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Abstract: In a real Hilbert space, we investigate the Tseng’s extragradient algorithms with hybrid
adaptive step-sizes for treating a Lipschitzian pseudomonotone variational inequality problem and a
strict pseudocontraction fixed-point problem, which are symmetry. By imposing some appropriate
weak assumptions on parameters, we obtain a norm solution of the problems, which solves a certain
hierarchical variational inequality.
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1. Introduction

In a real Hilbert space H, one employs (-, -) and || - || to stand for its inner product and norm. Let
Pc be the projection operator from the space H onto a nonempty convex and closed set C, where C C H.
Let us denote by Fix(S) the set of all fixed points of an operator S : C — H. The notations —, R, and
— will be used to stand for the strong convergence, the set of real numbers, and the weak convergence,
respectively. A self-operator S : C — C is named ¢-strictly pseudocontractive if 3¢ € [0, 1) such that

151 — So|12 < ¢||(I— S)u— (I — S)o|? + [lu— 0| Vu,0eC.

In particular, whenever ¢ = 0, S is called nonexpansive. This means that the class of nonexpansive
mappings is a proper subclass of the one of strict pseudocontractions. Recall that an operator S : C — H
is called

(i) Lipschitz with module L if 3L > 0 such that

IISu— Sv|| < L||u— o] Yu,v € C;

(i) monotone if (u — v, Su — Sv) > 0,Vu,v € C;

(iif) pseudomonotone if

(v—u,Su)y >0= (v—u,Sv) >0Vu,veC;

(iv) strongly monotone with module 8 if 38 > 0s.t.

(u—v,Su — Sv) > B|lu—v||* Vu,v € C;

(v) sequentially weakly continuous if u, — u = Su, — Su V{u,} C C.
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It is not hard to see that the pseudomonotone operators may not be monotone. In addition,
recall that the operator S : C — C is ¢-strictly pseudocontractive with constant ¢ € [0,1) iff the
following inequality holds: 2(Su — Sv,u —v) < 2|lu —v|> — (1 —¢)||(I = S)u — (I — S)v||> Yu,v € C.
It is obvious that if S is a ¢-strict pseudocontraction, then S satisfies Lipschitz condition ||Su — Sv|| <
%%g lu —v|| Yu,v € C. For each point u € H, we know that there exists a unique nearest point in
C, denoted by Pcu, such that ||u — Pcul| < ||[u —v|| Yo € C. The operator Pc is called the metric
projection of H onto C.

Consider an operator A : H — H. The classical monotone variational inequality problem (VIP)
consists of finding u* € Cs.t. (v —u*, Au*) > 0 Vv € C. The solution set of such a VIP is denoted by
VI(C, A). Korpelevich [1] first designed an extragradient method with two projections

vy = Pe(uy — LAuy),

Uny1 = Pc(un — LAvy),
with ¢ € (0, 1), which has been one of the most popular methods for dealing with the VIP up until now.
If VI(C, A) # @, it was shown in [1] that {x, } weakly converges to a vector in VI(C, A). The gradient
(reduced) type iterative schemes are under the spotlight of investigators of applied mathematicians
and engineers in the communities of nonlinear and optimization. Based on this approach, a number
of authors have conducted various investigations on efficient iterative algorithms; for examples,
see [2-11].

Let both the operators A and B be inverse-strongly monotone from C to H and the self-mapping
S : C — C be g-strictly pseudocontractive. In 2010, via the extragradient approach, Yao et al. [12]
designed an efficient, fast algorithm for obtaining a feasibility point in a common solution set:

wy = Pc(uy — uBuy),
On = (1 — Bn) Pc(wn — AAwy) + Buf (un),
U1 = YnPc(wy, — AMwy) + 8,Sv, + oqu,, Vn >0,

where f : C — C is a 6-contractive map with 6 € [0,3), and {B,}, {on}, {7u}, {x} are four sequences
in 0,1 st ou+vn+ =1, (vu+6n)g < yn < (1 =26)0n, Ygg Pn = oo, liminf, 00, > 0,
liminf, 00, > 0, and limy_eo( 13’;;11 - 13':7”) = limy»eBn = 0. They claimed the strong
convergence of the sequence in H.

