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Abstract: Existing tensor completion methods all require some hyperparameters. However, these
hyperparameters determine the performance of each method, and it is difficult to tune them. In this
paper, we propose a novel nonparametric tensor completion method, which formulates tensor
completion as an unconstrained optimization problem and designs an efficient iterative method to
solve it. In each iteration, we not only calculate the missing entries by the aid of data correlation,
but consider the low-rank of tensor and the convergence speed of iteration. Our iteration is based
on the gradient descent method, and approximates the gradient descent direction with tensor
matricization and singular value decomposition. Considering the symmetry of every dimension of a
tensor, the optimal unfolding direction in each iteration may be different. So we select the optimal
unfolding direction by scaled latent nuclear norm in each iteration. Moreover, we design formula for
the iteration step-size based on the nonconvex penalty. During the iterative process, we store the
tensor in sparsity and adopt the power method to compute the maximum singular value quickly.
The experiments of image inpainting and link prediction show that our method is competitive with
six state-of-the-art methods.

Keywords: tensor completion; iterative solution; nonparametric; gradient descent; nonconvex penalty

1. Introduction

Real-world data are often sparse but rich in structures and can be stored in arrays. Tensors are
K-way arrays that can be used to store multimodal data, image/video data, complex relationship
network data, etc. At present, tensors have been successfully applied in many fields, such as image
restoration [1], recommendation systems [2], signal processing [3], and high-order web link analysis [4].
Moreover, tensors have also been applied in clustering and classification in some recent studies [5,6].
A comprehensive survey of the applications of tensors can be found in [7]. In these applications,
a decisive work is to fill in the missing values of the tensor, namely, tensor completion.

For matrix completion, a common method is to decompose the matrix into two-factor matrices
and then use them to calculate the missing data [8,9]. Another method is to turn it into a Rank
Minimization (RM) problem. Analogous to matrix completion, the methods of tensor completion
can also be divided into two categories: tensor decomposition and RM. Tucker decomposition and
CANDECOMP/PARAFAC (CP) [10] are two classic methods of tensor decomposition, and they
decompose a high-order tensor into a kernel tensor and some factor vectors. Reference [11] proposed
tensor Singular Value Decomposition (t-SVD), but it can only be used for small-scale tensors because the
tensor will be expanded to a large-scale matrix. In [12], the t-SVD was applied to an image deblurring
problem. Reference [13] proposed a low-order tensor decomposition for tagging recommendation,
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which is similar to Tucker decomposition. In the second approach, Nuclear Norm Minimization
(NNM) is often used to replace RM because RM is NP-hard [14]. Reference [15] directly minimized the
tensor nuclear norm for tensor completion. Reference [16] proposed a dual frame for low-rank tensor
completion via nuclear norm constraints. Since high-order tensors represent a higher dimensional
space, some works [17,18] used the Riemannian manifold for tensor completion, which is still closely
linked to RM. In addition, some works [19,20] converted the tensor into matrices and realized tensor
completion by means of matrix completion, but they ignored the inner structure and correlation of
the data.

The aforementioned methods of tensor completion all require some hyperparameters, such as the
upper bound of the rank in the low-rank constraint and the penalty coefficient for norms. However,
the selection of these hyperparameters not only consumes a substantial amount of time but also
determines the performance of the methods. To address this issue, we propose a novel Nonparametric
Tensor Completion (NTC) method based on gradient descent and nonconvex penalty. We use gradient
descent to solve the optimization problem of tensor completion and build a gradient tensor with tensor
matricizations and Singular Value Decomposition (SVD). We select the optimal direction based on the
scaled latent nuclear norm in each iteration. The step-size in gradient descent is regarded as a penalty
parameter for the singular value, and we design a nonconvex penalty for it. Furthermore, during
the iterative process, we store the tensor in sparsity and adopt the power method to compute the
maximum singular value quickly. Experiments of image inpainting and link prediction show that our
method is competitive with some state-of-the-art methods. The main contributions of this paper are:

1. Unlike existing methods, our method has no parameters and is easily manipulated.

2. In each iteration, we use tensor matricization and SVD to approximate the gradient descent
direction, so the entries outside the observation range can also be updated.

3. Considering the symmetry of every dimension of a universal tensor, we select the optimal gradient
tensor via scaled latent nuclear norm in each iteration.

4. We design the formula of iteration step-size elaborately, which makes our iteration able to achieve
a higher convergence speed and a lower error.

