Article

On the Fekete-Szegö Type Functionals for Close-to-Convex Functions

Mechanical Engineering Faculty, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland; p.zaprawa@pollub.pl (P.Z.); m.gregorczyk@pollub.pl (M.G.); a.rysak@pollub.pl (A.R.)
* Correspondence: k.trabka@pollub.pl

Received: 28 October 2019; Accepted: 7 December 2019; Published: 10 December 2019

Abstract

In this paper, we consider two functionals of the Fekete-Szegö type $\Theta_{f}(\mu)=a_{4}-\mu a_{2} a_{3}$ and $\Phi_{f}(\mu)=a_{2} a_{4}-\mu a_{3}^{2}$ for a real number μ and for an analytic function $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, $|z|<1$. This type of research was initiated by Hayami and Owa in 2010. They obtained results for functions satisfying one of the conditions $\operatorname{Re}\{f(z) / z\}>\alpha$ or $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha, \alpha \in[0,1)$. Similar estimates were also derived for univalent starlike functions and for univalent convex functions. We discuss $\Theta_{f}(\mu)$ and $\Phi_{f}(\mu)$ for close-to-convex functions such that $f^{\prime}(z)=h(z) /(1-z)^{2}$, where h is an analytic function with a positive real part. Many coefficient problems, among others estimating of $\Theta_{f}(\mu), \Phi_{f}(\mu)$ or the Hankel determinants for close-to-convex functions or univalent functions, are not solved yet. Our results broaden the scope of theoretical results connected with these functionals defined for different subclasses of analytic univalent functions.

Keywords: coefficient problem; close-to-convex function; Fekete-Szegö functional; functional of Fekete-Szegö type

1. Introduction

Let \mathcal{A} be the family of all functions analytic in $\Delta=\{z \in \mathbb{C}:|z|<1 \mid\}$ having the power series expansion:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots, \tag{1}
\end{equation*}
$$

and let \mathcal{S}^{*} denote the class of univalent starlike functions in \mathcal{A} (for the definitions and properties of \mathcal{S}^{*} and other classes, see [1]). For a given real argument $\beta \in(-\pi / 2, \pi / 2)$ and a given function $g \in \mathcal{S}^{*}$, a function $f \in \mathcal{A}$ is called close-to-convex with argument β with respect to g if:

$$
\operatorname{Re}\left\{\frac{e^{i \beta} z f^{\prime}(z)}{g(z)}\right\}>0, \quad z \in \Delta
$$

Let $\mathcal{C}_{\beta}(g)$ be the class of all such functions. Moreover, let:

$$
\mathcal{C}_{\beta}=\bigcup_{g \in \mathcal{S}^{*}} \mathcal{C}_{\beta}(g)
$$

Let \mathcal{C} denote the family of all close-to-convex functions (see [2,3]). It is obvious that:

$$
\mathcal{C}=\bigcup_{\beta \in(-\pi / 2, \pi / 2)} \mathcal{C}_{\beta} .
$$

All functions in \mathcal{C} are univalent.

In this paper, we consider the class $\mathcal{C}_{0}(k)$, where k is the Koebe function:

$$
\begin{equation*}
k(z)=\frac{z}{(1-z)^{2}}=z+2 z^{2}+3 z^{3}+\ldots \tag{2}
\end{equation*}
$$

The class $\mathcal{C}_{0}(k)$ is sometimes denoted by $\mathcal{C} \mathcal{R}^{+}$. Such functions have a well known geometrical meaning. Namely, for each function f in this class, the set $f(\Delta)$ is a domain such that $\{w+t: t \geq 0\} \subset f(\Delta)$ for every $w \in f(\Delta)$. Such functions f are convex in the positive direction of the real axis.

For a function f analytic in Δ of the form (1), we define two functionals for a fixed real μ :

$$
\begin{equation*}
\Theta_{f}(\mu)=a_{4}-\mu a_{2} a_{3} \tag{3}
\end{equation*}
$$

and:

$$
\begin{equation*}
\Phi_{f}(\mu)=a_{2} a_{4}-\mu a_{3}^{2} \tag{4}
\end{equation*}
$$

The functionals $\Theta_{f}(\mu)$ and $\Phi_{f}(\mu)$ are the generalizations of two well known expressions: $a_{4}-a_{2} a_{3}$ and $a_{2} a_{4}-a_{3}{ }^{2}$. Both functionals are symmetric, or invariant, under rotations. The first one is a particular case of the generalized Zalcman functional. It was investigated, among others, by Ma [4] and Efraimidis and Vukotić [5]. The second functional is known as the second Hankel determinant, and it was studied in many papers. The investigation of Hankel determinants for analytic functions was started by Pommerenke (see [6,7]) and continued by many mathematicians in various classes of univalent functions (see, for example [8-16]). The functional $\Phi_{f}(\mu)$ was first studied by Hayami and Owa [17]. They discussed an even more general functional $a_{n} a_{n+2}-\mu a_{n+1}^{2}$ for the classes $\mathcal{Q}(\alpha)$ and $\mathcal{R}(\alpha)$, $\alpha \in[0,1)$, of functions $f \in \mathcal{A}$ such that $\operatorname{Re}\{f(z) / z\}>\alpha$ and $\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha$, respectively. The functionals $\Phi_{f}(\mu)$ and $\Theta_{f}(\mu)$ for the classes \mathcal{S}^{*} and \mathcal{K} of starlike and convex functions, respectively, were discussed in [18].

It is worth pointing out a particularly interesting property of $\Phi_{f}(\mu)$. The sharp estimates of this functional are often symmetric with respect to a certain point. It was shown in [18] that such points for \mathcal{S}^{*} and \mathcal{K} are $8 / 9$ and one, respectively. We have:

$$
\begin{equation*}
\left|\Phi_{f}(\mu)\right| \leq \max \{|9 \mu-8|, 1\} \quad \text { for } \quad \mathcal{S}^{*} \tag{5}
\end{equation*}
$$

and:

$$
\left|\Phi_{f}(\mu)\right| \leq \max \{|\mu-1|, 1 / 8\} \quad \text { for } \quad \mathcal{K} .
$$

A similar situation occurs for $\mathcal{Q}(1 / 2)$ and for the class $\mathcal{C}_{0}(h)$, where $h(z)=z /\left(1-z^{2}\right)$; this point is $1 / 2$ (see $[17,19]$). This situation appears even in the class \mathcal{T} of typically real functions, which do not necessarily have to be univalent (see [19]).

In this work, we derive bounds of $\Theta_{f}(\mu)$ and $\Phi_{f}(\mu)$ for functions in $\mathcal{C}_{0}(k)$.

2. Preliminary Results

Let \mathcal{P} denote the class of all analytic functions h with a positive real part in Δ satisfying the normalization condition $h(0)=1$. Let $h \in \mathcal{P}$ have the Taylor series expansion:

$$
\begin{equation*}
h(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots \tag{6}
\end{equation*}
$$

We shall need here three results. The first one is known as Caratheodory's lemma (see, for example, ref. [1]). The second one is due to Libera and Złotkiewicz ([20,21]), and the third one is the result of Hayami and Owa.

Lemma 1 ([1]). If $h \in \mathcal{P}$ is given by (6), then the sharp inequality $\left|p_{n}\right| \leq 2$ holds for $n \geq 1$.

Lemma 2 ([20,21]). Let h be given by (6) and p_{1} be a given real number, $p_{1} \in[-2,2]$. Then, $h \in \mathcal{P}$ if and only if:

$$
2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x
$$

and:

$$
4 p_{3}=p_{1}^{3}+2\left(4-p_{1}^{2}\right) p_{1} x-\left(4-p_{1}^{2}\right) p_{1} x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) y
$$

for some complex numbers x, y such that $|x| \leq 1,|y| \leq 1$.
Lemma 3 ([17]). If $h \in \mathcal{P}$ is given by (6), then:

$$
\left|p_{3}-\mu p_{1} p_{2}\right| \leq \max \{2,|2-4 \mu|\}
$$

The next lemma is an improvement of Lemma 3 for $\mu \in[1 / 2,1]$.
Lemma 4 ([22]). If $h \in \mathcal{P}$ is given by (6) and $\mu \in[1 / 2,1]$, then:

$$
\left|p_{3}-\mu p_{1} p_{2}\right| \leq \begin{cases}\frac{1}{4} \mu^{2} p^{3}-\frac{1}{2} \mu(2-\mu) p^{2}+2, & p \in[0,2 /(2-\mu)] \tag{7}\\ (3-2 \mu) p-(1-\mu) p^{3}, & p \in[2 /(2-\mu), 2]\end{cases}
$$

where $p=\left|p_{1}\right|$. The inequality is sharp.
The following lemma was proven by Lecko (see Corollary 2.3 in [23]).
Lemma 5 ([23]). If $h \in \mathcal{P}$ is given by (6), then:

$$
\begin{equation*}
\left|p_{n+1}+2 p_{n}+p_{n-1}\right| \leq 2\left(2+\operatorname{Re}\left\{p_{1}\right\}\right) . \tag{8}
\end{equation*}
$$

We have proven the next lemma.

