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Abstract: In this paper, we consider two functionals of the Fekete–Szegö type Θ f (µ) = a4 − µa2a3

and Φ f (µ) = a2a4− µa3
2 for a real number µ and for an analytic function f (z) = z+ a2z2 + a3z3 + . . . ,

|z| < 1. This type of research was initiated by Hayami and Owa in 2010. They obtained results
for functions satisfying one of the conditions Re { f (z)/z} > α or Re { f ′(z)} > α, α ∈ [0, 1). Similar
estimates were also derived for univalent starlike functions and for univalent convex functions.
We discuss Θ f (µ) and Φ f (µ) for close-to-convex functions such that f ′(z) = h(z)/(1− z)2, where h
is an analytic function with a positive real part. Many coefficient problems, among others estimating
of Θ f (µ), Φ f (µ) or the Hankel determinants for close-to-convex functions or univalent functions, are
not solved yet. Our results broaden the scope of theoretical results connected with these functionals
defined for different subclasses of analytic univalent functions.

Keywords: coefficient problem; close-to-convex function; Fekete–Szegö functional; functional of
Fekete–Szegö type

1. Introduction

Let A be the family of all functions analytic in ∆ = {z ∈ C : |z| < 1|} having the power
series expansion:

f (z) = z + a2z2 + a3z3 + . . . , (1)

and let S∗ denote the class of univalent starlike functions in A (for the definitions and properties of S∗
and other classes, see [1]). For a given real argument β ∈ (−π/2, π/2) and a given function g ∈ S∗,
a function f ∈ A is called close-to-convex with argument β with respect to g if:

Re
{

eiβz f ′(z)
g(z)

}
> 0, z ∈ ∆ .

Let Cβ(g) be the class of all such functions. Moreover, let:

Cβ =
⋃

g∈S∗
Cβ(g).

Let C denote the family of all close-to-convex functions (see [2,3]). It is obvious that:

C =
⋃

β∈(−π/2,π/2)

Cβ .

All functions in C are univalent.
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In this paper, we consider the class C0(k), where k is the Koebe function:

k(z) =
z

(1− z)2 = z + 2z2 + 3z3 + . . . . (2)

The class C0(k) is sometimes denoted by CR+. Such functions have a well known geometrical meaning.
Namely, for each function f in this class, the set f (∆) is a domain such that {w + t : t ≥ 0} ⊂ f (∆) for
every w ∈ f (∆). Such functions f are convex in the positive direction of the real axis.

For a function f analytic in ∆ of the form (1), we define two functionals for a fixed real µ:

Θ f (µ) = a4 − µa2a3 (3)

and:
Φ f (µ) = a2a4 − µa3

2 . (4)

The functionals Θ f (µ) and Φ f (µ) are the generalizations of two well known expressions: a4 − a2a3 and
a2a4 − a3

2. Both functionals are symmetric, or invariant, under rotations. The first one is a particular
case of the generalized Zalcman functional. It was investigated, among others, by Ma [4] and Efraimidis
and Vukotić [5]. The second functional is known as the second Hankel determinant, and it was studied
in many papers. The investigation of Hankel determinants for analytic functions was started by
Pommerenke (see [6,7]) and continued by many mathematicians in various classes of univalent
functions (see, for example [8–16]). The functional Φ f (µ) was first studied by Hayami and Owa [17].
They discussed an even more general functional anan+2 − µan+1

2 for the classes Q(α) and R(α),
α ∈ [0, 1), of functions f ∈ A such that Re { f (z)/z} > α and Re { f ′(z)} > α, respectively. The
functionals Φ f (µ) and Θ f (µ) for the classes S∗ and K of starlike and convex functions, respectively,
were discussed in [18].

It is worth pointing out a particularly interesting property of Φ f (µ). The sharp estimates of this
functional are often symmetric with respect to a certain point. It was shown in [18] that such points for
S∗ and K are 8/9 and one, respectively. We have:

|Φ f (µ)| ≤ max{|9µ− 8|, 1} for S∗ (5)

and:
|Φ f (µ)| ≤ max{|µ− 1|, 1/8} for K.

A similar situation occurs for Q(1/2) and for the class C0(h), where h(z) = z/(1− z2); this point is
1/2 (see [17,19]). This situation appears even in the class T of typically real functions, which do not
necessarily have to be univalent (see [19]).

In this work, we derive bounds of Θ f (µ) and Φ f (µ) for functions in C0(k).

2. Preliminary Results

Let P denote the class of all analytic functions h with a positive real part in ∆ satisfying the
normalization condition h(0) = 1. Let h ∈ P have the Taylor series expansion:

h(z) = 1 + p1z + p2z2 + p3z3 + . . . . (6)

We shall need here three results. The first one is known as Caratheodory’s lemma (see, for example,
ref. [1]). The second one is due to Libera and Złotkiewicz ([20,21]), and the third one is the result of
Hayami and Owa.

