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Abstract: The Nambu–Jona-Lasinio (NJL) model is a classic theory for the strong dynamics of
composite fields and symmetry breaking. Supersymmetric versions of the NJL-type models are
certainly of interest too. Particularly, the case with a composite (Higgs) chiral superfield formed by
two (quark) chiral superfields has received much attention. Here, we propose a prototype model with
a four-chiral-superfield interaction, giving a real superfield composite. It has a spin-one composite
vector field with properties being somewhat similar to a massive gauge boson of spontaneously
broken gauge symmetry. As such, it is like the first supersymmetric analog to non-supersymmetric
models with spin-one composites. The key formulation developed here is the picture of quantum
effective action as a superfield functional with parameters like constant superfields, having explicit
supersymmetric and Grassmann number dependent supersymmetry breaking parts. Following
the standard non-perturbative analysis for NJL-type models, the gap equation analysis shows
plausible signature of dynamical supersymmetry breaking which is worth more serious analysis.
With an extra superfield model Lagrangian included, comparison between the models and their
non-supersymmetric counterparts is discussed, illustrating the notion of supersymmetrization is
nontrivial in the setting.
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1. Introduction

The Nambu–Jona-Lasinio (NJL) model [1,2] is a classic model with a strong four-fermion
interaction, which gives rise to a dynamical composite (scalar) bosonic field as the analog of the
Cooper pair. The composite scalar usually bears a nonzero vacuum expectation value (VEV) which
causes dynamical symmetry breaking and the generation of (Dirac) fermion mass. There have been
many attempts to construct viable models of which the Higgs doublet can be identified as such a
two-fermion composite [3–8]. See [9] for a theoretical and phenomenological review of the approach
focusing on physics related to the idea of “top quark condensate”.

Composite spin-one boson may also be resulted in a model of the kind. Such spin-one field
(multiplet) as bifermion composite typically behaves much like the massive gauge bosons from models
of spontaneously broken gauge symmetry [10]. In a more recent study [11], a similar model with the
spin-one boson as composite of scalar bosonic rather than fermionic fields is also discussed.
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On the other hand, the first investigation into supersymmetric model of composite fields via NJL
mechanism was conducted in the early eighties [12,13]. The four-fermion interaction was replaced
by a six-dimension four-chiral-superfield interaction in the Kähler potential. A new chiral superfield
as a composite of two chiral superfields can be obtained. The model is as much an exact analog of
the non-supersymmetric one as possible. However, the notion of supersymmetrization in the setting
actually leaves room for alternative construction [14]. Applications of the model with dimension-six
interaction to spontaneous electroweak symmetry breaking have also caught much phenomenological
attention [15,16]. The model is now highly disfavored phenomenologically, if not completely ruled
out while the (holomorphic) alternative with a dimension-five interaction may survive better [17].
Other applications or extended analyses of the NJL mechanism in spontaneous symmetry breaking
models, within the chiral superfield composite from dimension-six interaction setting, see [18–20].

In a re-examination of the supersymmetric Nambu–Jona-Lasinio (SNJL) model, in general, our
group found many interesting features in variants of the model in the alternative supersymmetrization.
The new holomorphic model has a dimension-five four-chiral-superfield interaction in the
superpotential [14,17,21]. The interaction gives rise to a chiral superfield as a composite of two
chiral superfields, with the scalar being a bi-scalar composite. A model with two such composite chiral
superfields bearing symmetry breaking VEVs can give a supersymmetric Standard Model with both
Higgs doublets being (different) squark composites [17,21]. Nevertheless, input soft supersymmetry
breaking masses are needed. On the theoretical side, the basic framework works as well for a model
starting with a single chiral superfield, instead of a Dirac pair, with generation of Majorana mass.
The case of a Dirac pair admits both masses of Majorana and Dirac type depending on input soft
masses [22].

NJL-type models in the superfield setting still provide more interesting possibilities. In the
literature the studies of supersymmetric NJL-type models focus on the formation of composite chiral
superfields. However, a real superfield can also be dynamically generated as a composite of two chiral
superfields. We report a new prototype model with a real superfield composite from a dimension-six
four-chiral-superfield interaction. The real superfield contains a spin-one component, which is really
a combination of bi-scalar and bifermion parts. No input soft supersymmetry breaking masses
are assumed and the model Lagrangian is fully supersymmetric. It may be seen, in a way, as a
supersymmetric version of the ones analyzed in [11]. The latter considered the case of a composite
spin-one vector field formed by fermionic and bosonic fields separately. Our model here is the simplest
supersymmetric model of the kind, with a composite spin-one field. It is interesting to compare the
models in [11] with ours. Though there are interesting differences, it may be the closest analog one
can have.

The composite real superfield of our model contains scalar and auxiliary scalar components
which may bear nonzero VEVs. The part for the scalar would give supersymmetric wave
function renormalization, whereas that of the auxiliary scalar component(s) may actually give soft
supersymmetry breaking masses. We present the standard superfield gap equation analysis and
non-perturbative effective theory description. To the extent that the 1/Nc type approximation does
give the correct qualitative feature there, the nontrivial solutions to the gap equation for the soft masses
indicates dynamical supersymmetry breaking. Whether the latter can be obtained with the very simple
model structure is a question warrants further analysis.