Lemma 6. If $h \in \mathcal{P}$ is given by (6), then:

$$
\begin{equation*}
\left|p_{1} p_{3}-p_{2}^{2}\right| \leq 4-\left|p_{1}\right|^{2} \tag{9}
\end{equation*}
$$

The inequality is sharp.

Proof. By Lemma 2,

$$
4\left(p_{1} p_{3}-p_{2}^{2}\right)=\left(4-p_{1}^{2}\right)\left[2 p_{1}\left(1-|x|^{2}\right) y-4 x^{2}\right] .
$$

Applying the invariance of $\left|p_{1} p_{3}-p_{2}^{2}\right|$ under rotation, we can assume that p_{1} is a non-negative real number. Writing $r=|x| \in[0,1]$ and $p=p_{1} \in[0,2]$, we get by the triangle inequality and the assumption $|y| \leq 1$:

$$
4\left|p_{1} p_{3}-p_{2}^{2}\right| \leq\left(4-p^{2}\right)\left[2 p\left(1-r^{2}\right)+4 r^{2}\right]=\left(4-p^{2}\right)\left[2 p+(4-2 p) r^{2}\right] \leq 4\left(4-p^{2}\right)
$$

which gives the desired bound. The equality (9) holds for:

$$
\begin{equation*}
h(z)=\left(1-\frac{p}{2}\right) \frac{1+z^{2}}{1-z^{2}}+\frac{p}{2} \frac{1+z}{1-z}=1+p z+2 z^{2}+p z^{3}+\ldots \tag{10}
\end{equation*}
$$

which means that there is equality in (9) for rotations of (10).

The next lemma is a special case of more general results due to Choi et al. [24] (see also [9]). Let $\bar{\Delta}=\{z \in \mathbb{C}:|z| \leq 1\}$. Define:

$$
Y(a, b, c)=\max _{z \in \bar{\Delta}}\left(\left|a+b z+c z^{2}\right|+1-|z|^{2}\right), \quad a, b, c \in \mathbb{R}
$$

Lemma 7. If ac <0, then:

$$
Y(a, b, c)= \begin{cases}1+|a|+\frac{b^{2}}{4(1+|c|)^{2}}, & |b|<2(1+|c|) \text { and } b^{2}<-4 a\left(1-c^{2}\right) / c \\ 1-|a|+\frac{b^{2}}{4(1-|c|)}, & |b|<2(1-|c|) \text { and } b^{2} \geq-4 a\left(1-c^{2}\right) / c \\ R(a, b, c), & \text { otherwise }\end{cases}
$$

where:

$$
R(a, b, c)= \begin{cases}|a|+|b|-|c|, & |a b| \geq|c|(|b|+4|a|) \\ -|a|+|b|+|c|, & |a b| \leq|c|(|b|-4|a|) \\ (|c|+|a|) \sqrt{1-\frac{b^{2}}{4 a c}}, & \text { otherwise }\end{cases}
$$

If $a c \geq 0$, then:

$$
Y(a, b, c)= \begin{cases}|a|+|b|+|c|, & |b| \geq 2(1-|c|) \\ 1+|a|+\frac{b^{2}}{4(1-|c|)}, & |b|<2(1-|c|)\end{cases}
$$

Applying the correspondence between the functions in $\mathcal{C}_{0}(k)$ and \mathcal{P} :

$$
\begin{equation*}
(1-z)^{2} f^{\prime}(z)=h(z), \quad f \in \mathcal{C}_{0}(k), \quad h \in \mathcal{P} \tag{11}
\end{equation*}
$$

and Expansions (1) and (6) we get:

$$
\begin{equation*}
2 a_{2}=2+p_{1}, \quad 3 a_{3}=3+2 p_{1}+p_{2}, \quad 4 a_{4}=4+3 p_{1}+2 p_{2}+p_{3} \tag{12}
\end{equation*}
$$

Moreover, by Lemma $1, \operatorname{Re}\left\{a_{2}\right\} \geq 0$ with equality if and only if $p_{1}=-2$. The equality is possible only for the function $h(z)=\frac{1-z}{1+z} \in \mathcal{P}$, and then, $f(z)=\frac{1}{2} \log \frac{1+z}{1-z} \in \mathcal{C}_{0}(k)$.

Hence, we can express $\Theta_{f}(\mu)$ and $\Phi_{f}(\mu)$ for $f \in \mathcal{C}_{0}(k)$ as coefficients of a corresponding function $h \in \mathcal{P}$ in the following way:

$$
\begin{equation*}
\Theta_{f}(\mu)=\frac{1}{4} p_{3}+\left(\frac{1}{2}-\frac{1}{3} \mu\right) p_{2}+\left(\frac{3}{4}-\frac{7}{6} \mu\right) p_{1}-\frac{1}{6} \mu p_{1} p_{2}-\frac{1}{3} \mu p_{1}^{2}+1-\mu \tag{13}
\end{equation*}
$$

and:

$$
\begin{align*}
\Phi_{f}(\mu) & =\frac{1}{8} p_{1} p_{3}-\frac{1}{9} \mu p_{2}^{2}+\frac{1}{4} p_{3}+\left(\frac{1}{4}-\frac{4}{9} \mu\right) p_{1} p_{2}+\left(\frac{1}{2}-\frac{2}{3} \mu\right) p_{2} \tag{14}\\
& +\left(\frac{3}{8}-\frac{4}{9} \mu\right) p_{1}^{2}+\left(\frac{5}{4}-\frac{4}{3} \mu\right) p_{1}+1-\mu
\end{align*}
$$

3. Example

Let us consider the function:

$$
\begin{equation*}
F(z)=\frac{1}{2}(1-\alpha) \log \frac{1+z}{1-z}+\alpha \frac{z}{(1-z)^{2}}, \quad \alpha \in[0,1] \tag{15}
\end{equation*}
$$

which has the following Taylor series expansion:

$$
\begin{aligned}
F(z) & =(1-\alpha)\left(z+\frac{1}{3} z^{3}+\ldots\right)+\alpha\left(z+2 z^{2}+3 z^{3}+4 z^{4}+\ldots\right) \\
& =z+2 \alpha z^{2}+\frac{1}{3}(1+8 \alpha) z^{3}+4 \alpha z^{4}+\ldots
\end{aligned}
$$

Since:

$$
(1-z)^{2} F^{\prime}(z)=(1-\alpha) \frac{1-z}{1+z}+\alpha \frac{1+z}{1-z} \in \mathcal{P}
$$

so $F \in \mathcal{C}_{0}(k)$. Moreover,

$$
F(\Delta)=\mathbb{C} \backslash\left\{x \pm i(1-\alpha) \frac{\pi}{4}: x \leq \frac{1}{4}\left[(1-\alpha) \ln \frac{1-\alpha}{\alpha}-1\right]\right\} .
$$

For F, we have:

$$
\Theta_{F}(\mu)=\frac{2}{3}\left[-8 \mu \alpha^{2}+(6-\mu) \alpha\right]
$$

and:

$$
\Phi_{F}(\mu)=\frac{1}{9}\left[8(9-8 \mu) \alpha^{2}-16 \mu \alpha-\mu\right] .
$$

For $\mu<0$, we have: $\Theta_{F}(\mu) \leq 4-6 \mu$ and $\Phi_{F}(\mu) \leq 8-9 \mu$. We find the estimation of $\Theta_{F}(\mu)$ and $\Phi_{F}(\mu)$ for $\mu \geq 0$.