Lemma 1 ([1]). If h ∈ P is given by (6), then the sharp inequality |pn| ≤ 2 holds for n ≥ 1.
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Lemma 2 ([20,21]). Let h be given by (6) and p1 be a given real number, p1 ∈ [−2, 2]. Then, h ∈ P if and
only if:

2p2 = p1
2 + (4− p1

2)x

and:
4p3 = p1

3 + 2(4− p1
2)p1x− (4− p1

2)p1x2 + 2(4− p1
2)(1− |x|2)y

for some complex numbers x, y such that |x| ≤ 1, |y| ≤ 1.

Lemma 3 ([17]). If h ∈ P is given by (6), then:

|p3 − µp1 p2| ≤ max{2, |2− 4µ|} .

The next lemma is an improvement of Lemma 3 for µ ∈ [1/2, 1].

Lemma 4 ([22]). If h ∈ P is given by (6) and µ ∈ [1/2, 1], then:

|p3 − µp1 p2| ≤
{

1
4 µ2 p3 − 1

2 µ(2− µ)p2 + 2, p ∈ [0, 2/(2− µ)] ,

(3− 2µ)p− (1− µ)p3, p ∈ [2/(2− µ), 2] ,
(7)

where p = |p1|. The inequality is sharp.

The following lemma was proven by Lecko (see Corollary 2.3 in [23]).

Lemma 5 ([23]). If h ∈ P is given by (6), then:

|pn+1 + 2pn + pn−1| ≤ 2(2 + Re{p1}) . (8)

We have proven the next lemma.

Lemma 6. If h ∈ P is given by (6), then:

|p1 p3 − p2
2| ≤ 4− |p1|2 . (9)

The inequality is sharp.

Proof. By Lemma 2,
4(p1 p3 − p2

2) = (4− p1
2)
[
2p1(1− |x|2)y− 4x2

]
.

Applying the invariance of |p1 p3 − p2
2| under rotation, we can assume that p1 is a non-negative

real number. Writing r = |x| ∈ [0, 1] and p = p1 ∈ [0, 2], we get by the triangle inequality and the
assumption |y| ≤ 1:

4|p1 p3 − p2
2| ≤ (4− p2)[2p(1− r2) + 4r2] = (4− p2)[2p + (4− 2p)r2] ≤ 4(4− p2) ,

which gives the desired bound. The equality (9) holds for:

h(z) =
(

1− p
2

) 1 + z2

1− z2 +
p
2

1 + z
1− z

= 1 + pz + 2z2 + pz3 + . . . , (10)

which means that there is equality in (9) for rotations of (10).
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The next lemma is a special case of more general results due to Choi et al. [24] (see also [9]).
Let ∆ = {z ∈ C : |z| ≤ 1}. Define:

Y(a, b, c) = max
z∈∆

(
|a + bz + cz2|+ 1− |z|2

)
, a, b, c ∈ R .

Lemma 7. If ac < 0, then:

Y(a, b, c) =


1 + |a|+ b2

4(1 + |c|) , |b| < 2(1 + |c|) and b2 < −4a(1− c2)/c ,

1− |a|+ b2

4(1− |c|) , |b| < 2(1− |c|) and b2 ≥ −4a(1− c2)/c ,

R(a, b, c), otherwise,

where:

R(a, b, c) =


|a|+ |b| − |c|, |ab| ≥ |c| (|b|+ 4|a|) ,

−|a|+ |b|+ |c|, |ab| ≤ |c| (|b| − 4|a|) ,

(|c|+ |a|)
√

1− b2

4ac
, otherwise.

If ac ≥ 0, then:

Y(a, b, c) =


|a|+ |b|+ |c|, |b| ≥ 2(1− |c|) ,

1 + |a|+ b2

4(1− |c|) , |b| < 2(1− |c|) .

Applying the correspondence between the functions in C0(k) and P :

(1− z)2 f ′(z) = h(z), f ∈ C0(k), h ∈ P (11)

and Expansions (1) and (6) we get:

2a2 = 2 + p1, 3a3 = 3 + 2p1 + p2, 4a4 = 4 + 3p1 + 2p2 + p3 . (12)

Moreover, by Lemma 1, Re {a2} ≥ 0 with equality if and only if p1 = −2. The equality is possible
only for the function h(z) = 1−z

1+z ∈ P , and then, f (z) = 1
2 log 1+z

1−z ∈ C0(k).
Hence, we can express Θ f (µ) and Φ f (µ) for f ∈ C0(k) as coefficients of a corresponding function

h ∈ P in the following way:

Θ f (µ) =
1
4 p3 + ( 1

2 −
1
3 µ)p2 + ( 3

4 −
7
6 µ)p1 − 1

6 µp1 p2 − 1
3 µp1

2 + 1− µ (13)

and:

Φ f (µ) =
1
8 p1 p3 − 1

9 µp2
2 + 1

4 p3 +
(

1
4 −

4
9 µ
)

p1 p2 +
(

1
2 −

2
3 µ
)

p2 (14)

+
(

3
8 −

4
9 µ
)

p1
2 +

(
5
4 −

4
3 µ
)

p1 + 1− µ .