In the extragradient approach, one has to compute two projection operators onto C. It is clear that

the projection operator onto the convex set C is closely related to a minimum distance problem. In
the case where C is a general convex set, the computation of two projections might be prohibitively
time-consuming. Via Korpelevich’s extragradient approach, Censor et al. [13] suggested a subgradient
algorithm, in which the second projection operator onto the subset C is changed onto a half-space.
Recently, numerous methods of reduced-gradient-type are focused and extensively investigated in
both infinite and infinite dimensional spaces; see, for example [14-23]. Based on inertial effects, Thong
and Hieu [24] proposed an inertial subgradient method, and also proved the weak convergence of
their algorithms. In addition, the authors [25] investigated subgradient-based fast algorithms with
inertial effects.

Inspired by the above research works in [12,24-27], we are concerned with hybrid-adaptive
step-sizes Tseng’s extragradient algorithms, that are more advantageous and more subtle than the
above iterative algorithms because they involve solving the VIP with Lipschitzian, pseudomonotone
operators, and the common fixed-point problem of a finite family of strict pseudocontractions in
Hilbert spaces. By imposing some appropriate weak assumptions on parameters, one obtains a norm
solution of the problems, which solves a certain hierarchical variational inequality. The outline of this
article is organized below. In Section 2, a toolbox containing definitions and preliminary results is
provided. In Section 3, we propose and investigate the iterative algorithms and their convergence
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criteria. In Section 4, theorems of norm solutions are employed as illustrating examples to support the
convergence criteria.

2. Preliminaries

Lemma 1 ([28]). Let S : C — C be a ¢-strict pseudocontraction. If {u,} is a sequence in C such that
(Id — S)u, — 0, where 1d is the identity operator on H, and u, — u € C, then u = Su. Further, S is %

Lipschitz continuous.

Lemma 2 ([29]). Let S : C — C be a g-strict pseudocontraction, and let iy and B be real numbers in [0, +00).
Then, ||v(u —v) + B(Sv — Su)|| < (B+ v)||v — u|| Yo, u € C provided that v > ¢(B + ).

Lemma 3 ([30]). Let f be a pseudomonotone mapping from C into H which is continuous on finite-dimensional
subspaces. Then, x € C is a solution of (u — x, f(x)) > 0,Vu € Ciff (u—x, f(u)) >0, Vu € C.

Lemma 4 ([31]). Let {a,} beasequence in [0, +o0) satisfying the condition a, 1 < an + Spbp — span ¥n > 1,
where {s,} € (0,1) and {b,} € (—o00,00) s.t. (a) Y57 1 |snby| < o0, limsup, . by < 0(b) Y57 15, = oo.
Then, a, — 0asn — oo.

3. Results

From now on, one can always assume that our feasibility set Q0 = Fix(T) N VI(C, A) is consistent.

Put n := n+ 1 and return to Step 1 (Algorithm 1), where {e,} C (0,1] and
{Bn},{on},{vn}, {0} C (0,1) are such that o, + v, + 3, = 1; limy e E—: = limysefn = 0;
liminf, 00y > 0; liminf, 005 > 0; liminf, seo((1 — 26)8, — yn) > 0; limsup, 0w < 1;
Yo Bn = 00 (7n+ 1) < v < (1 —26)d,; the pseudomonotone self-operator A is Lipschitz
continuous with module L and sequentially weakly continuous on H; T is a {-strictly pseudocontractive
self-operator on H; and f : is a J-contraction operator, where J € [0, %), from H to C.

Algorithm 1: Initial Step: Fix two initials xp and x; in Hand seta >0, 77 >0, u € (0,1).
Iteration Steps: calculate iterative sequence x,,11 as follows:
Step 1. Given the iterates x,,_1 and x, (n > 1), choose a s.t. 0 < &, < &,, where

. en .
iy =) me e i A ey
o otherwise.

Step 2. Let w,;, = xp, + a,(xy — x,_1) and calculate v, = Pc(w, — T, Awy,).
Step 3. Calculate x,, 11 = 0uxy + Yn(Yn — T (Ayy — Awy,)) + 6, Tz, where
zn = Buf (xn) + (1 = Bn) (Yn — Tu(Ayn — Awy)). Update

i V”wn*]/nH .
oy = 4 i aa ) v — Ay, 0, )
Tn otherwise.