The rest of the paper is organized as follows. Section 2 introduces the background knowledge.
Our method is proposed in Section 3. Section 4 gives the experimental results and analysis. Finally, the
conclusions are given in Section 5.

2. Background Knowledge

2.1. Symbols and Formulas

In this paper, vectors and matrices are denoted by lowercase and uppercase bold italic letters,
respectively, and tensors are denoted by bold handwriting. The relevant symbols and formulas
involved in this paper are as follows:

e ||A]l. = X; 0; is the nuclear norm of matrix A, where o; is the ith singular value of A.

e X e RIixDX-xIp represents a D-dimensional tensor, where Iy, Iy, . .., Ip is the size of each dimension.

e (X, V)= 211'11:1 . ZII.ED)Zl X, .ipYi..ip, is the inner product of two tensors X and Y of the same
dimension, where X;,..;, and Y}, .., are the elements in X and Y, respectively.

e |IXl[F = V{X, X) is the Frobenius norm of X.
e X represents the mode-d matricization of X, i.e., (X<d)) = Xijigip, ] = 1+

ig]
D . -1
Zzzl,lgtd(ll -1) Hm:l,m¢d L.

o A@ represents the mode-d tensorization of 4, i.e., (X )

)(d) —x

To make tensor matricization and matrix tensorization easy to understand, a 3-dimensional tensor
is provided below as an example. Suppose X is a tensor of size 3 X 4 X 2 as Figure 1 shows.
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Figure 1. An example of 3-dimensional tensor.
Then the three matricizations of X are
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2.2. Related Algorithms

SVD needs to consume a substantial amount of memory and CPU resources. In the real world,
data usually have a large scale but are very sparse. For a large sparse matrix, the power method [21] can
compute the maximum singular value quickly. Gradient descent is a simple but effective method for
solving unconstrained convex optimization problems. It is used to minimize a function by iteratively
moving in the direction of the steepest descent as defined by the negative of the gradient. In this paper,
we use the gradient descent method to solve the optimization problem of tensor completion and use
the power method to improve computational efficiency.

3. Nonparametric Tensor Completion

3.1. Problem Description

The goal of tensor completion is to fill in the missing entries of a partially known tensor.
To circumvent this, a usual approach is to find a tensor that is close enough to the original tensor in the
positions of the known entries. Suppose A is a D-order tensor, A € RI*2%XIb; the positions of the
observed (namely, known) entries in (A are indicated by (). The tensor completion can be formulated
by the following optimization problem:

min|[Pa (A - X}, )

where [PQ (X)}iliz‘“iD =X
completion when D = 2.

iyig—ip if 11i2 -+ +ip € (); otherwise, it is 0. Problem (1) becomes a matrix

Problem (1) is an unconstrained optimization problem. If X has identical entries with A in

the range of () but has any entries outside the range of (), then it makes HPQ (X - ﬂ)“i obtain
the minimum value 0. However, such X is meaningless because it ignores the inner structure and
correlation of the data. The most common way is to constrain X with rank or nuclear norm [22,23].
However, it introduces some hyperparameters, e.g., the upper limit for rank or norm. For unsupervised
learning, it is difficult to choose the appropriate hyperparameters. To address this issue, we propose
an efficient nonparametric iteration method to solve the unconstrained optimization problem (1).
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Although we do not add constraints for problem (1), in each iteration, we not only calculate the missing
entries by the aid of data correlation, but also consider the low-rank of tensor and the convergence
speed of iteration.

3.2. Iterative Calculation Based on Gradient Descent

For simplicity, we convert (1) into the following form:
Minimize : F(X) = %HPQ (A-X)||- 2)
F(X) is a continuous differentiable convex function, and its derivative is
F/(X) = =Pa(A-X). ®)
We use the gradient descent method to solve problem (2), and the iterative formula is as follows:
X = X" AF/(X") = X" + AP (A - X"), 4)

where 1 is the number of iterations and A is the iteration step-size. Note that P (A — X™) only has values
in the range of (), so (4) cannot update the entries of X outside the range of () . Therefore, we hope to
find an approximation of P (X" — A) that has values outside the range of () so that (4) can update the
entries of X outside the range of ().