In Ref. [21], we introduced the powerful analysis of formulating the quantum effective action
as a superfield functional with parameters like constant superfields, having explicit supersymmetric
and Grassmann number dependent supersymmetry breaking parts. A superfield diagram, like the
proper self-energy diagram in the gap equation, therefore also including the supersymmetry breaking
parts. We further develop the formulation here with the superfield parameter for the wave function
renormalization factor seen as naturally having supersymmetry breaking parts corresponding to soft
masses. The kind of formulation considered was initiated by Miller’s very successful treatment of the
mass parameters and propagators [23,24] in the early eighties, but did not apparently develop much
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otherwise. It is our opinion that complete formulations of various superfield theories along the basic
theme should be of great interest. The formulation plays a key role in our earlier works [21,22] as well
as here.

In Section 2, we present the model Lagrangian with a single chiral superfield, and the effective
theory in terms of component fields including the composite. In Section 3, we demonstrate the basic
analyses. The advocated superfield formulation is given and used to obtain the superfield gap equation.
That is matched to an effective potential analysis for the Lagrangian with the composite, deriving
the component field gap equations as the tadpole equations. Section 4 is devoted to analysis of the
nontrivial solutions, as well as the existence of the massless fermionic mode. In Section 5, we discuss
the kinetic and mass terms of the physical degrees of freedom in the model. Some of them become
dynamic due to the contribution of loop diagrams. A careful comparison on important features of the
model, together with another model Lagrangian, with the non-supersymmetric analog of the examples
from Suzuki [11] can be found in the last section. Again we see that the notion of supersymmetrization
is somewhat nontrivial. For example, direct supersymmetrization of Suzuki’s simplest fermion or
scalar model is not the same one though a chiral superfield has both fermion and scalar parts. Our main
model here is more like a supersymmetrization of the fermion model as compared to the alternative
model Lagrangian as supersymmetrization of the scalar one.

2. The Model Lagrangian

We focus on the simplest supersymmetric NJL model to acquire a superfield composite containing
a spin-one component. We consider a model of single chiral superfield multiplet, for example in
the fundamental representation of SU(Nc), with a four-superfield interaction. The Lagrangian is
similar to that of the ordinary supersymmetric NJL model [12,13], but with an alternative color index
contraction, namely,

L =
∫

d4θ

[
Φ̄Φ − g2

o
2
(Φ̄Φ)(Φ̄Φ)

]
, (1)

where Φ̄Φ ≡ Φ̄aΦa with a being the color index, therefore Φa belongs to the Nc-dimensional
fundamental representation of SU(Nc), and Φ̄a then the anti-fundamental representation. As a chiral
superfield, each Φa is of course a scalar field on the chiral superspace of unit mass dimension, with
standard spin zero and half components, given here explicitly by Φ(xµ, θ) = A(xµ) +

√
2θψ(xµ) +

θθF(xµ), where A is a scalar field, ψ a two-spinor, and F the auxiliary component (we follow notation
and convention in [25]). The coupling of the four-superfield interaction is written as g2

o for convenience.
It has mass dimension −2, the same as the original NJL model with a four-fermion coupling, which
is also included as a component of the four-superfield interaction. The latter is the only nontrivial
term characterizing the model Lagrangian, in addition to the standard kinetic term as given above.
The model Lagrangian contains only the kinetic term and a dimension-six interaction. It gives
superfield content with the biggest symmetry possible, namely, the global symmetry of SU(Nc),
the U(1)Φ and a U(1)R. In the component considerations, the two U(1) symmetries can be seen as
essentially a U(1)A and a U(1)f (i.e., ψ-number). Adding a superpotential would reduce the symmetry,
and any perturbative superpotential would be quite irrelevant to the key feature of which our analysis
is after anyway. We further introduce an auxiliary real superfield U, and add

Ls =
∫

d4θ
1
2
(µU + goΦ̄Φ)2 (2)

to the Lagrangian. µ is a real and positive mass parameter (for g2
o > 0). The equation of motion for U,

from L+ Ls, gives

U = − go

µ
Φ̄Φ , (3)
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showing it as a superfield composite of Φ̄ and Φ. Obviously, from Equations (2) and (3), the model
with L+ Ls is equivalent to that of L alone, at least at the classical level. The approach is standard to
the NJL-type model analysis. Rigorous derivation of the two Lagrangians as given equivalent quantum
(super) field theories can be obtained from a path integral analysis as for example presented in [11].
The gist of the analysis is that the auxiliary composite, U here, with the absence of a kinetic term can be
integrated out as essentially a Gaussian, reducing the new Lagrangian (more exactly as like Le f f below)
back to the original. While an explicit illustration of that for SNJL theories seems to be unavailable,
there looks like no reason for the kind of simple chiral superfield models not to fit in well with that [26].
Expanding the term in Ls, the four-superfield interaction is cancelled in the full Lagrangian as

Le f f ≡ L+ Ls =
∫

d4θ

[
Φ̄Φ +

µ2

2
U2 + µgoUΦ̄Φ

]
. (4)

The effective Lagrangian is considered to give an alternative description of the physics with the
composite U, which would become dynamical at low energy upon renormalization.

The real superfield U can be seen as two parts, as illustrated by the component
expansion U(x, θ, θ̄) = C(x)

µ +
√

2θ
χ(x)

µ +
√

2θ̄
χ̄(x)

µ + θθ
N(x)

µ + θ̄θ̄
N∗(x)

µ +
√

2θσµ θ̄vµ(x) +
√

2θθθ̄λ̄(x) +√
2θ̄θ̄θλ(x) + θθθ̄θ̄D(x), where the components C, χ, and N belong to the first part, which has the

content like a chiral superfield with real C. The µ factor is put to have the right mass dimensions.
The rest is like the content of a superfield for the usual gauge field supermultiplet, with D and vµ being
real. Note that even if U contains a vector component, its couplings differ from that of the usually
studied “vector superfield”, which is a gauge field supermultiplet. In addition, the supersymmetric
mass term for U in Equation (4) can be compatible only with a broken gauge symmetry.