Remark 1. We show limy—yeo (@ ||Xn — x—1|)/ Bn = 0. It follows from (1) that €, > oy ||xp — x,—1]| V1 >
]| Xn =1 |

1. Since limy,—yeo E—: =0, one sees that 0 = lim,_yeo 2—'; > limsup,,_,

Lemma 5. Let {1,} be generated by (2). Then, {T,} is a nonincreasing sequence with T, > T :=
min{t, %} Vn > 1and lim,_e T, > T := min{7, %}
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Proof. By borrowing (2), one concludes that 7, > 7,11 Vi > 1. One also has
Ay — Ayl < Ly = yull = s > minfz, £},
Note that 77 > T := min{n, %} So, Ty > T := min{t, %} Vn>1. O

Lemma 6. Let {y,}, {wy}, and {z,} be three iterative vector sequences defined by Algorithm 1. We have

2
lp —znll> < Budllp — xull® + (1= Bu)lp — wall® = (1 = Bu) (1 — 4 5) 1w — yul?

T (3)
+28a((f = Dp,zn — p), VP €Q,
where Uy = Yn — Tu(Ayy — Awy).

Proof. Fixing p € Q) = Fix(T) N VI(C, A) arbitrarily, one asserts (Ap,y, —p) > 0and Tp = p.
This yields

Ip = unll® = lp = yull® + Tl Ayn — Awnl* = 2T (yn — p, Ayn — Awy)

= |lp— wn||2 + |lwn — ynHz +2(Yn — wn, wn — p) + T;%HA]/n - Awn||2
=274 (yn — p, Ayn — Awy,)

= |lp — wall* = lwn = yall* + 2(yn — Wn, yn — p) + T || Ayn — Aw||?
— 2T (Yn — p, Ayn — Awy,).

Thanks to y, = Pc(w, — 1, Aw, ), we have
(Yn — Wn,yn — p) < —Tu(AWn, Yn — p)-
This ensures that

lp— ”nHz <lp- wnH2 — ||y _J/nHz — 2Ty (Awn, yn — p) + Tr%HAyn - Awn||2
— 2T (Yn — p, Ayn — Awy,)
=llp- wnH2 — ||y *ynHz + Tr%HAyn - Awn”2 = 2T (AYn, Yn — p)-

By using the fact that (Ap, y, — p) > 0, one obtains that (Ay,, y, — p) > 0. Hence,
1p = tal® < | = wall* + T || Ayn — Awy||* = [|wn — yul > (4)
Moreover, from (2), it follows that
Toy1l|Awn — Aynll < pllwn —yull Vo> 1. (5)
Combining (4) and (5), we obtain

2
T,

lp = unll? < \IP—wnIIZ—(1—V2TT”)Hwn—J/nH2- (6)
n+1

On the other hand,

zn—p = 1—=Bn)(Yn — T(Ayn — Awn)) — p + Buf (xn)
= (1= Bn)(un —p) + Bu(f — Dp + Bu(f(xn) — f(p))
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Using the convexity of the norm function, we get

|20 — PHZ <2Bu(fp—p,zn —p) + (1= Bn) (un — p) — Bu(f(p) _f(xn))”z
<2Bu((fp = p)rzn — p) + [(1 = Bu)lp — unll + Budllp — xa|)?
< 2Pu((fp —p)izn—p) + (1= Bu)llp - nl|?+ Budllp — xu|?
< (1 =Bu)lllp —wal> = (1 - #zr;z”jl)llwn — Ynll?] + Budllp — xal|?
+2Bu((fP —p)zn —p) i
= (1= Bn)llp = wnll* = (1 = Bu) (1 = p* =) [|wn — yu > + Bullp — xa?

+2Bu{(Fp— P) 20 — ).

This completes the proof. [

Lemma 7. Let {z,}, {yn}, and {x,} be three iterative sequences, which are bounded, defined by Algorithm 1.
Suppose that there exists a subsequence {wy, } of the weakly convergent sequence {w, } such that w,, — z € H.
If [|xp — xpt1|l = 0, [Jwy —yull = 0, [[wy — zul| = 0, then z € Q.

Proof. Algorithm 1 shows ||x, — wy,|| = an||x,—1 — x,||. Utilizing Remark 1, we have lim,, . ||w, —
xu|| = 0. This, together with the assumption wy, — z, — 0, yields that

lzn — xall < llzn — wnll + [[wn — xu|| =0 (1 — o0).