3. Example

Let us consider the function:

F(z) = 1
2 (1− α) log

1 + z
1− z

+ α
z

(1− z)2 , α ∈ [0, 1] , (15)
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which has the following Taylor series expansion:

F(z) = (1− α)
(

z + 1
3 z3 + . . .

)
+ α

(
z + 2z2 + 3z3 + 4z4 + . . .

)
= z + 2αz2 + 1

3 (1 + 8α)z3 + 4αz4 + . . . .

Since:
(1− z)2F′(z) = (1− α)

1− z
1 + z

+ α
1 + z
1− z

∈ P ,

so F ∈ C0(k). Moreover,

F(∆) = C \
{

x± i(1− α)π
4 : x ≤ 1

4 [(1− α) ln 1−α
α − 1]

}
.

For F, we have:
ΘF(µ) =

2
3

[
−8µα2 + (6− µ)α

]
and:

ΦF(µ) =
1
9

[
8(9− 8µ)α2 − 16µα− µ

]
.

For µ < 0, we have: ΘF(µ) ≤ 4− 6µ and ΦF(µ) ≤ 8− 9µ. We find the estimation of ΘF(µ) and
ΦF(µ) for µ ≥ 0.

Let us denote:

f (α) = 2
3

[
−8µα2 + (6− µ)α

]
and g(α) = 1

9

[
8(9− 8µ)α2 − 16µα− µ

]
.

The critical point α0 = (6− µ)/(16µ) of f (α) is in (0, 1) if µ ∈ (6/17, 6). Hence,

|ΘF(µ)| ≤ max{| f (α0)|, | f (1)|, | f (0)|} = max
{∣∣∣∣ (6− µ)2

48µ

∣∣∣∣ , |4− 6µ|, 0,
}

for µ ∈ (6/17, 6) and:

|ΘF(µ)| ≤ max{| f (1)|, | f (0)|} = |4− 6µ| for µ ∈ [0, 6/17] ∪ [6, ∞) .

Similarly, the critical point α1 = µ/(9− 8µ) of g(α) is in (0, 1) if µ ∈ (0, 1). Hence,

|ΦF(µ)| ≤ max{|g(α1)|, |g(1)|, |g(0)|} = max
{∣∣∣∣ µ

8µ− 9

∣∣∣∣ , |8− 9µ|,
∣∣∣−µ

9

∣∣∣}
for µ ∈ (0, 1) and:

|ΦF(µ)| ≤ max{|g(1)|, |g(0)|} = |9µ− 8| for µ ∈ {0} ∪ [1, ∞) .

Finally, for a function F given by (15), we obtain:

ΘF(µ) ≤


4− 6µ, µ ≤ 6/17 = 0.352 . . .
(6− µ)2

48µ
, 6/17 ≤ µ ≤ 6(15 + 16

√
2)/287 = 0.786 . . .

6µ− 4, µ ≥ 6(15 + 16
√

2)/287

and:

ΦF(µ) ≤


8− 9µ, µ ≤ (73−

√
145)/72 = 0.846 . . .

µ

9− 8µ
, (73−

√
145)/72 ≤ µ ≤ 1

9µ− 8, µ ≥ 1 .
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4. Bounds of |Θ(µ)| for the Class C0(k)

In the main theorem of this section, we establish the sharp bounds of |Θ(µ)| for the class C0(k).
The proof is divided into six lemmas. The first one is a particular case of the result obtained in [22]
(Theorem 3.1 or Theorem 3.3 in [22]), and the second one is obvious.

Lemma 8. Let f ∈ C0(k). Then, |Θ f (1)| = |a4 − a2a3| ≤ 2. The result is sharp.

Lemma 9. Let f ∈ C0(k) and µ ≤ 0. Then, |Θ f (µ)| ≤ 4− 6µ. The result is sharp.

Lemma 10. Let f ∈ C0(k) and µ > 1. Then, |Θ f (µ)| ≤ 6µ− 4. The result is sharp.

Proof. From (13), we can write Θ f (µ) as follows:

Θ f (µ) =
1
4
(

p3 − 2
3 µp1 p2

)
+
(

1
2 −

1
3 µ
)

p2 − 1
3 µp1

2 +
( 3

4 −
7
6 µ
)

p1 + 1− µ .

If µ ≥ 3/2, then, taking into account Lemmas 1 and 3, we get:

|Θ f (µ)| ≤ 1
4
( 8

3 µ− 2
)
+ 2

(
1
3 µ− 1

2

)
+ 4

3 µ + 2
( 7

6 µ− 3
4
)
+ µ− 1 = 6µ− 4 .