Let us denote:

$$
f(\alpha)=\frac{2}{3}\left[-8 \mu \alpha^{2}+(6-\mu) \alpha\right] \text { and } g(\alpha)=\frac{1}{9}\left[8(9-8 \mu) \alpha^{2}-16 \mu \alpha-\mu\right] .
$$

The critical point $\alpha_{0}=(6-\mu) /(16 \mu)$ of $f(\alpha)$ is in $(0,1)$ if $\mu \in(6 / 17,6)$. Hence,

$$
\left|\Theta_{F}(\mu)\right| \leq \max \left\{\left|f\left(\alpha_{0}\right)\right|,|f(1)|,|f(0)|\right\}=\max \left\{\left|\frac{(6-\mu)^{2}}{48 \mu}\right|,|4-6 \mu|, 0,\right\}
$$

for $\mu \in(6 / 17,6)$ and:

$$
\left|\Theta_{F}(\mu)\right| \leq \max \{|f(1)|,|f(0)|\}=|4-6 \mu| \quad \text { for } \mu \in[0,6 / 17] \cup[6, \infty)
$$

Similarly, the critical point $\alpha_{1}=\mu /(9-8 \mu)$ of $g(\alpha)$ is in $(0,1)$ if $\mu \in(0,1)$. Hence,

$$
\left|\Phi_{F}(\mu)\right| \leq \max \left\{\left|g\left(\alpha_{1}\right)\right|,|g(1)|,|g(0)|\right\}=\max \left\{\left|\frac{\mu}{8 \mu-9}\right|,|8-9 \mu|,\left|-\frac{\mu}{9}\right|\right\}
$$

for $\mu \in(0,1)$ and:

$$
\left|\Phi_{F}(\mu)\right| \leq \max \{|g(1)|,|g(0)|\}=|9 \mu-8| \quad \text { for } \mu \in\{0\} \cup[1, \infty) .
$$

Finally, for a function F given by (15), we obtain:

$$
\Theta_{F}(\mu) \leq \begin{cases}4-6 \mu, & \mu \leq 6 / 17=0.352 \ldots \\ \frac{(6-\mu)^{2}}{48 \mu}, & 6 / 17 \leq \mu \leq 6(15+16 \sqrt{2}) / 287=0.786 \ldots \\ 6 \mu-4, & \mu \geq 6(15+16 \sqrt{2}) / 287\end{cases}
$$

and:

$$
\Phi_{F}(\mu) \leq \begin{cases}8-9 \mu, & \mu \leq(73-\sqrt{145}) / 72=0.846 \ldots \\ \frac{\mu}{9-8 \mu}, & (73-\sqrt{145}) / 72 \leq \mu \leq 1 \\ 9 \mu-8, & \mu \geq 1\end{cases}
$$

4. Bounds of $|\Theta(\mu)|$ for the Class $\mathcal{C}_{0}(k)$

In the main theorem of this section, we establish the sharp bounds of $|\Theta(\mu)|$ for the class $\mathcal{C}_{0}(k)$. The proof is divided into six lemmas. The first one is a particular case of the result obtained in [22] (Theorem 3.1 or Theorem 3.3 in [22]), and the second one is obvious.

Lemma 8. Let $f \in \mathcal{C}_{0}(k)$. Then, $\left|\Theta_{f}(1)\right|=\left|a_{4}-a_{2} a_{3}\right| \leq 2$. The result is sharp.
Lemma 9. Let $f \in \mathcal{C}_{0}(k)$ and $\mu \leq 0$. Then, $\left|\Theta_{f}(\mu)\right| \leq 4-6 \mu$. The result is sharp.
Lemma 10. Let $f \in \mathcal{C}_{0}(k)$ and $\mu>1$. Then, $\left|\Theta_{f}(\mu)\right| \leq 6 \mu-4$. The result is sharp.
Proof. From (13), we can write $\Theta_{f}(\mu)$ as follows:

$$
\Theta_{f}(\mu)=\frac{1}{4}\left(p_{3}-\frac{2}{3} \mu p_{1} p_{2}\right)+\left(\frac{1}{2}-\frac{1}{3} \mu\right) p_{2}-\frac{1}{3} \mu p_{1}^{2}+\left(\frac{3}{4}-\frac{7}{6} \mu\right) p_{1}+1-\mu .
$$

If $\mu \geq 3 / 2$, then, taking into account Lemmas 1 and 3, we get:

$$
\left|\Theta_{f}(\mu)\right| \leq \frac{1}{4}\left(\frac{8}{3} \mu-2\right)+2\left(\frac{1}{3} \mu-\frac{1}{2}\right)+\frac{4}{3} \mu+2\left(\frac{7}{6} \mu-\frac{3}{4}\right)+\mu-1=6 \mu-4
$$

If $\mu \in(1,3 / 2)$, then we have:

$$
\Theta_{f}(\mu)=(3-2 \mu)\left(a_{4}-a_{2} a_{3}\right)+(2 \mu-2)\left(a_{4}-\frac{3}{2} a_{2} a_{3}\right) .
$$

Now, from Lemma 8 and the first part of this proof (i.e., $\left|a_{4}-\frac{3}{2} a_{2} a_{3}\right| \leq 5$), we obtain:

$$
\left|\Theta_{f}(\mu)\right| \leq 2(3-2 \mu)+5(2 \mu-2)=6 \mu-4
$$

It is clear that $\Theta_{f}(\mu)=4-6 \mu$ only when $p_{1}=p_{2}=p_{3}=2$, which means that this equality holds only for the Koebe function (2). In other words, the Koebe function is the extremal function for $\mu>1$.

Taking into account (13) and Lemma 2, we can write $\Theta_{f}(\mu)$ as follows:

$$
\begin{aligned}
\Theta_{f}(\mu) & =1+\frac{1}{16} p_{1}^{3}+\frac{1}{4} p_{1}^{2}+\frac{3}{4} p_{1}-\frac{1}{12} \mu p_{1}^{3}-\frac{1}{2} \mu p_{1}^{2}-\frac{7}{6} \mu p_{1}-\mu \\
& +\left[\frac{1}{8} p_{1}+\frac{1}{4}-\frac{1}{12} \mu\left(2+p_{1}\right)\right]\left(4-p_{1}^{2}\right) x-\frac{1}{16}\left(4-p_{1}^{2}\right) p_{1} x^{2}+\frac{1}{8}\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) y
\end{aligned}
$$

From the above formula, we can obtain bounds of $\left|\Theta_{f}(\mu)\right|$, while $\mu \in(0,1)$ and $f \in \mathcal{C}_{0}(k)$, but only with an additional assumption that a_{2} is a positive real number. The assumption of Lemma 2 enforces that $p_{1} \in[-2,2]$. Notice that if $p_{1}=2$, then $f(z)=k(z)$ given by (2), and we have:

$$
\begin{equation*}
\Theta_{f}(\mu)=4-6 \mu \tag{16}
\end{equation*}
$$

If $p_{1}=-2$, then $f(z)=\frac{1}{2} \log \frac{1+z}{1-z}=z+\frac{1}{3} z^{3}+\frac{1}{5} z^{5}+\ldots$ is in $\mathcal{C}_{0}(k)$, and so:

$$
\begin{equation*}
\Theta_{f}(\mu)=0 \tag{17}
\end{equation*}
$$

To shorten notation, we write p instead of p_{1}. One can observe that $\Theta_{f}(\mu)$ can be written as:

$$
\begin{equation*}
8 \Theta_{f}(\mu)=\left(4-p^{2}\right)\left[a+b x+c x^{2}+\left(1-|x|^{2}\right) y\right] \tag{18}
\end{equation*}
$$

where:

$$
\begin{align*}
& a=\frac{48(1-\mu)+4(9-14 \mu) p+12(1-2 \mu) p^{2}+(3-4 \mu) p^{3}}{6\left(4-p^{2}\right)} \\
& b=(2+p)\left(1-\frac{2}{3} \mu\right) \tag{19}\\
& c=-\frac{1}{2} p
\end{align*}
$$

From (18), the triangle inequality, $|y| \leq 1$, and Lemma 2, we get:

$$
\begin{equation*}
8\left|\Theta_{f}(\mu)\right| \leq\left(4-p^{2}\right)\left[\left|a+b x+c x^{2}\right|+1-|x|^{2}\right] \tag{20}
\end{equation*}
$$

where a, b, and c are given by (19).
Lemma 11. Let $f \in \mathcal{C}_{0}(k), a_{2}$ be a real number, $a_{2} \in[0,2]$ and $\mu \in(0,1 / 3]$. Then, $\left|\Theta_{f}(\mu)\right| \leq 4-6 \mu$. The result is sharp.