Since {x, } is bounded and a;, (x, — x,,_1) — 0, one asserts that {w, } is bounded. Note that (4)

yields
lun = pI? < llwn = plI? + L2 {lyn — wa >

Hence, {u,} is bounded, where u, := y, — 7,(Ay, — Aw,). By Algorithm 1, we also get
zn — Xn = Buf (Xn) + tn — Xn — Buitn.
So, it follows from the boundedness of {x, } and {u,} that
[1n = 2ull = llzn = xn = B f (xn) + Butnl| < llzn = 2l + B ([1f Cen) [ + [0 ]}),
which indicates u,, — x; tends to 0 as n tends to the infinity. Using Algorithm 1 again, we get

Xp1 —2Zn = On(Xn — zn) + Yu(tn — 20) + 6n(Tzn — 2z4)
= U'n(xn - Zn) + 'Yn(un — Xn+ Xy — Zn) +5n(Tzn - Zn)
= (1 - 5n)(xn - Zn) + ')/n(un - xn) +5n(TZn - Zn)/

which immediately leads to

Onllzn — Tznll = |Ixns1 — Yn(un — xn) — 20 — (1 = ) (xn — za) ||
= [[xnt1 — (1= 0n) (Xn — 2n) — Xn + Xn — Zn — Y (tn — xn) ||
= ||xn+1 — Xn +5n(xn - Zn) - 'Yn(un - xn)”
< xug1 = x| + |x0 = zal] + [Jun — x4l

Since x;, — X41, Zn — Xn, and u, — x, tend to 0 as n tends to the infinity and lim inf, e 6, > 0,

we obtain
lim ||z, — Tz,| =0,
n—,oo
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which, together with Lemma 1, ensures that

lxn = Txnll - < llxn = zull + 120 — Tznl| + || Tzn — Tt
||xn_ZnH+HZn_TZn||+%gHZn_xn” (7)
lE—g.Hxn —2zu|| + ||zn — Tzn|| =0 (n — o0).

IA A

From the restriction on the operator A, we have
Tn(AWp, X — Wy) > (Wn — Yn, X — Yn) — Tu(Awy, wy — yyn) Vx € C. (8)

Using the boundedness of {wj, } and Lipschitzian property of A, we get the boundedness of
{Awy, }. Note that 7, > 7 := min{r;, ['} and the boundedness of {yy, }. Inequality (8) deduces
liminfy_, o (wy, — x, Awy,) < 0Vx € C. Borrowing the facts that lim, ;e ||y — yu|| = 0 and A is
Lipschitz continuous with moudle L, one concludes that lim,, ;. || Ay, — Aw, || = 0, which combines
with (8) and sends us to the situation lim infy_, o (¥, — X, Ayy,) < 0Vx € C.

One now focuses on z € Fix(T). Thanks to the weak convergence Wy, — Z, as k — oo, one reaches
Xn, — z. Without loss of generality, we may assume | = nymodN for all k. Since by the assumption
Xn — Xy4+1 — 0 we have x,, ; — zforall j > 1, we deduce from (7) that

[%me+j = T jXmetll = | Tt jXnj — Xl — 0
as k — co. An application of Lemma 1 is to yield z € Fix(Tj;) for all j. This amounts to
z € Fix(T). 9)
Let {ex } be a decreasing real sequence in (0,1) converging to 0 and let
e+ (x — ynjrAyn;> >0 (10)

for all j > my, where my, is the smallest integer satisfying the above inequality. Note that sequence

{my} is increasing and Ay, # 0. It follows that (Ayy,, i, ) = 1, where hyy,, = H:yyﬁ' This sends us
to (Ym, — X — exhm,, Aym,) < 0, which guarantees
(Ym, — X — exh,, Aeghm, +x)) <0.
This sends us to
(AX, Yy — x) < (Ymy, — X — exhyy, Ax — A(erhy, +x)) — e (AX, Iy, ). (11)
On the other hand, one has lim,, .« ||y — || = 0 and w,,, — z as k — 0. This infers w,, — z,

which lies in C, as k goes to the infinity. So, Ay,, — Az as k goes to the infinity. This shows that z is not
a solution. In the sense of norms, one obtains lim infy_,«, || Ay, || > || Az||. This further concludes that