Based on tensor matricization and SVD, we have

@ " ¥
Po(A-X") = ((Po(A- X)) = (Y7, anaizohT) (5)
where d € {1,2,.,D}; 7'} is the rank of the matrix (Pa(A-X")) ol , uj. and o/ are the ith
singular value, left singular vector, and right singular vector of (P (A - X")),,, respectively; and

UZ,l > UZ,Z >...> Gg,r;' Pa(A - X") can be approximated by selecting the first m (m < 1) singular

values in (5). In theory, the larger the value of m is, the better the approximation of P (A - X").
However, (i) too many singular values will increase the computational complexity, and (ii) small
singular values usually represent noise. Therefore, we only use the largest singular value and
corresponding left and right singular vectors to approximate P (A — X"), then

T ()
Po(A-X") ~ (o uy 05,7 )" (6)
p A@
We must emphasize that ( Loh ol o ) has no values outside the range of (), but

non o TV
(031%31 %41 )
are extended beyond the range via tensor matricization and SVD. Then, (4) becomes

has values outside the range of (2 . That is to say, the values in the range of ()

(d)
X =X"+ A 01 (u;‘,lvgrlT) . (7)
Bel furth lanations for (7). F/(X") = P (X" - A) = i gt on ) 1
elow are some further explanations for (7). =Pa = \XL, 0105 only
has values in the range of (3 ; and ¢’} |, u} , and v}, | are the largest singular value, leading left singular

vector, and leading right singular vector of (P (A — X)) () Tespectively. The reason why we use o |,

/)., and v/} to approximate F/(X") in each iteration includes four aspects: (i) if noise is eliminated,

) (d)
n gn n T 3 ny ; - (33 n ogn n T ;
(0 11431931 ) is close enough to F7(X") in the range of (; (ii) (a 11431931 ) has values outside

the range of () ; (iii) the computational cost is effectively reduced; and (iv) SVD nicely considers the
correlation between data entries, which ensures the rational of tensor completion.
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Here, (P (A - X")) 4 is the mode-d unfolding of P (A — X") and is usually a large-scale matrix,
so the traditional SVD cannot be used for efficient calculation. We adopt the power method to calculate
the maximum singular value and corresponding singular vectors quickly.

3.3. Proof of Iterative Convergence

For the iterative formula (7), we can prove thatif A € (0,1), then F(X ”+1) < F(X™).
Proof. For a tensor X, we have

X) = Y||Pa(a - XHF_2<¢Mﬂ X),Pa(A-X) >

% <7> (A= X))y, (P (A= X)) g >= }|(Pa(a ®)

))H<d>12:'

In (5), u; ; are orthogonal to each other, and v ; are orthogonal to each other. Then, according to (8)
and (5), we have

P(X)z%ll%m X”>><d>llp Hze, dl 0 "Iz

_ 1 Z nT d nTo__ Z (9)
=g <Ly Ll og g hs >= 2 i:l( d,i)'
According to (8), (7) and (5), we can deduce
(dy
1 1 1 2 1 T 2
F(X”* ) EH(PQ(ﬂ X ))(d)”l—" -2 (Pg(ﬂ—)(” —Ag (”d 17721 ) ))<d>
_1 2 1 T
= 3[l(Pa(A-&X")) @ - Mdl”dlvm ||F_ 2||&i= 1Gdzudzvs1 — Aoy 1 Vi HF (10)

:%”(1 A) dl Zl d2 +Z‘z 2 dz Zz d,i ||F %((1 A) ( dl) +Z‘z 2( dl)z)‘

Since A € (0,1), F(X"*!) < F(X"). O

3.4. Selection of the Unfolding Direction

In (7), there exist D different directions when unfolding P (A — X") since A is a D-order tensor.
When D = 2, tensor completion is reduced to matrix completion. For a 2-order tensor M € RIixl2
M1y = M and My, = MT. The two unfolding matrices have identical singular values and exchange
left and right singular vectors, so the choice of unfolding direction will not affect the final results.
When D > 2, different unfolding directions may lead to different accuracies and convergence speeds,
so we need to select the optimal unfolding direction. Considering the symmetry of every dimension of
a tensor, the optimal unfolding direction in each iteration may be different. Below, we discuss how to
choose the unfolding direction d in each iteration.