By expanding Φ into its components A(x), ψ(x), and F(x) [25], we can write down the
composition conditions for all the components in U. Specifically, we have for the scalar and spin-one
component fields,

C(x) = −go A∗A

vµ(x) =
go√
2µ

[
− iA∗∂µ A + i(∂µ A∗)A− ψ̄σ̄µψ

]
. (5)

One can see that C is a composite of two scalar fields A, while vµ(x) is a combination of bi-scalar
and bifermion composites. However, to verify the formation of composite real superfield U, we should
look into the standard non-perturbative analysis for NJL-type models, and seek for nontrivial solutions
to the corresponding gap equations.

The effective Lagrangian is given in component fields as

Le f f = (1 + goC)
[
A∗�A + i(∂µψ̄)σ̄µψ + F∗F

]
+ µCD− µχλ− µχ̄λ̄ + NN∗ − µ2

2
vνvν

−µgoψλA∗ − µgoψ̄λ̄A + µgoDA∗A− i
go

2
ψ̄σ̄µχ∂µ A + i

go

2
(∂µψ̄)σ̄µχA− goχψF∗ + go NAF∗

+i
go

2
χ̄σ̄µψ∂µ A∗ − i

go

2
A∗χ̄σ̄µ∂µψ− goχ̄ψ̄F + go N∗A∗F

−µgo√
2

ηµνvµiA∗∂ν A +
µgo√

2
ηµνvµi(∂ν A∗)A− µgo√

2
ηµνvµψ̄σ̄νψ . (6)

Following the standard NJL analysis, we consider nonzero VEV for the composite scalar C from
non-perturbative dynamics of the original model Lagrangian. Obviously, a 〈C〉 ≡ c corresponds to a
wave function renormalization factor 1 + go 〈C〉 for Φ or its components. The contribution can be also
seen as a correction to the kinetic term directly from the four-superfield interaction.
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3. NJL Analysis and the Gap Equations

To implement the superfield NJL analysis on the original Lagrangian L in a fully consistent
manner, the best way is to take the approach of considering superfield functionals, which take values
like constant superfields admitting supersymmetry breaking parts, as formulated in [21]. It is an
extension of what Miller did for the mass parameters in his superfield propagator analysis [23,24],
to the full superfield theory. All parameters and quantities such as the amplitude of the proper
self-energy diagram are to be treated as like a constant superfield with Grassmann number dependent
parts. Lorentz symmetry forbids nonzero fermionic components (e.g., the θ component of a
chiral parameter/quantity), while soft supersymmetry breaking parts like a θ2 component would
be admissible.

For the model at hand, we consider a non-perturbative composite/condensate from the two
superfield product of Φ̄Φ firstly from an analysis of superfield Lagrangian (1). The product corresponds
to a real superfield, and the condensate as a parameter is a non-chiral quantity. Therefore, we
introduce it as Y = y − η̃oθ2 − η̃∗o θ̄2 − m̃2

oθ2θ̄2. The parameter is exactly in correspondence, in the
present model, with the (Dirac) mass parameterM = m− ηθ2 for the model with chiral superfield
composites [21]. The YΦ̄Φ should then be added to and subtracted from the Lagrangian (1), as the
first step of self-consistent Hartree approximation [27,28]. In this way, the Lagrangian is split as
L = Lo + Lint, where

Lo =
∫

d4θ Φ̄Φ(1 + Y) (7)

Lint =
∫

d4θ

[
−YΦ̄Φ− g2

o
2

Φ̄ΦΦ̄Φ
]

. (8)

Apparently, a nonzero y contributes to wave function renormalization ΦR ≡
√

ZΦ =
√

1 + y Φ,
whereas the other parts of Y correspond to soft masses. For simplicity of the analysis, we assume
η̃o = 0. One can choose to present the gap equation analysis in terms of the renormalized superfield
ΦR and couplings, with more direct physical interpretations. The quantum effective action is then
given by

Γ =
∫

d4θ
[
Φ̄RΦR(1− m̃2θ2θ̄2)−YRΦ̄RΦR −

g2

2
Φ̄RΦRΦ̄RΦR + ΣΦRΦ†

R
Φ̄RΦR + · · ·

]
, (9)

with now renormalized g2, ΦR, YR ≡ Y
Z and therefore also m̃2. ΣΦRΦ†

R
is the two-point proper vertex

from quantum correction. The superfield gap equation is thus given by

−YR + Σ(loop)
ΦRΦ†

R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= 0 , (10)

which can be expressed diagrammatically as Figure 1. In accordance with the standard NJL analysis,
the one-loop contribution from the four-superfield interaction to ΣΦRΦ†

R
(p; θ2θ̄2), in the presence of YR

in the superfield propagator, is used. More clearly, it is essentially an approximation of 1/Nc type,
with Nc being the number of color to which Φ is a multiplet in the fundamental representation.