0 = limsup &/ lim inf || Ay, ||
k—o0 k—oco

> limsup e;/ || Aym, ||

k—o0

> limsup ||l k||
k—o0
>0

4

which reaches that 1, e, — 0 as k — oo.
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Finally, one focuses on the desired point z. (11), the boundedness of sequences {/,,, } and {yn, },
and the fact that i, e — 0as k — oo, yield that (z — x, Ax) = liminfy_, o (ym, — x, Ax) < 0 for all x
in C. Lemma 3 asserts that the desired point z is a solution to the VIP, e.g., z € VI(C, A). Therefore,
we have from (9) that z € Q) := VI(C, A) N Fix(T). The proof is complete. [

Theorem 1. Let {x,} be a vector sequence constructed by Algorithm 1 and let A(H) be bounded. Suppose
that x* is in Q), which uniquely solves (x* — fx*,x* — x) <0, Vx € Q. Then,

Xn — Xp41 — 0,

X, —xTe &
' { sup, - [1(1 = )] < oo,

Proof. Noticing condition (iv) on {0, }, one may assume that {0, } C [a,b], which is a subset of (0,1).
Using the Banach Fixed Point Theory, one deduces that a unique point x* in H s.t. x* = Pqf(x*).
Hence, there is a solution x* € Q) = Fix(T) N VI(C, A) to the HVI problem

(x* —x,x" — fx*) <0 (12)
for any point x in Q. If lim, e ||x, — x*|| = 0, then

Sli};(llx* = Xnl| + 1F (%) = Q) | + [ (x%) = x7[]) = sup [|xn — f(xn) ]

n>1

and
241 = 2% + [[x* = x| = [lxn11 — xu| = 0.

So, x,+1 —xp — 0 as n — co. In order to prove the sufficiency of the theorem, one supposes
[xn = xp11ll — 0 and sup, o [[(I = f)xu|| < oo. Then, we divide the proof of the sufficiency into
several steps. [J

Step 1. One proves the boundedness of {x,}. In fact, taking an arbitrary p € ), one has p = Tp
and (6), that is,

2
T
Ip = wal* + (1 - MZTZ" Mwn = yall* < lIp = wall* (13)
n+1
Since lim;, 0 (1 — yzrzi) =1- yz > 0, there exists an integer 1y > 1 with
n+1

2

1—;12;[—” > 0Vn > ng.
Tn+1
Using (13), we have
Ip = unll < [lp —wnll, Vn=no. (14)
So, N
Ip = wall < anllxn = xp1ll + lp — xnll = Bn - F:\Ixn = xp-1l + llp — xall. (15)

From Remark 1, we have % Xy — x,_1]] = 0 (n — o0). This ensures that IM; > 0 s.t.

“n
e
Combining (14), (15), and (16), we have

lxn —xp—1]| < M7 Vn>1. (16)

[un = pll < llwwn = pll < [lxn = pll +BuMr V1 > no. (17)
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Note that A(H) is bounded, v, = Pc(w, — t,Awy,), f(H) C C, and
Up = Yn — Tn(Ayn — Awy,).

Hence, we know that { Ay, } and {Aw, } are both bounded. From sup, - [|(I — f)xx[| < co and
&y llxy — x,_1]] = 0, we conclude that

[un — f(xn) |l = llyn — T (Ayn — Awn) — Pcf (xn) ||
< ||[Pc(wn — taAwn) — Pef (xu)|| + Tul| Ayn — Aw||
< anllxn — xp 1l + [[xn — f(xn) | + T ([[Awn || + [|Ayn — Awy||) < Mo,

where
sup{an||xn — xu-1l| + [[xn — f(xn) | + T ([ Awn || + [[Ayn — Awy[])} < Mo
n>1

for some My > 0. By using (17), one concludes

lp—zull < (1 —=Bu)llp —unll + Bull fr —pll + Budllp — xul|
< (1= Bu)(llp — xull + BuM1) + Bull fr — pll + Budllp — x|
< (1= Bu(1=0)llp — xull + Bulll fp — pll + M1),

which, together with Lemma 2 and (v, + 9,)¢ < 7y, yields

< (1_%)”1%,7,1[’711(2” =)+ 0u(Tzn — Pl + vulltn — zull + ullp — xul|

< (X =au)llp —znll +vuBullun — f(xn)[| + oullp — xall

< (1 =0w)[(1 = Bn(1=0)llp — xull + Bu(Mo + My + || (f = Dpl])] + oullp — xull
= [1— Ba (1= 0) (1= )] |p = xall + Bu(1 — 03) (1 — 8) M IS
M0+M11-4-_|\5(f—1)PH, Ip = xall}-

Ip = Xnal

< max{
By induction, we obtain

+ M+ || (I -
oM=L, — .