If µ ∈ (1, 3/2), then we have:

Θ f (µ) = (3− 2µ)(a4 − a2a3) + (2µ− 2)(a4 − 3
2 a2a3) .

Now, from Lemma 8 and the first part of this proof (i.e., |a4 − 3
2 a2a3| ≤ 5), we obtain:

|Θ f (µ)| ≤ 2(3− 2µ) + 5(2µ− 2) = 6µ− 4.

It is clear that Θ f (µ) = 4− 6µ only when p1 = p2 = p3 = 2, which means that this equality
holds only for the Koebe function (2). In other words, the Koebe function is the extremal function for
µ > 1.

Taking into account (13) and Lemma 2, we can write Θ f (µ) as follows:

Θ f (µ) = 1 + 1
16 p1

3 + 1
4 p1

2 + 3
4 p1 − 1

12 µp1
3 − 1

2 µp1
2 − 7

6 µp1 − µ

+
[

1
8 p1 +

1
4 −

1
12 µ(2 + p1)

]
(4− p1

2)x− 1
16 (4− p1

2)p1x2 + 1
8 (4− p1

2)(1− |x|2)y .

From the above formula, we can obtain bounds of |Θ f (µ)|, while µ ∈ (0, 1) and f ∈ C0(k), but only
with an additional assumption that a2 is a positive real number. The assumption of Lemma 2 enforces
that p1 ∈ [−2, 2]. Notice that if p1 = 2, then f (z) = k(z) given by (2), and we have:

Θ f (µ) = 4− 6µ . (16)

If p1 = −2, then f (z) = 1
2 log 1+z

1−z = z + 1
3 z3 + 1

5 z5 + . . . is in C0(k), and so:

Θ f (µ) = 0 . (17)

To shorten notation, we write p instead of p1. One can observe that Θ f (µ) can be written as:

8 Θ f (µ) = (4− p2)
[

a + bx + cx2 + (1− |x|2)y
]

, (18)
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where:

a =
48(1− µ) + 4(9− 14µ)p + 12(1− 2µ)p2 + (3− 4µ)p3

6(4− p2)
,

b = (2 + p)(1− 2
3 µ) , (19)

c = − 1
2 p .

From (18), the triangle inequality, |y| ≤ 1, and Lemma 2, we get:

8 |Θ f (µ)| ≤ (4− p2)
[
|a + bx + cx2|+ 1− |x|2

]
, (20)

where a, b, and c are given by (19).

Lemma 11. Let f ∈ C0(k), a2 be a real number, a2 ∈ [0, 2] and µ ∈ (0, 1/3]. Then, |Θ f (µ)| ≤ 4− 6µ.
The result is sharp.

Proof. For µ = 1/3, we have (20) with:

a =
5p2 + 2p + 48

18(2− p)
, b =

7(2 + p)
9

, c = − p
2

.

We use Lemma 7. Clearly, ac < 0 for p ∈ (0, 2). Note that the inequality |b| < 2(1 + |c|) from the
first case of Lemma 7 is equivalent to the obviously true inequality:

7(2 + p) < 18(1 + p/2) . (21)

The inequality b2 < −4a(1− c2)/c, which can be written as:

4(2 + p)(p2 + 20p− 108)
81p

< 0 ,

holds for all p ∈ (0, 2). Hence, for p ∈ (0, 2), we have:

Y(a, b, c) = 1 + |a|+ b2

4(1 + |c|) =
2(238− 36p− p2)

81(2− p)
. (22)

For p ∈ (−2, 0], we have ac ≥ 0, and the inequality |b| < 2(1− |c|) from the last case of Lemma 7
is equivalent to (21). Therefore, Y(a, b, c) is also given by (22).

Thus, from (20) for µ = 1/3, Lemma 7, (16) and (17), we obtain:

|Θ f (1/3)| ≤ g(p) , (23)

where g(p) = (2 + p)(238− 36p− p2)/324 and p ∈ [−2, 2] according to the assumption. The function
g is increasing for p ∈ [−2, 2]; therefore:

|Θ f (1/3)| ≤ g(2) = 2 . (24)

Moreover, we have by the triangle inequality:

|Θ f (µ)| = (1− 3µ)a4 + 3µ(a4 − 1
3 a2a3), µ ∈ (0, 1/3) .

From Lemma 9 and from (24), we get:

|Θ f (µ)| ≤ 4(1− 3µ) + 2 · 3µ = 4− 6µ,
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and the proof is complete. Equality holds for the Koebe function (2).

Let us denote:

p0 = 2(
√

103− 10)/3 = 0.099 . . . ,

K = 16(103
√

103− 910)/2187 = 0.9901 . . . . (25)

Lemma 12. Let f ∈ C0(k), a2 be a real number, a2 ∈ [0, 2], and K be given by (25). Then, |Θ f (2/3)| ≤ K.
The result is sharp.