Real-world data tensors often exhibit low-rank structures, and tensor completions usually attempt
to recover a low-rank tensor that best approximates a partially observed data tensor [24]. In tensor
completion, rank is often surrogated by nuclear norm. Overlapped nuclear norm [25] and scaled latent
nuclear norm [26] are two commonly used tensor nuclear norms, but the latter is more appropriate
than the former when used in tensor completion [27]. For a D-order tensor X, its scaled latent nuclear
norm is defined as follows:

D

1
IXlscales = _min —=||(Xa) k- (11)
scale Zle/\’d_XdZ{ ‘/E” (d)
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In (11), welet X; = X, X; = 0 (i # d); then

1
X lscate < \/_E”(X) @l (12)
Therefore, we have
(d) (d)
~ T 1 T
AEER OIS (CRTICN WEEE (CRR R | 0
L T _ %
= oo v = i

The nuclear norm is a convex surrogate for rank [28]. In (4), if X" and P (A - X") are both
low-rank tensors, then X”*1 will also tend to be a low-rank tensor. Therefore, we choose the unfolding
direction d that minimizes the scaled latent nuclear norm of P (A — X"), i.e.,

0-71

. Yan
d=ar —. 14
gmin—t (14)

The calculation of ULI; for each dimension d (d € {1, 2, .., D}) is independent and we can perform

\F

these calculations in parallel.

3.5. Design of the Iteration Step-Size

Another part of (7) is determining the step-size A of each iteration. We consider the following.

1. In the gradient descent method, —F7(X) is the fastest descent direction, and we use the maximum
singular value (and corresponding singular vectors) of its unfolding matrix to calculate it
approximately. If the maximum singular value is very large, we may ignore some larger singular
values, and the approximation of the fastest descent direction may be unsatisfactory. Therefore,
we should adopt a small step-size to avoid excessive errors. Conversely, if the maximum singular
value is very small, the approximation may be more accurate, and we can adopt a large step-size.
In other words, the larger the maximum singular value is, the smaller the step-size.

2. In the gradient descent method, —F7(X) will become increasingly smaller during the iterative
process; thus, the maximum singular value ¢/} of each iteration presents a downtrend as a whole.
Then, according to Point 1, the step-size should show an upward trend during the iterative
process. However, the traditional approach and some related approaches [29,30] all make the
step-size increasingly smaller during the iterative process, which does not meet our requirements.

3. The step-size A can also be viewed as a penalty for the singular value. In matrix completion,
the nonconvex function is used to penalize the singular value and achieves a better effect than
the direct use of the nuclear norm [31,32]. Reference [32] penalizes the singular value by the
f(x) = log(x + 1) function for matrix completion and does not introduce additional parameters.

Based on the above three points, the formula of the iteration step-size is designed as follows:

loglo” . +1
A= ( dy,ll ) (15)
94,1

In (15), the larger 07} | is, the smaller A, and the singular value after penalty is lo g(GZ 1T 1) , which is a
nonconvex function. In addition, it easy to prove A € (0,1).
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3.6. Optimization of Calculation

If we directly use (7) to compute X", we need to store and update each entry of X" during the
iterative process. The time and space complexities are tremendous. We split (7) into the following two
parts:

Pa(X1) = Pa (") +Pa(Ady (wh,25,7) "), (16)
Pa(X) = P(X") + Pa{ Ay (i, 25,T) "), (17)

where Q denotes the positions of the missing entries in tensor A. The goal of tensor completion is
to calculate the entries in the range of (). To achieve this, we need to calculate the values of o

and vg 1 in each iteration. Because

n n
a1 %

Pa(A-X") =Pq(A) —q (X"), (18)

the values of o}, u/}, and v/}, depend only on £ (X") but not on P(X"). That is, we just need to
store and update the entries of X" in the range of () (namely, P (X")) during the iterative process.

Furthermore, P (X") can be stored in a sparse tensor.

3.7. Analysis of Time Complexity

According to (14), we need to calculate the maximum singular of (Pq(A—X")),, for each
dimension d (d € {1,2, .., D}) in each iteration. The power method is used to calculate the maximum
singular of matrix, which itself is also an iterative method. In each iteration of the power method,

we need to calculate a matrix-vector multiplication, where the size of the matrix is I; X M
Thus, the time complexity of the matrix-vector multiplication is at most I; X W =L XL x---XIp.

Based on the above analysis, the time complexity of our method is O(N x D x P x Iy X I X --- X Ip),
where N is the number of iterations in the gradient descent method and P is the number of iterations in
the power method.