Proof. For $\mu=1 / 3$, we have (20) with:

$$
a=\frac{5 p^{2}+2 p+48}{18(2-p)}, \quad b=\frac{7(2+p)}{9}, \quad c=-\frac{p}{2}
$$

We use Lemma 7. Clearly, $a c<0$ for $p \in(0,2)$. Note that the inequality $|b|<2(1+|c|)$ from the first case of Lemma 7 is equivalent to the obviously true inequality:

$$
\begin{equation*}
7(2+p)<18(1+p / 2) \tag{21}
\end{equation*}
$$

The inequality $b^{2}<-4 a\left(1-c^{2}\right) / c$, which can be written as:

$$
\frac{4(2+p)\left(p^{2}+20 p-108\right)}{81 p}<0
$$

holds for all $p \in(0,2)$. Hence, for $p \in(0,2)$, we have:

$$
\begin{equation*}
Y(a, b, c)=1+|a|+\frac{b^{2}}{4(1+|c|)}=\frac{2\left(238-36 p-p^{2}\right)}{81(2-p)} \tag{22}
\end{equation*}
$$

For $p \in(-2,0]$, we have $a c \geq 0$, and the inequality $|b|<2(1-|c|)$ from the last case of Lemma 7 is equivalent to (21). Therefore, $Y(a, b, c)$ is also given by (22).

Thus, from (20) for $\mu=1 / 3$, Lemma 7 , (16) and (17), we obtain:

$$
\begin{equation*}
\left|\Theta_{f}(1 / 3)\right| \leq g(p) \tag{23}
\end{equation*}
$$

where $g(p)=(2+p)\left(238-36 p-p^{2}\right) / 324$ and $p \in[-2,2]$ according to the assumption. The function g is increasing for $p \in[-2,2]$; therefore:

$$
\begin{equation*}
\left|\Theta_{f}(1 / 3)\right| \leq g(2)=2 . \tag{24}
\end{equation*}
$$

Moreover, we have by the triangle inequality:

$$
\left|\Theta_{f}(\mu)\right|=(1-3 \mu) a_{4}+3 \mu\left(a_{4}-\frac{1}{3} a_{2} a_{3}\right), \quad \mu \in(0,1 / 3)
$$

From Lemma 9 and from (24), we get:

$$
\left|\Theta_{f}(\mu)\right| \leq 4(1-3 \mu)+2 \cdot 3 \mu=4-6 \mu
$$

and the proof is complete. Equality holds for the Koebe function (2).
Let us denote:

$$
\begin{align*}
p_{0} & =2(\sqrt{103}-10) / 3=0.099 \ldots \\
K & =16(103 \sqrt{103}-910) / 2187=0.9901 \ldots \tag{25}
\end{align*}
$$

Lemma 12. Let $f \in \mathcal{C}_{0}(k), a_{2}$ be a real number, $a_{2} \in[0,2]$, and K be given by (25). Then, $\left|\Theta_{f}(2 / 3)\right| \leq K$. The result is sharp.

Proof. For $\mu=2 / 3$, we have (20) with:

$$
a=\frac{12-p}{18}, \quad b=\frac{5(2+p)}{9}, \quad c=-\frac{p}{2} .
$$

We use Lemma 7. Clearly, $a c<0$ for $p \in(0,2]$. First, note that the inequality $|b|<2(1+|c|)$ is equivalent to the obviously true inequality:

$$
\begin{equation*}
5(2+p)<18(1+p / 2) \tag{26}
\end{equation*}
$$

The inequality $b^{2}<-4 a\left(1-c^{2}\right) / c$, which is equivalent to:

$$
\frac{8(2+p)\left(2 p^{2}+22 p-27\right)}{81 p}<0
$$

holds for $p \in(0,(5 \sqrt{7}-11) / 2]$. For $p \in(0,(5 \sqrt{7}-11) / 2]$, we have:

$$
\begin{equation*}
Y(a, b, c)=1+|a|+\frac{b^{2}}{4(1+|c|)}=\frac{8(p+20)}{81} \tag{27}
\end{equation*}
$$

so from (20) for $\mu=2 / 3$ and Lemma 7, we obtain:

$$
\begin{equation*}
\left|\Theta_{f}(2 / 3)\right| \leq\left(4-p^{2}\right)(p+20) / 81 \tag{28}
\end{equation*}
$$

From Lemma 7, the inequality system consists of $|b|<2(1-|c|)$, and $b^{2} \geq-4 a\left(1-c^{2}\right) / c$ is contradictory, because the first inequality gives $p<4 / 7$, while the second one yields $p \geq(5 \sqrt{7}-11) / 2$.

Now, consider the third case of Lemma 7. Let $p \in[(5 \sqrt{7}-11) / 2,2]$. The inequality $|a b| \geq|c|(|b|+4|a|)$ is equivalent to $60-128 p-16 p^{2} \geq 0$, and it is not satisfied for any $p \in[(5 \sqrt{7}-11) / 2,2]$. The inequality $|a b| \leq|c|(|b|-4|a|)$, which can be written as $30+44 p-17 p^{2} \leq 0$, is also not satisfied for any $p \in[(5 \sqrt{7}-11) / 2,2]$. Thus, for $p \in[(5 \sqrt{7}-11) / 2,2]$, we have:

$$
\begin{equation*}
Y(a, b, c)=(|c|+|a|) \sqrt{1-\frac{b^{2}}{4 a c}}=\frac{4(2 p+3)}{27} \sqrt{\frac{(2 p+25)(2 p+1)}{(12-p) p}} \tag{29}
\end{equation*}
$$

From (20) for $\mu=2 / 3$ and Lemma 7, we obtain:

$$
\begin{equation*}
\left|\Theta_{f}(2 / 3)\right| \leq \frac{\left(4-p^{2}\right)(2 p+3)}{54} \sqrt{\frac{(2 p+25)(2 p+1)}{(12-p) p}} \tag{30}
\end{equation*}
$$

For $p \in[-2,0]$, we have $a c \geq 0$, and the inequality $|b|<2(1-|c|)$ from the last case of Lemma 7 is equivalent to the inequality in (26).

Thus, $Y(a, b, c)$ is given by (27). Finally, from (16), (28) and (30), we obtain:

$$
\left|\Theta_{f}(2 / 3)\right| \leq g(p)
$$

where:

$$
g(p)= \begin{cases}\frac{1}{81}\left(4-p^{2}\right)(p+20), & p \in[-2,(5 \sqrt{7}-11) / 2) \\ \frac{1}{54}\left(4-p^{2}\right)(2 p+3) \sqrt{\frac{(2 p+25)(2 p+1)}{(12-p) p},} & p \in[(5 \sqrt{7}-11) / 2,2]\end{cases}
$$

Now, let us consider the function g for $p \in[(5 \sqrt{7}-11) / 2,2]$. We have:

$$
g^{\prime}(p)=\frac{M(p)}{54(12-p)^{2} p^{2}} \sqrt{\frac{(12-p) p}{(2 p+25)(2 p+1)}}
$$

where $M(p)=24 p^{6}-52 p^{5}-3802 p^{4}-4801 p^{3}+4242 p^{2}+1500 p-1800$ and:

$$
M(p)=24 p^{5}(p-13 / 6)+900(p-2)+3802 p^{2}\left(1-p^{2}\right)+p\left(-4801 p^{2}+440 p+600\right)<0
$$

for $p \in(1,2]$. Hence, $g^{\prime}(p)<0$ for $p \in[(5 \sqrt{7}-11) / 2,2]$.
Taking the above into account, one can check that the function g is increasing for $p \in\left[-2, p_{0}\right)$ and is decreasing for $p \in\left(p_{0}, 2\right]$, where p_{0} is given by (25). Therefore,

$$
\left|\Theta_{f}(2 / 3)\right| \leq g\left(p_{0}\right)=16(103 \sqrt{103}-910) / 2187=0.9901 \ldots
$$

so we have the desired result.
Lemma 13. Let $f \in \mathcal{C}_{0}(k), a_{2}$ be a real number, and $a_{2} \in[0,2]$.