Proof. For µ = 2/3, we have (20) with:

a =
12− p

18
, b =

5(2 + p)
9

, c = − p
2

.

We use Lemma 7. Clearly, ac < 0 for p ∈ (0, 2]. First, note that the inequality |b| < 2(1 + |c|) is
equivalent to the obviously true inequality:

5(2 + p) < 18(1 + p/2) . (26)

The inequality b2 < −4a(1− c2)/c, which is equivalent to:

8(2 + p)(2p2 + 22p− 27)
81p

< 0 ,

holds for p ∈
(

0, (5
√

7− 11)/2
]
. For p ∈

(
0, (5
√

7− 11)/2
]
, we have:

Y(a, b, c) = 1 + |a|+ b2

4(1 + |c|) =
8(p + 20)

81
, (27)

so from (20) for µ = 2/3 and Lemma 7, we obtain:

|Θ f (2/3)| ≤ (4− p2)(p + 20)/81 . (28)

From Lemma 7, the inequality system consists of |b| < 2(1− |c|), and b2 ≥ −4a(1− c2)/c
is contradictory, because the first inequality gives p < 4/7, while the second one yields
p ≥ (5

√
7− 11)/2.

Now, consider the third case of Lemma 7. Let p ∈
[
(5
√

7− 11)/2, 2
]
. The inequality

|ab| ≥ |c|(|b|+ 4|a|) is equivalent to 60− 128p− 16p2 ≥ 0, and it is not satisfied for
any p ∈

[
(5
√

7− 11)/2, 2
]
. The inequality |ab| ≤ |c|(|b| − 4|a|), which can be written

as 30 + 44p− 17p2 ≤ 0, is also not satisfied for any p ∈
[
(5
√

7− 11)/2, 2
]
. Thus, for

p ∈
[
(5
√

7− 11)/2, 2
]
, we have:

Y(a, b, c) = (|c|+ |a|)
√

1− b2

4ac
=

4(2p + 3)
27

√
(2p + 25)(2p + 1)

(12− p)p
. (29)

From (20) for µ = 2/3 and Lemma 7, we obtain:

|Θ f (2/3)| ≤ (4− p2)(2p + 3)
54

√
(2p + 25)(2p + 1)

(12− p)p
. (30)
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For p ∈ [−2, 0], we have ac ≥ 0, and the inequality |b| < 2(1− |c|) from the last case of Lemma 7
is equivalent to the inequality in (26).

Thus, Y(a, b, c) is given by (27). Finally, from (16), (28) and (30), we obtain:

|Θ f (2/3)| ≤ g(p) ,

where:

g(p) =


1
81

(4− p2)(p + 20), p ∈
[
−2, (5

√
7− 11)/2

)
1
54

(4− p2)(2p + 3)

√
(2p + 25)(2p + 1)

(12− p)p
, p ∈

[
(5
√

7− 11)/2, 2
]

.

Now, let us consider the function g for p ∈
[
(5
√

7− 11)/2, 2
]
. We have:

g′(p) =
M(p)

54(12− p)2 p2

√
(12− p)p

(2p + 25)(2p + 1)
,

where M(p) = 24p6 − 52p5 − 3802p4 − 4801p3 + 4242p2 + 1500p− 1800 and:

M(p) = 24p5(p− 13/6) + 900(p− 2) + 3802p2(1− p2) + p(−4801p2 + 440p + 600) < 0

for p ∈ (1, 2]. Hence, g′(p) < 0 for p ∈
[
(5
√

7− 11)/2, 2
]
.

Taking the above into account, one can check that the function g is increasing for p ∈ [−2, p0)

and is decreasing for p ∈ (p0, 2], where p0 is given by (25). Therefore,

|Θ f (2/3)| ≤ g (p0) = 16(103
√

103− 910)/2187 = 0.9901 . . . ,

so we have the desired result.

Lemma 13. Let f ∈ C0(k), a2 be a real number, and a2 ∈ [0, 2].

1. If µ ∈ (1/3, 2/3), then |Θ f (µ)| < 3− 3µ.
2. If µ ∈ (2/3, 1), then |Θ f (µ)| < 3µ− 1.

Proof. We have:

|Θ f (µ)| = |(2− 3µ)(a4 − 1
3 a2a3) + (3µ− 1)(a4 − 2

3 a2a3)|, µ ∈ (1/3, 2/3) .

From Lemmas 11 and 12, and the triangle inequality, we get the first part of Lemma 13, i.e.,:

|Θ f (µ)| ≤ 2(2− 3µ) + K · (3µ− 1) < 2(2− 3µ) + 1 · (3µ− 1) = 3− 3µ .