4. Experiments

In this section, we first compare the performance of our NTC against some recently proposed
methods and then demonstrate the effectiveness of the step-size design in NTC. Experiments are
performed on a PC with Intel i7 CPU and 32 GB RAM. The software environment is MATLAB R2017a
on Windows 10. We use the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) as
performance indicators,

1 2
RMSE = \/m ZilizmiDeaT(Xiliz---iD - ﬂiliz"'iD) ’ (19)

1
MAE == @ Zi]iz"'ip€6T|Xili2...iD - ﬂl]ZZZD 4 (20)

where Q7 represents the entries in the testing set and |5T| is the number of entries in Q7.

4.1. Performance Comparison

We use image inpainting and link prediction to perform the experiments for performance
comparison. Our competitors include (i) SPC [33], which applies the total variation constraint to
the low-rank model for tensor completion; (ii) TR-LS [16], which adopts a dual framework to solve
the low-rank tensor completion; (iii) Rprecon [17], which is a Riemannian manifold preconditioning
approach for tensor completion; (iv) GeomCG [18], which applies Riemannian optimization to the
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completion of fixed-rank tensor; (v) FFW [28], which uses the Frank-Wolfe algorithm and scaled latent
nuclear norm for tensor completion; and (vi) CTD-S [34], which accelerates tensor decomposition by
removing redundancy. They all need to tune several parameters.

The experimental data are divided into two parts: the training set and testing set. For the methods
that need to tune some parameters, we take out a subset of data from the training set, and this portion
is called the verification set, which is used to learn the optimal parameters. Our method has no
parameters, so it does not need a verification set. Each experiment is repeated five times, and the

"

results are averaged. As mentioned, in (14), we can calculate %i for each dimension d (d € {1,2, .., D})
in parallel. However, considering (i) 3-dimensional tensors are used for our tests; (ii) the power method
is used to calculate the maximum singular value (agll) quickly; and (iii) parallelization itself also needs
a certain amount of overhead, we do not parallelize these calculations in our tests.

Figure 2 shows three RGB images, which are with 720 x 1280, 600 x 960, and 1024 x 1024 pixels,
respectively. Each image can be stored in a tensor of size “height” X “width” x 3. For each image,
we experiment with two training-test ratios: 25%:75% and 40%:60%. For the methods with parameters,
we select 20% of the training set as the verification set (for parameter tuning). The test results are
shown in Tables 1 and 2, where we highlight the best result(s) in bold and underline the second-best
result(s) in each column.

(a) Mountain (b) Rice (c) Stockton

Figure 2. Test images.

Table 1. Test Results of Image Inpainting (Training set is 25%).

Mountain Rice Stockton
Methods
RMSE MAE RMSE MAE RMSE MAE
NTC 0.224 0.136 0.258 0.176 0.502 0.360
SPC 0.307 0.224 0.647 0.541 0.664 0.520
TR-LS 0.266 0.169 0.265 0.176 0.462 0.319
Rprecon 0.281 0.180 0.296 0.208 0.504 0.353
GeomCG 0.402 0.291 0.304 0.210 0.568 0.402
FFW 0.241 0.150 0.272 0.188 0.520 0.376
CTD-S 0.843 0.713 0.867 0.730 0.915 0.782
Table 2. Test Results of Image Inpainting (Training set is 40%).

Methods Mountain Rice Stockton
RMSE MAE RMSE MAE RMSE MAE
NTC 0.190 0.129 0.218 0.145 0.458 0.324
SPC 0.254 0.162 0.537 0.439 0.515 0.367
TR-LS 0.236 0.149 0.220 0.147 0.433 0.291
Rprecon 0.237 0.145 0.290 0.204 0.476 0.332
GeomCG 0.238 0.146 0.290 0.204 0.513 0.363
FFW 0.211 0.132 0.239 0.162 0.481 0.344

CTD-S 0.748 0.628 0.759 0.635 0.858 0.725
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It can be seen from Tables 1 and 2 that, on the whole, our NTC has the smallest errors and performs
best. TR-LS and FFW can also achieve good results. CTD-S is a noniterative tensor completion method,
and its performance is not satisfactory.

Next, we use the latest dataset on MovieLens [35] to build three three-dimensional tensors of
“user-movie-category” to perform the experiments. Table 3 presents the related information of the
three datasets. The known entries in each tensor (dataset) are randomly divided into a training set and
a testing set. For each dataset, we experiment with two training-test ratios: 80%:20% and 60%:40%.
Similarly, we select 20% of the training set as a verification set for the methods with parameters.
Tables 4 and 5 give the results.

Table 3. Three Datasets on MovieLens.