1. If $\mu \in(1 / 3,2 / 3)$, then $\left|\Theta_{f}(\mu)\right|<3-3 \mu$.
2. If $\mu \in(2 / 3,1)$, then $\left|\Theta_{f}(\mu)\right|<3 \mu-1$.

Proof. We have:

$$
\left|\Theta_{f}(\mu)\right|=\left|(2-3 \mu)\left(a_{4}-\frac{1}{3} a_{2} a_{3}\right)+(3 \mu-1)\left(a_{4}-\frac{2}{3} a_{2} a_{3}\right)\right|, \quad \mu \in(1 / 3,2 / 3)
$$

From Lemmas 11 and 12, and the triangle inequality, we get the first part of Lemma 13, i.e.,:

$$
\left|\Theta_{f}(\mu)\right| \leq 2(2-3 \mu)+K \cdot(3 \mu-1)<2(2-3 \mu)+1 \cdot(3 \mu-1)=3-3 \mu
$$

Since:

$$
\left|\Theta_{f}(\mu)\right|=\left|(3-3 \mu)\left(a_{4}-\frac{2}{3} a_{2} a_{3}\right)+(3 \mu-2)\left(a_{4}-a_{2} a_{3}\right)\right|, \quad \mu \in(2 / 3,1)
$$

from Lemma 12, Lemma 8, and the triangle inequality, we get the second part of Lemma 13, i.e.,:

$$
\left|\Theta_{f}(\mu)\right| \leq 1 \cdot(3-3 \mu)+2(3 \mu-2)=3 \mu-1<1 \cdot(3-3 \mu)+2(3 \mu-2)=3 \mu-1 .
$$

The results presented in Lemmas 8-13 can be collected as follows.

Theorem 1. Let $f \in \mathcal{C}_{0}(k), a_{2}$ be a real number, and $a_{2} \in[0,2]$. Then:

$$
\left|\Theta_{f}(\mu)\right| \leq \begin{cases}4-6 \mu, & \mu \leq 1 / 3 \\ 3-3 \mu, & \mu \in(1 / 3,2 / 3) \\ K, & \mu=2 / 3 \\ 3 \mu-1, & \mu \in(2 / 3,1) \\ 6 \mu-4, & \mu \geq 1\end{cases}
$$

where K is given by (25). The results are sharp for $\mu \leq 1 / 3, \mu=2 / 3$, and $\mu \geq 1$. The equality holds for the Koebe function (2) in the first and the last case. The assumption $a_{2} \in[0,2]$ is not necessary for $\mu \leq 0$ and $\mu \geq 1$.

5. Bounds of $|\Phi(\mu)|$ for the Class $\mathcal{C}_{0}(k)$

At the beginning of this section, we will quote the well known theorem of Marjono and Thomas [14].

Theorem 2 ([14]). If $f \in \mathcal{C}_{0}(k)$, then:

$$
\left|\Phi_{f}(1)\right|=\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1
$$

Now, we shall prove the bound for $\mu \geq 1$.
Theorem 3. Let $f \in \mathcal{C}_{0}(k)$ and $\mu \geq 1$. Then, $\left|\Phi_{f}(\mu)\right| \leq 9 \mu-8$. The result is sharp.
Proof. Rearranging the components in (14):

$$
\begin{aligned}
\Phi_{f}(\mu) & =\frac{1}{8}\left(p_{1} p_{3}-p_{2}^{2}\right)-\left(\frac{1}{9} \mu-\frac{1}{8}\right) p_{2}^{2}+\frac{1}{4}\left(p_{3}-p_{1} p_{2}\right)-\left(\frac{4}{9} \mu-\frac{1}{2}\right) p_{1} p_{2} \\
& -\left(\frac{2}{3} \mu-\frac{1}{2}\right) p_{2}-\left(\frac{4}{9} \mu-\frac{3}{8}\right) p_{1}^{2}-\left(\frac{4}{3} \mu-\frac{5}{4}\right) p_{1}-(\mu-1),
\end{aligned}
$$

and writing p instead of $\left|p_{1}\right|$, by Lemmas 1,3 , and 6 , for $\mu \geq 9 / 8$, we obtain:

$$
\begin{aligned}
\left|\Phi_{f}(\mu)\right| & \leq \frac{1}{8}\left(4-p^{2}\right)+\left(\frac{4}{9} \mu-\frac{1}{2}\right)+\frac{1}{2}+\left(\frac{8}{9} \mu-1\right) p+\left(\frac{4}{3} \mu-1\right) \\
& +\left(\frac{4}{9} \mu-\frac{3}{8}\right) p^{2}+\left(\frac{4}{3} \mu-\frac{5}{4}\right) p+(\mu-1) \\
& =\left(\frac{4}{9} \mu-\frac{1}{2}\right) p^{2}+\left(\frac{20}{9} \mu-\frac{9}{4}\right) p+\frac{25}{9} \mu-\frac{3}{2} \\
& \leq 9 \mu-8 .
\end{aligned}
$$

If $\mu \in(1,9 / 8)$, then:

$$
\Phi_{f}(\mu)=(9-8 \mu)\left(a_{2} a_{4}-a_{3}^{2}\right)+(8 \mu-8)\left(a_{2} a_{4}-\frac{9}{8} a_{3}^{2}\right) .
$$

From the previous part of this proof $\left|a_{2} a_{4}-\frac{9}{8} a_{3}{ }^{2}\right| \leq \frac{17}{8}$ and from Theorem 2, after using the triangle inequality, we get:

$$
\left|\Phi_{f}(\mu)\right| \leq(9-8 \mu) \cdot 1+(8 \mu-8) \cdot \frac{17}{8}=9 \mu-8
$$

It is easy to verify that for the Koebe function (2), we have $\Phi_{k}(\mu)=8-9 \mu$, so the derived estimate is sharp.

In the next step, we shall prove that the Koebe function (2) is the extremal function for $\mu \leq 63 / 92$.
Theorem 4. Let $f \in \mathcal{C}_{0}(k)$ and $\mu \leq 63 / 92$. Then, $\left|\Phi_{f}(\mu)\right| \leq 8-9 \mu$. The result is sharp.

Proof. At the beginning, let us discuss the case $\mu=63 / 92$. From (14), it follows that:

$$
\begin{aligned}
184 \Phi_{f}\left(\frac{63}{92}\right) & =14\left(p_{1} p_{3}-p_{2}^{2}\right)+9 p_{1} p_{3}+20\left(p_{3}-\frac{1}{2} p_{1} p_{2}\right) \\
& +4\left(p_{3}+2 p_{2}+p_{1}\right)+22 p_{3}+58 p_{1}+13 p_{1}^{2}+58
\end{aligned}
$$

Now, applying Lemmas 1 and 4 for $\mu=1 / 2$, Lemma 5 (remembering that $\left.2\left(2+\operatorname{Re} p_{1}\right) \leq 2\left(2+\left|p_{1}\right|\right)\right)$, Lemma 6, and the triangle inequality and writing p instead of $\left|p_{1}\right|$, we obtain:

$$
184\left|\Phi_{f}\left(\frac{63}{92}\right)\right| \leq 14\left(4-p^{2}\right)+18 p+20 h(p)+8(2+p)+44+58 p+13 p^{2}+58
$$

where:

$$
h(p)= \begin{cases}\frac{1}{16} p^{3}-\frac{3}{8} p^{2}+2, & p \in[0,4 / 3] \\ 2 p-\frac{1}{2} p^{3}, & p \in[4 / 3,2]\end{cases}
$$

Hence,

$$
184\left|\Phi_{f}\left(\frac{63}{92}\right)\right| \leq H(p)
$$

where:

$$
H(p)= \begin{cases}\frac{5}{4} p^{3}-\frac{17}{2} p^{2}+84 p+214, & p \in[0,4 / 3] \tag{31}\\ -10 p^{3}-p^{2}+124 p+174, & p \in[4 / 3,2]\end{cases}
$$

Is it clear that H is an increasing function for $p \in[0,2]$, so:

$$
\left|\Phi_{f}\left(\frac{63}{92}\right)\right| \leq H(2)=\frac{338}{184}=8-9 \cdot \frac{63}{92} .
$$

If $\mu \in(0,63 / 92)$, then:

$$
\Phi_{f}(\mu)=\left(1-\frac{92}{63} \mu\right) a_{2} a_{4}+\frac{92}{63} \mu\left(a_{2} a_{4}-\frac{63}{92} a_{3}^{2}\right)
$$

From the previous part of this proof and the bound $\left|a_{n}\right| \leq n$ valid for all functions in $\mathcal{C}_{0}(k)$,

$$
\left|\Phi_{f}(\mu)\right| \leq\left(1-\frac{92}{63} \mu\right) \cdot 8+\frac{92}{63} \mu \cdot \frac{338}{184}=8-9 \mu
$$

Equality holds for the Koebe function.
It is worth adding that the function H given by (31) is decreasing for $p>2$, so the choice $\mu=63 / 92$ is important.

