.
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As time increases Figure 2c, the contribution of T2 to the overall temperature is less. Also, the
effects of T1 on the overall temperature near to the center of the cylinder are decreased. This means
that the effects of initial rate of temperature change have been remarkable, only, at the small times
and with increasing the time the effects were not impressive. Due to the fact that the internal heat
generation is time and space dependent, the values of T3 in areas close to the center of the cylinder
have increased dramatically and will have the greatest impact on the overall temperature (T).

Figure 3a illustrates the temperature temporal trend at low times. As time arises, temperatures
of cylinder’s center (r = 0) enhance because of absorption of more energy compared to the other
places. However, the boundary of cylinder surface remains relatively unchanged and keeps its initial
temperature. According to the Figure 3b, with enhancing the time, the surface boundary temperature
became affected by the entering energy, hence increasing the temperatures at a slower rate occurred.
The temperature throughout the cylinder will continue to increase toward equilibrium between the
center and the surface of the cylinder. This trend was shown in Figure 3c.
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4. Conclusions

In this paper the analytical solution of non-Fourier heat conduction in a cylinder composed of a
homogenous material with different boundary conditions: A symmetry boundary condition in the
cylinder’s central line and the convection in the cylinder surface (r = R) with ambient is investigated.

We conclude that the obtained results provide an accurate, convenient, and useful solution to the
non-Fourier equation, which is usable for analyses of various engineering applications.

The key findings and conclusions from the present solution are as follows:
At small times (t = 0.1) up to about r = 0.4, the contribution of T1 and T3 dominate compared to

T2 contributing little to the overall temperature.
At t = 0.5, T2 does not have much effect on the overall temperature and acts approximately

uniformly with a constant value.
At t = 0.5, T1 and T3 have a downward trend, but T3 is dominant.
At t = 1, the effects of T1 on the overall temperature near to the center of the cylinder are decreased.
At low times, by enhancing the time, temperatures at the center of the cylinder (r = 0) enhance.
At big times, the temperature throughout the cylinder will continue to increase.
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Abbreviations

Nomenclature
c Thermal Wave Propagation Speed, m/s
cp Specific Heat, J/kg K
f Total Internal Heat Generation in System
fr Reference Laser Power Density, W/m2

g Dimensionless Internal Heat Generation
g0 Transmitted Energy Strength
.
gm Internal Heat Generation, W/m3

I0 Laser peak Power Density, W/m2

k Thermal Conductivity, W/mK
h Convection Heat Transfer Coefficient, W/m2K
m Dimensionless Convection Heat Transfer Coefficient
q∗ Heat Flux, c
q Dimensionless Heat Flux, q∗/ fr
Q Dimensionless Source Term
R Surface Reflectivity of the Solid
t Dimensionless Time, c2t∗/2α
t∗ Time, s
T Dimensionless Temperature, kcT∗/α fr
T∞ Dimensionless Ambient Temperature, kcT∞∗/α fr
T∗ Temperature, K
T∞∗ Ambient Temperature, K
r∗ r-coordinate, m
r Dimensionless Space Coordinate, cr∗/2α
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Greek symbols
α Thermal Diffusivity k/ρcp, m2/s

γn Eigen Value, γn =
√
λ2

n − 1

ε Relative Error
µ Dimensionless Absorption Coefficient, 2cτµ∗

ρ Density (kg/m3)
τ0 Relaxation Time α/c2, s
ϕ Dimensionless Initial Condition Function
ψ Dimensionless Initial rate of Temperature Change Function
ξ Dummy Index
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