Performing a supergraph calculation directly, we get

Σ(loop)
ΦRΦ†

R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= −g2Nc

∫ E d4k
(2π)4

[
1
k2 −

m̃2

k2(k2 + m̃2)

(
1− k2θ2θ̄2 + 4kaσa

αα̇θα θ̄α̇
) ]

. (11)

Note that the 4kaσa
αα̇θα θ̄α̇ term vanishes upon integration. Through a careful inspection of the

supergraph diagram, one can see that nontrivial θ2 and θ̄2 parts would be resulted if the assumption
of vanishing η̃o in Y is not taken, giving a nonzero value for the corresponding part of the superfield
propagator. We will take that up in an upcoming analysis.
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ΦR Φ†
R

−YR

ΦR Φ†
R

ΦRΦ
†
R

0

Figure 1. The superfield gap equation. The supersymmetric and θ2 θ̄2 component of the equation
correspond to wave function renormalization and the soft mass generation, separately.

Alternatively, we perform an analysis on effective Lagrangian (4) in component fields, i.e.,
assuming the composite formation. Corresponding to the wave function renormalization from 〈C〉 ≡ c,
we replace the fields A, ψ, F and coupling go by renormalized ones as

A→ AR√
1 + goc

, ψ→ ψR√
1 + goc

, F → FR√
1 + goc

,
go

1 + goc
→ g , (12)

in the Lagrangian (6). In addition, the composite component fields N and D may also develop
nonzero VEVs. They are responsible for the generation of soft supersymmetry breaking masses for
Φ̄Φ. For simplicity, we analyze here the simple scenario considering only the development of 〈D〉, and
unavoidable 〈C 〉, in correspondence with the superfield analysis.

Here, we perform an effective potential analysis based on the Weinberg tadpole method [29] with
the effective Lagrangian in component form. Vanishing tadpole conditions can be obtained for the
scalar potential V(C, N, D) up to one-loop level. The related tadpole diagrams are shown in Figure 2.
If C and D fields can develop nonzero VEVs, the two tadpole equations corresponding to D-tadpole
and C-tadpole are, respectively,

c = −gNc

∫ E d4k
(2π)4

1
k2 + m̃2 (13)

m̃2 = g2Nc

∫ E d4k
(2π)4

m̃2

k2 + m̃2 , (14)

where we have defined m̃2 = −µg 〈D〉. The Euclidean momentum loop integral is to be evaluated
with a cutoff Λ.

(a)

U

ΦRΦR

(b)

D

ARAR

(c)

C

ARAR

C

ψRψR

C

FRFR

Figure 2. The tadpole diagrams both in renormalized superfields and component fields: (a) the tadpole
supergraph, (b) the D-tadpole diagram, (c) the C-tadpole diagrams. Note that there is no N-tadpole
diagram, as we discuss only the development of 〈D〉.
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It is interesting to see that the tadpole equations are directly equivalent to the superfield gap
equation mentioned above. The supersymmetric part and θ2θ̄2 part of the superfield gap equation
correspond to tadpole Equations (13) and (14), respectively, with y

1+y = gc. The θ2 and θ̄2 parts are
matched to 〈N〉 in 〈U〉, and are zero in our setting. In terms of the superfield, the potential minimum
condition is given by

µ2 〈U〉+ Utadpole = 0 =⇒ µg 〈U〉 = −g2 I(loop)
ΦRΦ†

R
(15)

where I(loop)
ΦRΦ†

R
is the momentum integral of the ΦRΦ†

R propagator loop (cf. the first diagram in Figure 2).

Note that from the original Lagrangian with two-superfield composite assumed, we can obtain

−g2 〈(ΦRΦ†
R

)〉
= YR, which is equivalent to µg 〈U〉 = YR = Σ(loop)

ΦRΦ†
R
(p; θ2θ̄2)

∣∣∣∣
on-shell

= −g2 I(loop)
ΦRΦ†

R
.

The same loop integral is of course involved in both the gap equation picture and the effective
potential analysis. The results here are in direct matching with the corresponding discussion for the
NJL case presented in [13], though for a superfield theory instead. The component field effective
potential analysis, and therefore serves as a double-check of the superfield gap equation analysis.

4. Solutions to the Gap Equation

Let us check for nontrivial solutions to the gap equation as given in component form. Equation (13)
directly expresses the result for the wave function renormalization of the superfield Φ. The simple
result hides its nontrivial nature as c is really y

g(1+y) with y being the NJL contribution to the Φ kinetic
term, for which we are looking for the nontrivial solution. It is the use of renormalized parameters
that turns the part of gap equation into the simple form, which actually says the trivial y = 0 cannot be
admissible. Recall that c is the VEV of the scalar component of composite U as C = −gA∗R AR, therefore
effectively a two-field condensate. Evaluating the integral in Equation (13), we have

c = −gNc IF(m̃2) = − gNc

16π2

(
Λ2 − m̃2 ln

Λ2 + m̃2

m̃2

)
, (16)

where IF(m̃2) =
∫E d4k

(2π)4
1

k2+m̃2 . One can see that depending on the coupling g and cutoff Λ, a nonzero c
always exists, revealing its unavoidable nature as a correction to the kinetic term by the four-superfield

interaction. In particular, we would have c = − gNcΛ2

16π2 for vanishing m̃2 (i.e., 〈D〉 = 0).
The θ2θ̄2 component of the gap equation as in Equation (14) is responsible for the generation of

soft supersymmetry breaking mass m̃2. In terms of the effective theory, it involves the VEV of the
D-term of U. Interestingly, it is the same as the gap equation in the basic NJL model with the soft mass

m̃2 replacing the Dirac fermionic mass, if we take g2

2 as the four-fermion coupling [13].
In the spirit of the NJL approach, nontrivial solution for m̃2 would give dynamical generation of

soft supersymmetry breaking mass. One can rewrite the equation with the explicit integral expression,
in dimensionless variables, as