M
% — pll < max{

This indicates that all the vector sequence {x,},{un}, {wn}, {ys}, and {z,} are
bounded sequences.

Step 2. We claim

2
T
(T=Bu) (1 —ou)(1— uZTZ” Myn —wall® < llp = xul® + anMa = |p = x01a[?, V1> g,
n+1

for some My > 0. Indeed, using Lemma 2, Lemma 6, and the convexity of | - ||?, we have from

(,Y'Vl +(57’l)€ S Tn that Vn 2 no,
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[xns1 = plI* = llow(xn = p) + Yu(zn — p) + 6n(T2zn — p) + Yu (1 — zn) |12
<|lou(xn = p) + vn(zn — p) + 6n(Tzn — P)Hz + 29nBn un — f(xXn), Xns1 — p)
< aullp = xal*+ (1 ‘Tn)”l_lignhn(zn —p) +0u(Tza — p)lII?
+2(1 = 0n)Bullun — f(xn)|xn11 — Pl
< oullp = xull? + (1= o) |20 = plI> +2(0 = ) Bullun — f () lllp = 2011
< oullp —xal>+ (1 _f'n){,Bn(S”xn —pl?+ (1= Bu)llp — wnll? (18)
— (1= Bu)(1—p? :Z Mwn = ynll* +2Ba((f = Dp,zn — p)}
+2(1 = ) Bullun — f(xn) [ X1 — p|
< oullp — xull* + 1_;7n>{/3n5||l7_xn||2 (1= Bu)llp — wall®
— (1= Bn)(1—p? :i Mwn = yull* + BuMz},

where sup, -1 2(||(f = Dpllllza — pll + [lun — f(xu) [[[xn+1 — pl|) < My for some My > 0. In addition,
from (17) we get

lp —wall® = Bn(2Millp — xull + BuM3) + [lp — xull?

19
< BuMs + ||p — x|, (19)

where supnzl(ﬁnM% +2M;||p — xu||) < M3 for some M3z > 0. Substituting (19) for (18), we obtain
that for all n > ny,

12 <oullp—xal*+(1- Un){‘sﬁn”P — x>+ (1= Bu)[llp — xul* + BnMs]
— (1= Bu)(1 —p? T" )Hyn wal|* + BuMz}
=1-(1-0)(1~ )ﬁn]HP—xn”Z + (1= 0u)Bu(l— Bn) M3 (20)
—(1=Bn)(1~- )(1_ )Hyn wnHz + (1= 0n)BnM>
< ||P_xn||2_(1_/311)(1_‘771)(1_ )Hyn wal|* + BnMs,

Hp_xn+1

where My := Mj + Mj3. This immediately implies that for all n > n,,

2
n+1
Step 3. One proves
||P_xn+11“265 o
ptn n—YnlPn 27,

[1 — ( n’yn/y ‘Bn]”xn p”z )‘Bn’)/z/ ]ﬁ . {(1 2575’1 - ||f(xn) pHHZn o xn+1H
+ ) 53 2= I (o) = pllllzn = %l + =gyt = (f(P) = Py = p)
+ T X — X |3M), Vn > g,

where M is some appropriate constant.