Now, we will find the exact bound of $\Phi_{f}(\mu)$ for μ close to one. Namely, we will discuss the case $\mu \in\left[\mu_{0}, 1\right]$, where:

$$
\begin{equation*}
\mu_{0}=18 / 19=0.947 \ldots \tag{32}
\end{equation*}
$$

In this result, we need in addition that the coefficient a_{2} should be real and $a_{2} \in[0,2]$. From (12), we get $p=p_{1} \in[-2,2]$. In the proof, we are going to apply Lemma 7 .

Taking into account (14) and Lemma 2, we can write $\Phi_{f}(\mu)$ as follows:

$$
144 \Phi_{f}(\mu)=A_{0}+A_{1} x+A_{2} x^{2}+B\left(1-|x|^{2}\right) y
$$

where:

$$
\begin{aligned}
A_{0} & =\frac{1}{2}(9-8 \mu) p^{4}+(27-32 \mu) p^{3}+2(45-56 \mu) p^{2}+12(15-16 \mu) p+144(1-\mu) \\
A_{1} & =\left(4-p^{2}\right)\left[12(3-4 \mu)+4(9-8 \mu) p+(9-8 \mu) p^{2}\right] \\
A_{2} & =-\frac{1}{2}\left(4-p^{2}\right)(2+p)[(9-8 \mu) p+16 \mu] \\
B & =9\left(4-p^{2}\right)(2+p)
\end{aligned}
$$

If $p=-2$ and $p=2$, then $f(z)=\frac{1}{2} \log \frac{1+z}{1-z}$ and $f(z)=\frac{z}{(1-z)^{2}}$, respectively, so:

$$
\begin{equation*}
\Phi_{f}(\mu)=-\mu / 9 \quad \text { and } \quad \Phi_{f}(\mu)=8-9 \mu \tag{33}
\end{equation*}
$$

We will show that these values are less than or equal to the real bound of $\left|\Phi_{f}(\mu)\right|$ for all $f \in \mathcal{C}_{0}(k)$. Now and on, we assume that $p \in(-2,2)$. Taking into account (14) and Lemma 2, by the triangle inequality and the assumption $|y| \leq 1$, we get:

$$
\begin{equation*}
\left|\Phi_{f}(\mu)\right| \leq \frac{1}{16}\left(4-p^{2}\right)(2+p)\left[\left|a+b x+c x^{2}\right|+1-|x|^{2}\right] \tag{34}
\end{equation*}
$$

where:

$$
\begin{align*}
a & =\frac{1}{9\left(4-p^{2}\right)(2+p)}\left[\frac{1}{2}(9-8 \mu) p^{4}+(27-32 \mu) p^{3}+2(45-56 \mu) p^{2}\right. \\
& +12(15-16 \mu) p+144(1-\mu)] \\
b & =\frac{1}{9(2+p)}\left[(9-8 \mu) p^{2}+4(9-8 \mu) p+12(3-4 \mu)\right] \tag{35}\\
c & =-\frac{1}{18}[(9-8 \mu) p+16 \mu]
\end{align*}
$$

Now, we are ready to establish the main theorem of this section.
Theorem 5. Let $f \in \mathcal{C}_{0}(k), a_{2}$ be a real number, $a_{2} \in[0,2]$, and $\mu \in\left[\mu_{0}, 1\right]$, where $\mu_{0}=18 / 19$. Then:

$$
\begin{equation*}
\left|\Phi_{f}(\mu)\right| \leq \frac{\mu}{9-8 \mu} \tag{36}
\end{equation*}
$$

Equality holds for the function F given by (15).
In the proof of this theorem, we will need the two lemmas that follow. We assume that a, b, and c are given by (35).

Lemma 14. If $(p, \mu) \in(-2,2) \times\left[\mu_{0}, 1\right]$ are such that $a \leq 0$, then (36) holds.
Lemma 15. If $(p, \mu) \in(-2,2) \times\left[\mu_{0}, 1\right]$ are such that $a>0$, then the following inequalities hold:

$$
b<0,|b| \geq 2(1-|c|), b^{2} \geq-4 a\left(1-c^{2}\right) / c,|a b| \leq|c|(|b|-4|a|) .
$$

Proof of Lemma 14. At the beginning, observe that if $(p, \mu) \in(-2,2) \times\left[\mu_{0}, 1\right]$, then:

$$
\begin{equation*}
c=-\frac{1}{18}[9 p+8(2-p) \mu] \leq-\frac{1}{18}\left[9 p+8(2-p) \cdot \frac{18}{19}\right]=-\frac{1}{38}(3 p+32)<0 . \tag{37}
\end{equation*}
$$

According to Lemma 7 from (34), we obtain:

$$
\left|\Phi_{f}(\mu)\right| \leq \frac{1}{16}\left(4-p^{2}\right)(2+p) \cdot Y(a, b, c)
$$

where:

$$
Y(a, b, c)= \begin{cases}-a+|b|-c & ,|b| \geq 2(1+c) \\ 1-a+\frac{b^{2}}{4(1+c)} & ,|b|<2(1+c)\end{cases}
$$

If $|b|<2(1+c)$, then from (34), we get:

$$
\begin{aligned}
144\left|\Phi_{f}(\mu)\right| & \leq 9\left(4-p^{2}\right)(2+p) \\
& -\left[\frac{1}{2}(9-8 \mu) p^{4}+(27-32 \mu) p^{3}+2(45-56 \mu) p^{2}+12(15-16 \mu) p+144(1-\mu)\right] \\
& +\frac{\left[(9-8 \mu) p^{2}+4(9-8 \mu) p+12(3-4 \mu)\right]^{2}}{2(9-8 \mu)}
\end{aligned}
$$

Because the right hand side of this inequality is constant and equal to $144 \mu /(9-8 \mu)$; hence, $\left|\Phi_{f}(\mu)\right| \leq \mu /(9-8 \mu)$.

If $|b| \geq 2(1+c)$, then:

$$
\left|\Phi_{f}(\mu)\right| \leq \begin{cases}\frac{1}{16}\left(4-p^{2}\right)(2+p)(-a+b-c), & b \geq 0 \tag{38}\\ \frac{1}{16}\left(4-p^{2}\right)(2+p)(-a-b-c), & b \leq 0\end{cases}
$$

The first expression in (38) is equal to:

$$
\begin{aligned}
& \frac{1}{144}\left[-2(9-8 \mu) p^{4}-8(9-8 \mu) p^{3}-24(3-4 \mu) p^{2}+64 \mu p+16 \mu\right] \\
& =-\frac{1}{72}\left[(9-8 \mu) p^{2}(p+2)^{2}-16 \mu(p+1)^{2}+8 \mu\right] .
\end{aligned}
$$

Substituting $q=p+1, q \in(-1,3)$, we obtain:

$$
W_{1}(q)=-\frac{1}{72}\left[(9-8 \mu) q^{4}-18 q^{2}+9\right]=-\frac{1}{72}\left[(3-2 \sqrt{2 \mu}) q^{2}-3\right] \cdot\left[(3+2 \sqrt{2 \mu}) q^{2}-3\right]
$$

Hence, the maximum value of $W_{1}(q)$ is achieved for:

$$
q_{*}^{2}=\frac{1}{2}\left(\frac{3}{3-2 \sqrt{2 \mu}}+\frac{3}{3+2 \sqrt{2 \mu}}\right)=\frac{9}{9-8 \mu} .
$$

This value is equal to $W_{1}\left(q_{*}\right)=\mu /(9-8 \mu)$.
The second expression in (38) is equal to:

$$
W_{2}(p)=\frac{1}{18}\left[-(9-8 \mu) p^{2}-4(9-10 \mu) p-2(18-25 \mu)\right]
$$

so:

$$
W_{2}(p) \leq W_{2}\left(\frac{2(10 \mu-9)}{9-8 \mu}\right)=\frac{\mu}{9-8 \mu}
$$

It is easy to check that for $p_{*}=q_{*}-1=3 / \sqrt{9-8 \mu}-1$ and $p_{* *}=2(10 \mu-9) /(9-8 \mu)$, we have $b=2(1+c)$ and $b=-2(1+c)$, respectively. This means that the maximum value of $\left|\Phi_{f}(\mu)\right|$ for $|b| \geq 2(1+c)$ is obtained if $|b|=2(1+c)$.