Since:
|Θ f (µ)| = |(3− 3µ)(a4 − 2

3 a2a3) + (3µ− 2)(a4 − a2a3)|, µ ∈ (2/3, 1) ,

from Lemma 12, Lemma 8, and the triangle inequality, we get the second part of Lemma 13, i.e.,:

|Θ f (µ)| ≤ 1 · (3− 3µ) + 2(3µ− 2) = 3µ− 1 < 1 · (3− 3µ) + 2(3µ− 2) = 3µ− 1 .

The results presented in Lemmas 8–13 can be collected as follows.
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Theorem 1. Let f ∈ C0(k), a2 be a real number, and a2 ∈ [0, 2]. Then:

|Θ f (µ)| ≤



4− 6µ, µ ≤ 1/3 ,

3− 3µ, µ ∈ (1/3, 2/3) ,

K, µ = 2/3 ,

3µ− 1, µ ∈ (2/3, 1) ,

6µ− 4, µ ≥ 1 ,

where K is given by (25). The results are sharp for µ ≤ 1/3, µ = 2/3, and µ ≥ 1. The equality holds for the
Koebe function (2) in the first and the last case. The assumption a2 ∈ [0, 2] is not necessary for µ ≤ 0 and
µ ≥ 1.

5. Bounds of |Φ(µ)| for the Class C0(k)

At the beginning of this section, we will quote the well known theorem of Marjono and
Thomas [14].

Theorem 2 ([14]). If f ∈ C0(k), then:

|Φ f (1)| = |a2a4 − a3
2| ≤ 1 .

Now, we shall prove the bound for µ ≥ 1.

Theorem 3. Let f ∈ C0(k) and µ ≥ 1. Then, |Φ f (µ)| ≤ 9µ− 8. The result is sharp.

Proof. Rearranging the components in (14):

Φ f (µ) =
1
8 (p1 p3 − p2

2)− ( 1
9 µ− 1

8 )p2
2 + 1

4 (p3 − p1 p2)− ( 4
9 µ− 1

2 )p1 p2

− ( 2
3 µ− 1

2 )p2 − ( 4
9 µ− 3

8 )p1
2 − ( 4

3 µ− 5
4 )p1 − (µ− 1) ,

and writing p instead of |p1|, by Lemmas 1, 3, and 6, for µ ≥ 9/8, we obtain:

|Φ f (µ)| ≤ 1
8 (4− p2) + ( 4

9 µ− 1
2 ) +

1
2 + ( 8

9 µ− 1)p + ( 4
3 µ− 1)

+ ( 4
9 µ− 3

8 )p2 + ( 4
3 µ− 5

4 )p + (µ− 1)

= ( 4
9 µ− 1

2 )p2 + ( 20
9 µ− 9

4 )p + 25
9 µ− 3

2

≤ 9µ− 8 .

If µ ∈ (1, 9/8), then:

Φ f (µ) = (9− 8µ)
(

a2a4 − a3
2
)
+ (8µ− 8)

(
a2a4 − 9

8 a3
2
)

.

From the previous part of this proof |a2a4 − 9
8 a3

2| ≤ 17
8 and from Theorem 2, after using the

triangle inequality, we get:

|Φ f (µ)| ≤ (9− 8µ) · 1 + (8µ− 8) · 17
8 = 9µ− 8 .

It is easy to verify that for the Koebe function (2), we have Φk(µ) = 8− 9µ, so the derived estimate
is sharp.

In the next step, we shall prove that the Koebe function (2) is the extremal function for µ ≤ 63/92.

Theorem 4. Let f ∈ C0(k) and µ ≤ 63/92. Then, |Φ f (µ)| ≤ 8− 9µ. The result is sharp.
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Proof. At the beginning, let us discuss the case µ = 63/92. From (14), it follows that:

184Φ f
( 63

92
)
= 14(p1 p3 − p2

2) + 9p1 p3 + 20(p3 − 1
2 p1 p2)

+ 4(p3 + 2p2 + p1) + 22p3 + 58p1 + 13p1
2 + 58 .

Now, applying Lemmas 1 and 4 for µ = 1/2, Lemma 5 (remembering that
2(2 + Rep1) ≤ 2(2 + |p1|)), Lemma 6, and the triangle inequality and writing p instead of |p1|,
we obtain:

184|Φ f
( 63

92
)
| ≤ 14(4− p2) + 18p + 20h(p) + 8(2 + p) + 44 + 58p + 13p2 + 58 ,

where:

h(p) =

{
1

16 p3 − 3
8 p2 + 2 , p ∈ [0, 4/3] ,

2p− 1
2 p3 , p ∈ [4/3, 2] .

Hence,

184|Φ f
( 63

92
)
| ≤ H(p) ,

where:

H(p) =

{
5
4 p3 − 17

2 p2 + 84p + 214 , p ∈ [0, 4/3] ,

−10p3 − p2 + 124p + 174 , p ∈ [4/3, 2] .
(31)

Is it clear that H is an increasing function for p ∈ [0, 2], so:

|Φ f
( 63

92
)
| ≤ H(2) = 338

184 = 8− 9 · 63
92 .