1
G

= 1− s ln
[

1 +
1
s

]
, (17)

where G = g2 NcΛ2

16π2 , and s = m̃2

Λ2 . Numerically, we found that nontrivial solutions for the soft mass
(0 < s < 1) can be resulted for a large enough coupling G > 1, as illustrated in Figure 3. All that look
exactly in line with basic NJL model features, except that the symmetry involved here is the somewhat
more tricky supersymmetry.
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0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

s

G

Figure 3. Numerical plot of nontrivial solutions to the soft mass gap equation. Coupling parameter

G =
g2 NcΛ2

16π2 is plotted against the normalized soft mass parameter s = m̃2

Λ2 .

Corresponding to the dynamical generation of soft mass, supersymmetry would be broken.
One consistency check is the existence of the massless Goldstino state. Analytically, the required
analysis is the “quark-loop” corrected two-point function for the composite superfield U, as shown in
Figure 4. The loop contribution is also expected to generate a kinetic term to turn U into a dynamic
one. Here, we need only the part for the fermionic components. There are two fermionic components
in U—the χ and λ, with the tree-level Dirac mass term µχλ. Note that the Lagrangian contains
a U(1)R symmetry, with N, χ and λ having U(1)R charges −2, −1, and +1, respectively, whereas
Φ = A +

√
2θψ + θ2F carries charge 1. With 〈N〉 = 0, the U(1)R symmetry is maintained, which

protects against any generation of χχ or λλ (Majorana) mass term. In the loop correction to two-point
function for U, we have one component diagram contributing to the fermion mass matrix as in Figure 4.
It gives a χλ mass as

− Σχλ = −µg2Nc IF(m̃2) . (18)

Comparing to Equation (14), which has to be satisfied with nontrivial m̃2 for the case at hand, one
can see that the loop generated mass is exactly −µ, which cancels the tree-level mass term. All the
elements of the fermion mass matrix are then zero. There is no other piece of contribution to χ or λ

masses. There can be the Goldstino state among them, the one to be eaten up by the gravitino, which
would then be massive. There are well-known no-go theorems against spontaneous supersymmetry
breaking in the literature which may lead to serious doubts about what seems otherwise to be the
plausible supersymmetry breaking features of our model (from the 1/Nc approximation). We will
discuss the tricky issues related in the final section. A bottom line is the no-go theorems cannot be
shown to apply to our case.

(a) (b)

U U

ΦR ΦR

ΦR ΦR

χ λ

ψR ψR

AR AR

Figure 4. (a) The supergraph contributing to two-point function for U. (b) The (component) diagram
contributing to the fermion mass matrix.
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5. Kinetic and Mass Terms for the Composite Fields

Along with the generation of the real superfield composite, it is important to see if all of its
components have sensible kinetic terms. For χ and λ, we have chirality-conserving self-energy
diagrams as illustrated in Figure 5, which give rise to kinetic terms as ip · σ̄Ξ with

Ξχχ = −g2Nc IF(m̃2) + 2g2Nc m̃2 I2F(m̃2, m̃2) = −1 + 2g2Nc m̃2 I2F(m̃2, m̃2)

Ξλλ = −2µ2g2Nc I2F(m̃2, m̃2) , (19)

where InF denote integrals of n Feynman propagators with the mass-squared parameters as given, and
we have applied the gap equation to simplify the Ξχχ result.

χ χ

ψR ψR

FR FR

χ χ

ψR ψR

AR AR

λ λ

ψR ψR

AR AR

Figure 5. The chirality conserving self-energy diagrams for χ and λ, which make χ and λ dynamic.

For the spin one component, we have a tree level mass term − µ2

2 vνvν in the Lagrangian, and loop
diagrams as in Figure 6. They sum to give the kinetic term

Σv(p) = −
µ2g2Nc

6
p2
[

I2F(0, 0) +
1
4

I2F(m̃2, m̃2)

]
(20)

and a mass term

−Σv(m) =
µ2

2
− µ2g2Nc

4

[
−m̃2 I2F(m̃2, m̃2) + IF(m̃2)

]
=

µ2

4

[
1 + g2Nc m̃2 I2F(m̃2, m̃2)

]
, (21)

all of the proper sign. Absorbing the non-canonical magnitude of the kinetic term into a field
renormalization would give the rescaled mass term of the renormalized spin-one field.

v v

ψR ψR

ψR ψR

v v

AR AR

AR AR

Figure 6. The diagrams contributing to vµvµ kinetic and mass terms.

For the spin zero bosonic components we have a tree level quadratic term NN∗ in the Lagrangian,
as well as one diagram contributing to the two-point function of NN∗ as in Figure 7, which gives the
amplitude as

ΣN = −g2Nc IF(m̃2) . (22)

After applying the gap equation, ΣN gives −1, which cancels the tree level NN∗ term. Obviously, there
is no kinetic term for NN∗ from the loop contribution, indicating that N is purely an auxiliary field.
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N N

AR AR

FR FR

Figure 7. The only diagram contributing to NN∗.