3May|xn — xn—1 ]| + [lp = xall® = [lp = xull + an (en | = 2n—1 ]l + 2/l p = xull) |2 — %01

= ([lp = xull + anllxn — x0—1])? (22)
> |lp —wal?,
where M > sup, -1 {an||xy — xy—1l[, [|[p — x|} From the convexity of || - |?, one arrives at

2741 — PHZ = |low(xn — p) + vu(zn — p) + 60 (Tzn — p) + Y (un — Zn)Hz

< Nlow(xn —p) +vu(zn — p) 4+ 60(Tzn — P)|* + 29nBn(tn — f(xn), Xps1 — p)
< oullxn = plI>+ (1 - ‘Tn)H%gn[’Yn(Zn —p) +6u(Tzn — p)]|I?
+ 2uBn(tin — P, Xn11 = P) + 2790Bu(p — f(xn), Xny1 — p),
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which yields that

lxni1 = plI* < (@ =an)llp = zall> + oullp — xull® + 29uBullp — unlllp = xn i1l
+29nBu(p — f(xn), Xn+1 — p)
< aullp = xull? + (1= ) [(1 = Bu)|p — unll® + 280 (f (xn) — p, 20 — )]
+YnBn(llp — ”nHz +p— xn+1H2) +29nBn(p — f(xn), Xnt1 — p)-

From (17) and (22) we know that ||u, — p||? < |lxn — pl|? + anlxn — x,_1]|3M V1 > ng. Hence,
we have, Vn > ny, that

[xns1 = plI* < oullp = xul® + (1 =) (1= Bu) (lp = xul* + an [0 — 2, 1]13M)
+2Bn(1 = 00)(f(xn) = P, 20 = p) + YuPu(llp — 2al1* + [P — 201112
+ an || xn — 241 [3M) + 29nBu(p — f(xXn), Xn41 — P)
<[ =Bu(l=a)lllp— anz +2Bn6n(f(xn) = p,zn — p) + 1uBu(llp — anz
+lp = xu1ll?) + (1= o)an |l xn — 241 [BM + 270Bu(f (xn) = P, 20 — X i1)
<1 =Bn(1=an)lllp = xull® +27uBullp — f(xn) ll2n — %11l
+2Bn6n(f(xn) = p,Xn — P) + 2Bn0n(f (Xn) — P, Zn — Xn)
+ 7uBu([p = 2l + lp = 2011l1?) + (1 = o)en || X0 — 2,1 [3M
<[1=Bu(1 = a)llp = xull* + 2yuBullp — f ) |20 = x|
+2Bu0ublp — xull* + 2B10u(f(p) = p, X0 — p) +2Bubullp — £ (xn) || [|20 — xa|
+ vnBn(llp — anz +lp— xn+1||2) + (1 = on)anllxn — x,-1(13M,

which immediately yields

I~ I o
0 n n n—'In n 2 n
gu—(zé Jo B | — 2+ 13,5,1%72]; il ) = plllen =l
+ o | f () = plllzn = xull + st (F(P) = P xu = )
n ‘Sll
T (1:;0);;17%1 lTon" — Xn-1/3M}.

Step 4. We claim strong convergence of vector sequence {x, } to the unique solution of HVI (12),
x* € . One lets p = x*, and use (23) to obtain

||xn+1 s |¢|52§ 1-26)6
1— 2 n n * n niPn 2 n
<[1- U2mg, | |x, — xt||? 4 L300l (o B () — 2l 120 — 20 | o)
25n 26y,
+ =y 1 () = 2z — xull + g, (F() = 2 2 — x)

7
+ ey o — xaa[I3M}

From (21), X, — X1 — 0, By — 0, 1 — %3

#%, and {0y} C [a,b] C (0,1), we obtain

2
limsup(1—B,)(1—0b)(1— 2;” Mwn —yull?
n—soo +1
<limsup(1—Bu)(1—0y)(1— HZTT" Mlwn — yull?
n—o0 n+l

(
< limsup{f[p — Xull? = llp = x| + Bu M
P = xull® = Ilp — xns1[1?] + lim supp, My

n—o0

< limsup(lp =l + [P = usalDllxn = xnsal] = 0.

< hm sup
n—o00
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This immediately implies that w, —y, — 0. From the Lipschitzian property of A, we have
llttn — yul|l = || Ayn — Awy|| < L||yn — wy||. Consequently,

nh_fg}o [tn — yull = nh_{{}o [[wn = ynll = 0. (25)

Thus, we get
120 = ynll < |lxn — wull + [wn =yl — 0 (1 — o0).