If µ ∈ (0, 63/92), then:

Φ f (µ) = (1− 92
63 µ)a2a4 +

92
63 µ

(
a2a4 − 63

92 a3
2
)

.

From the previous part of this proof and the bound |an| ≤ n valid for all functions in C0(k),

|Φ f (µ)| ≤ (1− 92
63 µ) · 8 + 92

63 µ · 338
184 = 8− 9µ .

Equality holds for the Koebe function.

It is worth adding that the function H given by (31) is decreasing for p > 2, so the choice
µ = 63/92 is important.

Now, we will find the exact bound of Φ f (µ) for µ close to one. Namely, we will discuss the case
µ ∈ [µ0, 1], where:

µ0 = 18/19 = 0.947 . . . . (32)

In this result, we need in addition that the coefficient a2 should be real and a2 ∈ [0, 2]. From (12),
we get p = p1 ∈ [−2, 2]. In the proof, we are going to apply Lemma 7.

Taking into account (14) and Lemma 2, we can write Φ f (µ) as follows:

144Φ f (µ) = A0 + A1x + A2x2 + B(1− |x|2)y ,

where:
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A0 = 1
2 (9− 8µ) p4 + (27− 32µ) p3 + 2 (45− 56µ) p2 + 12 (15− 16µ) p + 144(1− µ) ,

A1 = (4− p2)
[
12(3− 4µ) + 4(9− 8µ)p + (9− 8µ)p2

]
,

A2 = − 1
2 (4− p2)(2 + p) [(9− 8µ)p + 16µ] ,

B = 9(4− p2)(2 + p) .

If p = −2 and p = 2, then f (z) = 1
2 log 1+z

1−z and f (z) = z
(1−z)2 , respectively, so:

Φ f (µ) = −µ/9 and Φ f (µ) = 8− 9µ . (33)

We will show that these values are less than or equal to the real bound of |Φ f (µ)| for all f ∈ C0(k).
Now and on, we assume that p ∈ (−2, 2). Taking into account (14) and Lemma 2, by the triangle
inequality and the assumption |y| ≤ 1, we get:

|Φ f (µ)| ≤ 1
16 (4− p2)(2 + p)

[∣∣∣a + bx + cx2
∣∣∣+ 1− |x|2

]
, (34)

where:

a =
1

9(4− p2)(2 + p)

[
1
2 (9− 8µ)p4 + (27− 32µ)p3 + 2(45− 56µ)p2

+12(15− 16µ)p + 144(1− µ)] ,

b =
1

9(2 + p)

[
(9− 8µ)p2 + 4(9− 8µ)p + 12(3− 4µ)

]
, (35)

c = − 1
18

[(9− 8µ)p + 16µ] .

Now, we are ready to establish the main theorem of this section.

Theorem 5. Let f ∈ C0(k), a2 be a real number, a2 ∈ [0, 2], and µ ∈ [µ0, 1], where µ0 = 18/19. Then:

|Φ f (µ)| ≤
µ

9− 8µ
. (36)

Equality holds for the function F given by (15).

In the proof of this theorem, we will need the two lemmas that follow. We assume that a, b, and c
are given by (35).

Lemma 14. If (p, µ) ∈ (−2, 2)× [µ0, 1] are such that a ≤ 0, then (36) holds.

Lemma 15. If (p, µ) ∈ (−2, 2)× [µ0, 1] are such that a > 0, then the following inequalities hold:

b < 0 , |b| ≥ 2(1− |c|) , b2 ≥ −4a(1− c2)/c , |ab| ≤ |c|(|b| − 4|a|) .

Proof of Lemma 14. At the beginning, observe that if (p, µ) ∈ (−2, 2)× [µ0, 1], then:

c = − 1
18 [9p + 8(2− p)µ] ≤ − 1

18

[
9p + 8(2− p) · 18

19

]
= − 1

38 (3p + 32) < 0 . (37)

According to Lemma 7 from (34), we obtain:

|Φ f (µ)| ≤ 1
16 (4− p2)(2 + p) ·Y(a, b, c) ,
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where:

Y(a, b, c) =


−a + |b| − c , |b| ≥ 2(1 + c) ,

1− a +
b2

4(1 + c)
, |b| < 2(1 + c) .

If |b| < 2(1 + c), then from (34), we get:

144|Φ f (µ)| ≤ 9(4− p2)(2 + p)

−
[

1
2 (9− 8µ)p4 + (27− 32µ)p3 + 2(45− 56µ)p2 + 12(15− 16µ)p + 144(1− µ)

]
+

[
(9− 8µ)p2 + 4(9− 8µ)p + 12(3− 4µ)

]2
2(9− 8µ)

.