Proof of Lemma 15. Let $(p, \mu) \in(-2,2) \times\left[\mu_{0}, 1\right]$. At the beginning, we want to constrain the range of variability of p to some subset of $(-2,2)$ for which $a>0$.

From (35) for $a=0$, we have:

$$
\frac{1}{2}(9-8 \mu) p^{4}+(27-32 \mu) p^{3}+2(45-56 \mu) p^{2}+12(15-16 \mu) p+144(1-\mu)=0
$$

which is equivalent to:

$$
9\left(p^{2}+2 p+8\right)(2+p)^{2}-8\left(p^{2}+4 p+6\right)^{2} \mu=0
$$

If $p=0, \mu=0$, then from (35), $a=2$. Hence, points for which $a>0$ lie below the curve $a=0$. For the function $M(p)=9\left(p^{2}+2 p+8\right)(2+p)^{2} / 8\left(p^{2}+4 p+6\right)^{2}, p \in(-2,2)$, there is:

$$
M^{\prime}(p)=\frac{9(2+p)}{4\left(p^{2}+4 p+6\right)^{3}} \cdot\left(p^{3}+2 p^{2}-10 p-4\right)
$$

Consequently, $M(p)$ is an increasing function if $p \in\left(-2, p_{0}\right)$ and a decreasing function if $p \in\left(p_{0}, 2\right)$ for $p_{0}=-0,376 \ldots$, where p_{0} is the only solution of $M^{\prime}(p)=0$ in $(-2,2)$. Since $M(-1)<\mu_{0}$ and $M(2 / 3)<\mu_{0}$, then $M(p)<\mu_{0}$ for $p \in(-2,-1] \cup[2 / 3,2)$. This means that $a>0$ and $\mu \in\left[\mu_{0}, 1\right]$ hold for $p \in I, I \subset(-1,2 / 3)$ (in other words, if $a>0$ and $\mu \in\left[\mu_{0}, 1\right]$, then $-1<p<2 / 3$).
I. Since $\mu \in\left[\mu_{0}, 1\right]$ and:

$$
b=\frac{1}{9}(9-8 \mu)(2+p)-\frac{16 \mu}{9(2+p)}
$$

as a function of $p \in(-1,2 / 3)$, is increasing, it is enough to estimate this expression taking $p=2 / 3$ as a limit value. Therefore,

$$
b<\frac{2}{27}(36-41 \mu)<0
$$

II. The inequality $-b \geq 2(1+c)$ can be written as $(8 \mu-9) p+20 \mu-18 \geq 0$. For $\mu \in\left[\mu_{0}, 1\right]$ and $p \in(-1,2 / 3)$,

$$
(8 \mu-9) p+20 \mu-18>\frac{76}{3}\left(\mu-\frac{18}{19}\right) \geq 0
$$

III. With the notation $W=b^{2}+4 a\left(1-c^{2}\right) / c$ and:

$$
g(p, \mu)=(9-8 \mu)\left[(16 \mu-9) p^{3}+18(4 \mu-3) p^{2}+4(25 \mu-27) p\right]-8\left(32 \mu^{2}-117 \mu+81\right)
$$

we can write:

$$
W=\frac{8 g(p, \mu)}{9(2+p)^{2}[(9-8 \mu) p+16 \mu]}
$$

We shall prove that $g(p, \mu) \geq 0$ for $\mu \in\left[\mu_{0}, 1\right]$ and $p \in(-1,2 / 3)$. We have:

$$
\frac{\partial g}{\partial p}(p, \mu)=(9-8 \mu)\left[3(16 \mu-9) p^{2}+36(4 \mu-3) p+4(25 \mu-27)\right]
$$

For $\mu \in\left[\mu_{0}, 1\right]$, we obtain:

$$
\frac{\partial g}{\partial p}(-1, \mu)=(4 \mu-27)(9-8 \mu)<0
$$

and:

$$
\frac{\partial g}{\partial p}(2 / 5, \mu)=4(1033 \mu-972)(9-8 \mu) / 25>0
$$

This means that:

$$
\min \left\{g(p, \mu): p \in(-1,2 / 3), \mu \in\left[\mu_{0}, 1\right]\right\}=\min \left\{g(p, \mu): p \in(-1,2 / 5], \mu \in\left[\mu_{0}, 1\right]\right\}
$$

Since $(16 \mu-9) p+18(4 \mu-3) \geq 0$ for $\mu \in\left[\mu_{0}, 1\right]$ and $p \in(-1,2 / 3)$, we have:

$$
\begin{aligned}
& \min \left\{g(p, \mu): p \in(-1,2 / 3), \mu \in\left[\mu_{0}, 1\right]\right\} \\
& >\min \left\{4(25 \mu-27)(9-8 \mu) p-8\left(32 \mu^{2}-117 \mu+81\right): p \in(-1,2 / 5], \mu \in\left[\mu_{0}, 1\right]\right\} \\
& \geq 4(25 \mu-27)(9-8 \mu) \cdot 2 / 5-8\left(32 \mu^{2}-117 \mu+81\right) \\
& =144\left(-20 \mu^{2}+57 \mu-36\right) / 5>0
\end{aligned}
$$

In this way, we have proven that $b^{2}+4 a\left(1-c^{2}\right) / c \geq 0$.
IV. Let us denote $V=c(b+4 a)+a b$ and:

$$
h(p, \mu)=32\left(p^{2}+4 p+6\right)(2 p+5)^{2} \mu^{2}-36(2+p)\left(16 p^{2}+71 p+82\right) \mu+81(2-p)(2+p)^{3} .
$$

We have

$$
V=\frac{4 h(p, \mu)}{81(2+p)^{2}\left(4-p^{2}\right)}
$$

The function h of a variable μ increases for $\mu \in\left[\mu_{0}, 1\right]$. Indeed, for a fixed $p \in(-1,2 / 3)$,

$$
\begin{aligned}
\frac{\partial h}{\partial \mu}(p, \mu) & =64\left(p^{2}+4 p+6\right)(2 p+5)^{2} \mu-36(2+p)\left(16 p^{2}+71 p+82\right) \\
& \geq 64\left(p^{2}+4 p+6\right)(2 p+5)^{2} \cdot \frac{18}{19}-36(2+p)\left(16 p^{2}+71 p+82\right) \\
& =\frac{36}{19}\left[32\left(p^{2}+4 p+6\right)(2 p+5)^{2}-19(2+p)\left(16 p^{2}+71 p+82\right)\right] \\
& =\frac{36}{19}\left[351+474(p+1)+395(p+1)^{2}+336(p+1)^{3}+128(p+1)^{4}\right]
\end{aligned}
$$

and is greater than zero. Finally,

$$
\frac{361}{81} h\left(p, \frac{18}{19}\right)=151 p^{4}+732(p+1) p^{2}+\frac{176}{3} p^{2}+\frac{4}{3}(6-7 p)^{2}>0
$$

so h, as well as V are positive for $\mu \in\left[\mu_{0}, 1\right]$ and $p \in(-1,2 / 3)$.
Proof of Theorem 4. From Lemma 14, we know that if $a \leq 0$ and $\mu \in\left[\mu_{0}, 1\right]$, then (36) holds. Assume now that $a>0$ and $\mu \in\left[\mu_{0}, 1\right]$. By Lemmas 7 and 15, and Formula (37),

$$
\left|\Phi_{f}(\mu)\right| \leq \frac{1}{16}\left(4-p^{2}\right)(2+p)(-|a|+|b|+|c|)=\frac{1}{16}\left(4-p^{2}\right)(2+p)(-a-b-c) .
$$

This expression is the same as in the second line in (38), and it takes the maximum value $\mu /(9-8 \mu)$ for $p=p_{* *}=2(10 \mu-9) /(9-8 \mu)$. Observe that the function $\left[\mu_{0}, 1\right] \ni \mu \mapsto 2(10 \mu-9) /(9-8 \mu)$ increases. Hence, $2 / 3 \leq p_{* *} \leq 2$, so $p_{* *}$ is not less than $2 / 3$. For this reason, the maximum value of $\left|\Phi_{f}(\mu)\right|$ is equal to $\mu /(9-8 \mu)$, but this value is obtained if $a \leq 0$.