We have also a tree level µCD term in the Lagrangian, as well as one diagram contributing to CD
two-point function as in Figure 8. They give the kinetic and mass terms in the Lagrangian for CD as

ΣCD = µ− µg2Nc

[
IF(m̃2)− m̃2 I2F(m̃2, m̃2)

]
+ p2µg2Ncm̃2 I34(m̃2, m̃2)

= µg2Ncm̃2 I2F(m̃2, m̃2) + p2µg2Ncm̃2 I34(m̃2, m̃2) . (23)

Here, we have introduced I34(m2
a, m2

b) ≡ 3I3F(m2
a, m2

b, m2
b)− 4m2

b I4F(m2
a, m2

b, m2
b, m2

b) for convenience.
Furthermore, there are loop diagrams as in Figure 9 giving

ΣCC =
1
2

g2Nc

[
− 2m̃2 IF(m̃2) + m̃4 I2F(m̃2, m̃2)

]

=
1
2

[
− 2m̃2 + g2Ncm̃4 I2F(m̃2, m̃2)

]
+ p2 1

2
g2Ncm̃4 I34(m̃2, m̃2) , (24)

and there is also a loop diagram as in Figure 10, which gives

ΣDD =
µ2g2Nc

2
I2F(m̃2, m̃2) + p2 µ2g2Nc

2
I34(m̃2, m̃2) . (25)

C and D mixes, and we can write their “kinetic terms” in matrix form on the diagonal basis as

p2 1
2

g2Ncµ2 I34

(
m̃2

µ C + D C− m̃2

µ D
)( 1 0

0 0

)(
m̃2

µ C + D

C− m̃2

µ D

)
. (26)

One can see that only one linear combination of C and D is dynamic, whereas the orthogonal
combination is purely auxiliary. Therefore, we have a canonically normalized dynamic real scalar field
as given by C′ =

√
µ2g2Nc I34

(
m̃2

µ C + D
)

. The orthogonal real scalar D′ =
√

µ2g2Nc I34

(
C− m̃2

µ D
)

is

the auxiliary one. The C′ mass-squared is then given by I2F
I34
(1 + ∆), with ∆ = − 2m̃6

µ2(µ2+m̃4)g2 I2F
.

C D

AR AR

AR AR

Figure 8. The only one-loop diagram contributing to CD term.
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C C

AR AR

AR AR

C C

FR FR

FR FR

C C

ψR ψR

ψR ψR

Figure 9. The diagrams contributing to CC term.

D D

AR AR

AR AR

Figure 10. The diagram contributing to DD term.

In conclusion, in the model with the apparently supersymmetry breaking vacuum,
the propagating components in the composite superfield U include one real scalar C′ =√

µ2g2Nc I34

(
m̃2

µ C + D
)

, two Weyl fermions χ, and λ, as well as a spin one field vµ. All their kinetic
terms are properly behaved (note our metric convention as gµν = diag(−1, 1, 1, 1), and InF as well as I34

are all positive in the energy scale below the cut-off). χ or λ may correspond to the massless Goldstino
mode for supersymmetry breaking solution, which would then be eaten by the gravitino. C′ and vµ

have masses at roughly the same scale. Moreover, the elementary field A gets its mass from the term
µgDA∗A in the Lagrangian once D develops VEV through non-perturbative effects described here,
and ψ remains massless. A and ψ as dynamic components of the original superfield Φ have the kinetic
terms undergoing a wave function renormalization, from the scalar VEV of µgoU in Equation (4).
Amplitude of the VEV contribution as obtained from our gap equation analysis is given by goc = −0.5.
It is very substantial, as expected by its non-perturbative nature and actually negative, but the Φ, or A
and ψ, renormalization remains sensible. Therefore, there is no indication at all of anything improper
in our analysis of the possible supersymmetry breaking solution here.

6. Discussions and Conclusions

The original model Lagrangian in component fields:

L = i∂µψ̄σ̄µψ− ∂µA∗∂µ A + F∗F − g2

2
|2FA− ψψ|2 (27)

+ 2g2 A∗A ∂µA∗∂µ A− 2g2i∂µψ̄σ̄µψA∗A− 2g2iψ̄σ̄µψA∂µ A∗ .

From the equation of motion for F∗, we get

F = − g2ψψA∗

1− 2g2|A|2 . (28)

The fractional form of F indicates that the Lagrangian with F eliminated would have
unconventional interaction terms. Naively, the scalar potential is given by

−Vs = F∗F− 2g2 A∗AF∗F . (29)

Eliminating F gives

Vs =
−g4ψψψ̄ψ̄|A|2

1− 2g2|A|2 , (30)
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which contains no pure scalar part. It is a strong hint of a bifermion condensate which fits in the general
NJL picture. If the multi-fermion condensate cannot be generated, the scalar potential is purely zero
everywhere, therefore very unstable towards quantum corrections. Nevertheless, the potential actually
blows up for 1− 2g2|A|2 being zero. While that can be kept from happening within the cutoff scale
when the coupling is weak, strong coupling would causes serious problem. That is an indication of
nontrivial non-perturbative dynamics. As discussed above, the introduction of the dynamic composite
gives the model a sensible vacuum.