Since zp, = Buf (xn) + (1 — Bn)uy with uy, := yn — 7 (Ayn — Awy,), from (25) and the boundedness
of {xn}, {un}, we get

Izn —ynll = 1Bnf(xn) — Butin + tin — Yul| (26)
< Bu([lf Cen) [l + lunll) + lun — yull =0 (n — o0),

and hence,
zn — xull < llzn —yull + lyn —xnl| = 0 (1 — o0). (27)

Obviously, combining (25) and (26) guarantees that ||w, — z,|| < ||yn — wnl| + ||z — x|/, which
indicates that lim, . ||w, — 2 || = 0. Let vector sequence {x;, } be a subsequence of original sequence
{xn}. From its boundedness, one asserts that

Lim ((f — D", x* — x,) = limsup((f — I)x*, x* — xp). (28)

k—o0 n—00

Without loss of generality, one lets x,,, — X. (28) implies

limsup((f — I)x*, x, — x*) = Iim ((f — I)x*, x,, — x*) = ((f — D)x*, ¥ — x7). (29)

n—oo k—oc0
On the other hand, one has limj_, Hwnk — xp, = 0. This indicates w;,, — %. Lemma 7 guarantees
that ¥ is in (). Therefore, (12) and (29) amount to limsup,,_, (xy — x*, (f — I)x*) = (¥ —x*, (f —
I)x*) < 0. Note that lim inf, e (1712_()2%# > 0. It follows that } >, %‘Bn = co. Itis clear that

thUP{(l 2ot I (o) = llzn = %1 | + gy 1 (on) = 21z — 2|

n n 5}1 n
+ (1,2?#,%@@*) — X", Xy — X%) + WM ' §7\|xn — xu-1[[3M} < 0.

By utilizing Lemma 4, one concludes x,;, — x* easily. The proof is complete.

4. Applications

In this section, our main results are applied to solve the VIP and CFPP in an illustrating example.

The initial point xy = x is randomly chosen in R. Take f(x) = Sifl‘x, =T =u= %, €n = %, Bn =

1
n+1’

oy = %, Yn = %,andén = %
We first provide an example of Lipschitzian, pseudomonotone operator A satisfying the
boundedness of A(H) and strictly pseudocontractive operator T; with () = Fix(T;) N VI(C, A) # @.
Let C = [—1,1] and H = R with the inner product (a,b) = ab and induced norm || - || = | - |. Then, f is
a J-contractive map with § = § € [0,1) and f(H) C Cbecause || f(x) — f(y)|| = 1| sinx —siny|| <
Tllx—yl forallx,y € H.

Let A: H— Hand T; : H — H be defined as Ax := m 1+\X\ and Ty x := gx — %smx for
all x € H. Now, we first show that A is Lipschitzian, pseudomonotone operator with L = 2, such that
A(H) is bounded. Indeed, for all x,y € H, we have
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1Ax = Ayl < Iy — n |+ i simar ~ Tsma
< X— + || sin x—sinyl||
< T T T Tsin) (1] singl)
< 2lx —yl|-

This implies that A is Lipschitzian operator with L = 2. Next, we verify that A is pseudomonotone.
For any given x,y € H, itis clear that the relation holds:

1 1 1 1
- —x) > Ay, y—x) = -
1+ |sinx| 1+|x|)(y %) 2 0= {Ayy—x) (1+\siny| 1+ y|

(Ax,y —x) = ( )y —x) = 0.

Furthermore, it is easy to see that T is strictly pseudocontractive with constant {; = %. Indeed,
we observe that for all x,y € H,

5 1, . . 1
ITx = Ty|| < gllx =yl + 7l sinx —siny|| < [lx —yl[+ 7 [[(I = T)x = (I = T)y]|.

It is clear that (74 +6,)01 = (2 +3) 1 <l =197, < (1-28)0, = (1-2-1)} = ] forall
n > 1. In addition, it is clear that Fix(T;) = {0} and A0 = 0 because the derivative d(Tyu)/du =
2 — }cosu > 0. Therefore, QO = Fix(T;) N VI(C,A) = {0} # @. In this case, Algorithm 1 can be
rewritten below:

Wy = Xp + 0n (X — Xp_1),

zn = 51 f (Xn) + 725 (Yn — Tu(Ayn — Awy)),
Xpny1 = %Xn + %(yn — Tn(Ayn — Awn)) + %len Vn > 1,

where, for eachn > 1, &, (= a,) and T, are chosen as in Algorithm 1. Then, by Theorem 1, we know
that x, — 0 € Qiff x;, —x,41 — 0 (n — ) and sup,,~ |(I — f)xu| < oo.
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