It is easy to check that both values of $\Phi_{f}(\mu)$ for $f(z)=\frac{1}{2} \log \frac{1+z}{1-z}$ and $f(z)=k(z)$, which are given in (33), are less than or equal to $\mu /(9-8 \mu)$. This completes the proof.

Theorem 6. Let $f \in \mathcal{C}_{0}(k), \mu \in[63 / 92,18 / 19]$, and a_{2} be a real number, $a_{2} \in[0,2]$. Then:

$$
\left|\Phi_{f}(\mu)\right| \leq(396-361 \mu) / 81
$$

Proof. By Theorems 4 and $5,\left|\Phi_{f}(63 / 92)\right| \leq 169 / 92$ and $\left|\Phi_{f}(18 / 19)\right| \leq 2 / 3$. Putting $\alpha=4(414-437 \mu) / 459$, we can write:

$$
\Phi_{f}(\mu)=\alpha\left(a_{2} a_{4}-\frac{63}{92} a_{3}^{2}\right)+(1-\alpha)\left(a_{2} a_{4}-\frac{18}{19} a_{3}^{2}\right)
$$

Applying the triangle inequality, we obtain our claim.
The results presented in Theorems 2-6 can be collected as follows.
Corollary 1. Let $f \in \mathcal{C}_{0}(k)$ be given by (1), a_{2} be a real number, and $a_{2} \in[0,2]$. Then:

$$
\left|\Phi_{f}(\mu)\right| \leq \begin{cases}8-9 \mu, & \mu \leq 63 / 92 \\ (396-361 \mu) / 81, & \mu \in[63 / 92,18 / 19] \\ \frac{\mu}{9-8 \mu}, & \mu \in[18 / 19,1] \\ 9 \mu-8, & \mu \geq 1\end{cases}
$$

The results are sharp for $\mu \leq 63 / 92$ and $\mu \geq 18 / 19$. The equality holds for the Koebe function (2) in the first and the last case. The function F given by (15) is an extremal function when $\mu \in[18 / 19,1]$. The assumption $a_{2} \in[0,2]$ is not necessary for $\mu \leq 63 / 92$ and $\mu \geq 1$.

Observe that for $\mu \in(18 / 19,1)$, we have $\mu /(9-8 \mu)<1$, so the sharp bound for $\mathcal{C}_{0}(k)$ is less than the sharp bound for \mathcal{S}^{*} given by (5).

6. Concluding Remarks

In this paper, we estimated two functionals $\Theta_{f}(\mu)=a_{4}-\mu a_{2} a_{3}$ and $\Phi_{f}(\mu)=a_{2} a_{4}-\mu a_{3}{ }^{2}$ for the family $\mathcal{C}_{0}(k)$, where μ is a real number. This family is a subset of the class \mathcal{C} of all close-to-convex functions.

The results presented above broaden our knowledge about the behavior of the coefficient functionals defined for functions not only in \mathcal{C}, but also generally in the class \mathcal{S} of univalent functions. Unfortunately, there are no good estimates of the discussed functionals in the whole classes \mathcal{C} and \mathcal{S}. It seems that further research on the classes of the type $\mathcal{C}_{0}(f)$, where f is different from k, may result in obtaining some conclusions about \mathcal{S}.

In our opinion, the most important problem to be solved now is the estimating of the second Hankel determinant, or in other words $\Phi_{f}(1)$ for $f \in \mathcal{S}$. Even in the class \mathcal{C}_{0}, the exact bound is unknown. It is only known that for \mathcal{C}_{0}, there is $\left|a_{2} a_{4}-a_{3}{ }^{2}\right|<1.242 \ldots$ (see [25]). On the other hand, the conjecture posed by Thomas [26] about 30 years ago that $\left|a_{n} a_{n+2}-a_{n+1}{ }^{2}\right| \leq 1$ for \mathcal{S} and $n \geq 2$ was disproven. This means that there are functions in \mathcal{S} for which $\left|a_{n} a_{n+2}-a_{n+1}{ }^{2}\right|>1$. Finding (even non-sharp) estimates of $\Phi_{f}(1)$ for $f \in \mathcal{S}$ remains an interesting open problem.

Author Contributions: All authors contributed equally to this work.
Funding: The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (Contract No. 030/RID/2018/19).
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983.
2. Goodman, A.W.; Saff, E.B. On the definition of close-to-convex function. Int. J. Math. Math. Sci. 1978, 1, 125-132. [CrossRef]
3. Kaplan, W. Close to convex schlicht functions. Mich. Math. J. 1952, 1, 169-185. [CrossRef]
4. Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328-339. [CrossRef]
5. Efraimidis, I.; Vukotić, D. Applications of LivinGston-Type Inequalities to the Generalized Zalcman Functional. arxiv 2017, arxiv:1611.00682v3.
6. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111-122. [CrossRef]
7. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108-112. [CrossRef]
8. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha. J. Math. Inequal. 2017, 11, 429-439. [CrossRef]
9. Cho, N.E.; Kowalczyk, B.; Kwon, O.S.; Lecko, A.; Sim, Y.J. The bounds of some determinants for starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2018, 41, 523-535. [CrossRef]
10. Hayman, W.K. On the second Hankel determinant of mean univalent functions. Proc. Lond. Math. Soc. 1968, 18, 77-94. [CrossRef]
11. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619-625.
12. Krishna, D.V.; RamReddy, T. Hankel determinant for starlike and convex functions of order alpha. Tbil. Math. J. 2012, 5, 65-76. [CrossRef]
13. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequal. Appl. 2013, 2013, 281. [CrossRef]
14. Marjono, M.; Thomas, D.K. The second Hankel determinant of functions convex in one direction. Int. J. Math. Anal. 2016, 10, 423-428. [CrossRef]
15. Noor, K.I. On the Hankel determinant problem for strongly close-to-convex functions. J. Nat. Geom. 1997, 11, 29-34.
16. Zaprawa, P. Second Hankel determinants for the class of typically real functions. Abstr. Appl. Anal. 2016, 2016, 3792367. [CrossRef]
17. Hayami, T.; Owa, S. Generalized Hankel determinant for certain classes. Int. J. Math. Anal. 2010, 52, 2573-2585.
18. Zaprawa, P. On the Fekete-Szegö type functionals for starlike and convex functions. Turk. J. Math. 2018, 42, 537-547. [CrossRef]
19. Zaprawa, P. On the Fekete-Szegö type functionals for functions which are convex in the direction of the imaginary axis. C. R. Math. Acad. Sci. Paris 2020.
20. Libera, R.J.; Złotkiewicz, E.J. Coefficients bounds for the inverse of a function with derivative in \mathcal{P}. Proc. Am. Math. Soc. 1983, 87, 251-257. [CrossRef]
21. Libera, R.J.; Złotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225-230. [CrossRef]
22. Trąbka-Więcław, K.; Zaprawa, P. On the coefficient problem for close-to-convex functions. Turk. J. Math. 2018, 42, 2809-2818. [CrossRef]
23. Lecko, A. On coefficient inequalities in the Caratheodory class of functions. Ann. Pol. Math. 2000, 75,59-67. [CrossRef]
24. Choi, J.H.; Kim, Y.C.; Sugawa, T. A general approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707-727. [CrossRef]
25. Răducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. C. R. Math. Acad. Sci. Paris 2017, 355, 1063-1071. [CrossRef]
26. Thomas, D.K. Bazilevič functions with logarithmic groth. In New Trends in Geometric Function Theory and Application; Parvatham, R., Ponnusamy, S., Eds.; World Scientific Publishing Company: Singapore; New Jersey, NJ, USA; London, UK; Hong Kong, China, 1991; pp. 146-158.

(c) 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