Our analysis along the standard NJL approach shows both supersymmetry preserving and
supersymmetry breaking solutions. Therefore, the four-superfield interaction may serve as a source
of supersymmetry breaking. The kind of analysis, though essentially a 1/Nc approximation, is
commonly believed to give a qualitatively correct result for NJL models, in favor of the symmetry
breaking solution for coupling beyond the critical value. Unfortunately, we do not have a more
definite answer about the supersymmetry breaking issue here. If the issue can be clarified through
further analysis, it would be of great interest. In the literature on the supersymmetric Standard Model
(SSM), four-superfield interactions of the form −g2

s Φ̄sΦsΦ̄Φ with the spurion superfield Φs bearing
a supersymmetry breaking VEV has often been taken to communicate supersymmetry breaking to
a SSM superfield Φ, generating the soft masses. If the supersymmetry breaking discussed in our
model here really works, one can have a similar scenario, only with the 〈 Φ̄sΦs|D〉 coming from
the dynamically induced two-superfield condensate instead of individual 〈Φs|F〉. Neither extra
supersymmetry breaking sector, nor additional messenger superfield is needed.

There are well known no-go theorems against spontaneous supersymmetry breaking. However,
no matter in the famous paper by S. Weinberg [30], or the first proof presented by M. T. Grisaru,
W. Siegel and M. Rocek [31], only perturbative non-renormalization theorems were discussed, as
also pointed out for example in Ref. [32], “non-renormalization theorems may be violated by
non-perturbative effects”. Although there have been other analyses indicating the general difficulty
to get spontaneous supersymmetry breaking, to our knowledge, there is no solid analysis on the
issue that applies to our model and establish the invalidity of our plausible supersymmetry breaking
scenario. Considering the supersymmetry breaking structure in our model to those more conventional
ones, our model, in the effective Lagrangian picture, may can be seen similar to the Fayet-Iliopoulos
case, with a potential linear in the D-term, and a non-zero VEV coming from the dynamically induced
two-superfield condensate via the non-perturbative effects.

We are not making any solid claim in the paper that the model sure gives dynamical
supersymmetry breaking, but only that the NJL analysis as a 1/Nc approximation suggests that. Due to
reasons explained above, in our opinion, whether our model breaks supersymmetry dynamically is
still an open question, and needs further investigation. However, if that supersymmetry breaking
with soft mass generation really works, phenomenological application of the model as a basic part of a
background model giving rise to the supersymmetric standard model would be of great interest.

It is interesting to compare our model here with the corresponding non-supersymmetric models.
The basic NJL mechanism has four-fermion interaction giving rise to a scalar composite. A Dirac
pair, though massless, is the usual starting ingredient. Supersymmetrization is actually nontrivial
as particularly discussed in [14], due to the fact that a dimension-six interaction term of four chiral
superfields in place of the four-fermion term would have to be a Kähler potential term, while the
Yukawa interaction term for the composite scalar has to be a superpotential term. There is also the issue
that the natural fermionic field(s) should be chiral, instead of a Dirac four-spinor as a vectorlike pair.
That leads to the two supersymmetrization pictures which allows the holomorphic alternative [21].
The latter has the scalar composite forming from scalar ingredients. For the case with spin-one
composite, interestingly, Suzuki has presented models with fermion and scalar ingredients [11].
A chiral superfield contains both the scalar and fermion components. An interesting question is if the
simplest versions of the fermion and scalar models can actually be parts of the same supersymmetric
model. We answer this in the negative below, and illustrate the interesting issues involved.
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A spin-one composite of course has to transform as a Minkowski four-vector. A natural good
choice for such a field combination for a simple fermionic model would be the current for the U(1) f
for the fermion number, i.e., jµ = Ψ̄γµΨ for a Dirac multiplet Ψ. The fact that the current–current
interaction jµ jµ having no derivative in Ψ means that putting in the interaction does not change the
U(1)f current. Therefore, one has a working model. The spin-one composite vµ being proportional
to the conserved jµ keeps it a tightly-bound state which apart from having a non-gauge-invariant
mass , resembles much a gauge boson [10,11]. In particular, the couplings for the vµ in the effective
theory are exactly those of a gauge boson, of the U(1)f symmetry. A Dirac fermion is composed of two
chiral fermions. The current–current interaction can be expressed by chiral fermions in the form of
(ψ̄iσ̄µψi)(ψ̄jσ̄

µψj) = −2ψ̄iψ̄jψ
iψj. With the two chiral fermion identified, ψ̄ψ̄ψψ is just the four-fermion

interaction which is a component of the Φ̄ΦΦ̄Φ term in our superfield model Lagrangian. We need
two chiral superfields to fully supersymmetrize the Dirac fermion model, which would only be a
simple extension of our model. Nevertheless, the single superfield, or in the non-supersymmetric case
single chiral fermion model, is the simplest one.

We have shown that the fermionic part of our four-superfield interaction gives half of the
current–current interaction of a fermion. However, on the superfield setting, a chiral fermion comes
along with its supersymmetric partner as a scalar. Therefore, a superfield interaction term gives rise to
component field terms involving both. In fact, Equation (5) gives our spin-one vector boson vµ as a
sum of both a boson and a chiral fermion parts. The U(1)f is really a U(1)Φ under which the scalar A
is also charged. The bosonic part of vµ in the form of js