Name Size Number of Entries Number of Known Entries
300T 300 x 4667 X 19 26,601,900 66,887

2400T 2400 x 11,292 x 19 514,915,200 611,198

4000T 4000 x 13,370 x 19 1,016,120,000 1,028,536

Table 4. Test Results of Link Prediction (Training set is 80%).

300T 2400T 4000T

Methods
RMSE MAE RMSE MAE RMSE MAE
NTC 0.919 0.726 0.853 0.654 0.843 0.647
SPC 0.962 0.776 0.996 0.795 —_— —_—
TR-LS 0.936 0.742 0.858 0.651 0.851 0.654
Rprecon 0.963 0.738 0.870 0.657 0.856 0.647
GeomCG 0.944 0.735 0.870 0.661 0.854 0.641
FFW 0.915 0.721 0.860 0.768 0.858 0.662
CTD-S 0.987 0.806 0.969 0.663 0.974 0.773

Table 5. Test Results of Link Prediction (Training set is 60%).

300T 2400T 4000T

Methods
RMSE MAE RMSE MAE RMSE MAE
NTC 0.926 0.724 0.877 0.677 0.860 0.663
SPC 0.968 0.768 0.998 0.798 —_— —_—
TR-LS 0.934 0.735 0.971 0.763 0.867 0.670
Rprecon 0.970 0.738 0.887 0.664 0.872 0.657
GeomCG 0.975 0.772 0.886 0.672 0.872 0.659
FFW 0.926 0.728 0.882 0.684 0.881 0.684
CTD-S 0.993 0.803 0.979 0.778 0.987 0.786

In Tables 4 and 5, each method yields a total of 12 error values. Overall, NTC performs best, as its
six errors are the smallest and four errors are the second-smallest. In particular, for the 2400T and
4000T datasets, our NTC achieves the smallest RMSE. TR-LS, Rprecon, GeomCG, and FFW can achieve
better results on some datasets, and CTD-S has the highest RMSE and MAE. Unfortunately, 32 GB
RAM cannot support SPC working on the 4000T dataset. In a word, our method is competitive with
other methods.

4.2. Effectiveness of Our Step-Size Design

We choose 10,532 users and 22,157 movies from the latest dataset on MovieLens to build a
two-dimensional tensor. The tensor contains 1,048,575 known entries, where 80% of the data is selected
as the training set and the rest is selected as the testing set. We compare the performance of our
step-size design against the performances of the other three designs. Our design is denoted as DO,
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and the other three designs are denoted as D1, D2, and D3. The four designs make the singular value
after penalization (namely, A X 07 ) equal to log(d’;, +1), 1, 07}, and ¢’} , /2", respectively. Figure 3
demonstrates their RMSE curves versus CPU time.

1.00\
oosf|
| \ —— D1 =10,
w vool \ — — D2 2=1
Z - W A -~ D3 4=1/2"
‘ ~__ DO: =log(cfy ;+1)/ 0 ,
0.85- —
v —
080 L L L L
0 200 400 600 800 1000
CPU time (s)

Figure 3. The performances of different step-size designs.

From Figure 3 we can see that (i) D3 performs the worst, and its RMSE is significantly higher
than that of other designs; (ii) DO and D2 have better performances than D1; and (iii) D2 converges
very fast in the first 300 s, but then is overtaken by D0. Overall, our design (D0) can achieve a higher
convergence speed and a lower error.

5. Conclusions

This paper proposes a new Nonparametric Tensor Completion (NTC) method based on gradient
descent and nonconvex penalty. Our method formulates tensor completion as an unconstrained
optimization problem and designs an efficient iterative method to solve it. We use gradient descent
to solve the optimization problem of tensor completion and build a gradient tensor with tensor
matricizations and SVD. We select the optimal direction based on the scaled latent nuclear norm and
design the formula of iteration step-size elaborately. Furthermore, during the iterative process, we store
the tensor in sparsity and adopt the power method to compute the maximum singular value quickly.
Unlike existing methods, our method has no parameters and is easily manipulated. We use image
inpainting and link prediction to compare NTC against six state-of-the-art methods, and the test results
demonstrate that NTC is competitive with them. In addition, an experiment of two-dimensional tensor
completion shows the effectiveness of our step-size design.

In this paper, we select the optimal unfolding direction by scaled latent nuclear norm to construct
an iterative formula. Next, we will try to select more than one unfolding directions and weight these
directions so as to achieve lower error and faster convergence speed.
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