µ = −iA∗∂µ A + h.c. corresponds to the U(1)A

of a pure scalar model having only field derivative in the kinetic term. However, js
µ involves ∂µ A,

therefore adding a jsµ jsµ interaction change the nature of the U(1)A current. Any spin-one composite
from such an interaction would not corresponds to the conserved current [11]. The author of the latter

paper gives an alternative interaction in the form − g2

2 js
µ jsµ[1 + 2g2 A† A]−1, (we have translated the

notation to match ours here for easy comparison; A being an SU(Nc) multiplet in the fundamental
representation) with the spin-one composite keeping the status as (proportional to) the conserved
U(1)A current, and therefore a tightly bound state. Besides the U(1)Φ symmetry, the superfield model
also has the U(1)R symmetry, mentioned above. The product of the two is equivalent to that of U(1)f
and U(1)A. Any linear combination of the two currents is therefore a conserved current. Explicitly, the
currents for our superfield model are given by

jµs = (−A∂µA∗ + A∗∂µ A)(1− 2g2 A∗A) + iψ̄σ̄µψ(2g2 A∗A) ,

jµf = −iψ̄σ̄µψ(1− 2g2 A∗A) . (31)

It is clear that our composite spin-one does not correspond to any of the conserved currents.
Therefore, it is not the kind of tightly bounded state as in the case of the non-supersymmetric models
in [11].

Recall that our model in the effective theory description does not have the right coupling structure
required for the composite behaving like a gauge boson. The necessary U2Φ̄Φ term is missing. It is
interesting to note another model Lagrangian which looks like a supersymmetrization of the Suzuki
scalar model above and have naturally the kind of right interactions for the composite spin-one to the
original chiral superfield in the form of a gauge field :

L =
∫

d4θ

[
Φ̄Φ− g2

2
Φ̄ΦΦ̄Φ

1 + ng2Φ̄Φ

]
, (32)

which has the effective theory as

Le f f =
∫

d4θ

[
Φ̄Φ

(
1 + µgU +

nµ2g2

2
U2
)
+

µ2

2
U2
]

, (33)
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with the composite

U = − gΦ̄Φ
µ(1 + ng2Φ̄Φ)

; (34)

where Le f f = L+
∫

d4θ 1
2 (1 + ng2Φ̄Φ)

[
µU + gΦ̄Φ

1+ng2Φ̄Φ

]2
[an extra 2δ4(0) ln(1 + ng2Φ̄Φ) skipped here

and above.] We put a parameter n above for a purpose below, while n = 1 is the case of interest
which gives the correct “gauge”-coupling form of the spin-one component vµ in U to Φ or its A and
ψ components; the coupling constant being µg√

2
. For the spin-one component in U, we have actually

the result

vµ = − ig(A∗∂µA− A∂µA∗)√
2µ(1 + g2 A∗A)2

− g(1− g2 A∗A)√
2µ(1 + g2 A∗A)3

ψ̄σ̄µψ . (35)

Note that there are nontrivial contributions at higher order of (1 + g2 A∗A)−1 from the θ- and θ̄-
dependent components of (1 + g2Φ̄Φ). Now, even taking only the scalar part above, it is not the same
as the spin-one of the Suzuki model which reads vµ = ig(A∗∂µA−A∂µA∗)

µ(1+2g2 A∗A)
. The latter has n = 2 instead

of 1 in the factor in the denominator, which is only to the first power; “gauge” coupling constant is
actually µg, µ being the spin-one mass in both cases. The conserved currents for the superfield model
have, however, the results have even higher powers of the (1 + g2 A∗A)−1 factor. Explicitly,

jµ
s =

A∗∂µA− A∂µA∗

2(1 + g2 A∗A)3 [2 + 2g2 A∗A + 3g4(A∗A)2 + g6(A∗A)3] +
iψ̄σ̄µψ

(1 + g2 A∗A)4 [2g2 A∗A− g4(A∗A)2]

jµ
f =− iψ̄σ̄µψ

2(1 + g2 A∗A)3

[
2 + 2g2 A∗A + 3g4(A∗A)2 + g6(A∗A)3

]
. (36)

So, we have exhibited supersymmetric versions of four-chiral-superfield interaction giving rise to
a composite real superfield bearing a spin-one component, including one example where the spin-one
boson couples to the components of the chiral superfield in the form of a gauge coupling. The model,
like others, has a mass term for the spin-one, therefore at most may correspond to gauge boson of
broken gauge symmetry. The latter is the same as the non-supersymmetric models. A feature we
fail to reproduce is such a spin-one mode which is tightly-bounded, like the non-supersymmetric
models, in which the spin-one matches with a conserved current of the original model Lagrangian.
The interesting question of if such a supersymmetric model with a spin-zero couples like a gauge
boson is possible remains open. The study illustrates again that the notion of supersymmetrization of
NJL-type models is quite nontrivial. Basic model features typically cannot be all maintained when the
original fermion or scalar field is replaced by a chiral superfield.

In conclusion, we have presented here a supersymmetric model with a new kind of NJL-type
composite, namely a real superfield. Most interesting component of the latter is a spin-one boson
vµ somewhat similar to a massive gauge boson, with its ‘gaugino’ partner. Up to the 1/Nc type of
approximation as in standard NJL analysis, it looks like the real superfield composite may develop
nontrivial VEV giving to dynamical supersymmetry breaking. We compared the model, together with
one having a more complicated interaction in the fractional form, with models that look like their
non-supersymmetric counterparts. The key formulation which facilitates the superfield calculations
is the picture of quantum effective action as a superfield functional with parameters like constant
superfields, having explicit supersymmetric and Grassmann number dependent supersymmetry
breaking parts. We consider only the simple case of a singlet composite U ∼ Φ̄aΦa. It can also be in
the adjoint representation, as studied in the non-supersymmetric case. Phenomenological application
of the kind of models also worth explorations.
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