Because the right hand side of this inequality is constant and equal to 144µ/(9− 8µ); hence,
|Φ f (µ)| ≤ µ/(9− 8µ).

If |b| ≥ 2(1 + c), then:

|Φ f (µ)| ≤
{

1
16 (4− p2)(2 + p)(−a + b− c) , b ≥ 0 ,
1

16 (4− p2)(2 + p)(−a− b− c) , b ≤ 0 .
(38)

The first expression in (38) is equal to:

1
144

[
−2(9− 8µ)p4 − 8(9− 8µ)p3 − 24(3− 4µ)p2 + 64µp + 16µ

]
= − 1

72

[
(9− 8µ)p2(p + 2)2 − 16µ(p + 1)2 + 8µ

]
.

Substituting q = p + 1, q ∈ (−1, 3), we obtain:

W1(q) = − 1
72

[
(9− 8µ)q4 − 18q2 + 9

]
= − 1

72

[
(3− 2

√
2µ)q2 − 3

]
·
[
(3 + 2

√
2µ)q2 − 3

]
.

Hence, the maximum value of W1(q) is achieved for:

q∗2 =
1
2

(
3

3− 2
√

2µ
+

3
3 + 2

√
2µ

)
=

9
9− 8µ

.

This value is equal to W1(q∗) = µ/(9− 8µ).
The second expression in (38) is equal to:

W2(p) = 1
18

[
−(9− 8µ)p2 − 4(9− 10µ)p− 2(18− 25µ)

]
,

so:

W2(p) ≤W2

(
2(10µ− 9)

9− 8µ

)
=

µ

9− 8µ
.

It is easy to check that for p∗ = q∗ − 1 = 3/
√

9− 8µ− 1 and p∗∗ = 2(10µ− 9)/(9− 8µ), we have
b = 2(1 + c) and b = −2(1 + c), respectively. This means that the maximum value of |Φ f (µ)| for
|b| ≥ 2(1 + c) is obtained if |b| = 2(1 + c).

Proof of Lemma 15. Let (p, µ) ∈ (−2, 2)× [µ0, 1]. At the beginning, we want to constrain the range of
variability of p to some subset of (−2, 2) for which a > 0.

From (35) for a = 0, we have:

1
2 (9− 8µ)p4 + (27− 32µ)p3 + 2(45− 56µ)p2 + 12(15− 16µ)p + 144(1− µ) = 0 ,
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which is equivalent to:

9(p2 + 2p + 8)(2 + p)2 − 8(p2 + 4p + 6)2µ = 0 .

If p = 0, µ = 0, then from (35), a = 2. Hence, points for which a > 0 lie below the curve a = 0.
For the function M(p) = 9(p2 + 2p + 8)(2 + p)2/8(p2 + 4p + 6)2, p ∈ (−2, 2), there is:

M′(p) =
9(2 + p)

4(p2 + 4p + 6)3 · (p3 + 2p2 − 10p− 4) .

Consequently, M(p) is an increasing function if p ∈ (−2, p0) and a decreasing function if
p ∈ (p0, 2) for p0 = −0, 376 . . ., where p0 is the only solution of M′(p) = 0 in (−2, 2). Since
M(−1) < µ0 and M(2/3) < µ0, then M(p) < µ0 for p ∈ (−2,−1] ∪ [2/3, 2). This means that
a > 0 and µ ∈ [µ0, 1] hold for p ∈ I, I ⊂ (−1, 2/3) (in other words, if a > 0 and µ ∈ [µ0, 1], then
−1 < p < 2/3).

I. Since µ ∈ [µ0, 1] and:

b =
1
9
(9− 8µ) (2 + p)− 16µ

9(2 + p)

as a function of p ∈ (−1, 2/3), is increasing, it is enough to estimate this expression taking p = 2/3 as
a limit value. Therefore,

b < 2
27 (36− 41µ) < 0 .

II. The inequality −b ≥ 2(1 + c) can be written as (8µ− 9)p + 20µ− 18 ≥ 0. For µ ∈ [µ0, 1] and
p ∈ (−1, 2/3),

(8µ− 9)p + 20µ− 18 > 76
3

(
µ− 18

19

)
≥ 0 .

III. With the notation W = b2 + 4a(1− c2)/c and:

g(p, µ) = (9− 8µ)
[
(16µ− 9)p3 + 18(4µ− 3)p2 + 4(25µ− 27)p

]
− 8(32µ2 − 117µ + 81) ,

we can write:

W =
8g(p, µ)

9(2 + p)2[(9− 8µ)p + 16µ]
.

We shall prove that g(p, µ) ≥ 0 for µ ∈ [µ0, 1] and p ∈ (−1, 2/3). We have:

∂g
∂p

(p, µ) = (9− 8µ)
[
3(16µ− 9)p2 + 36(4µ− 3)p + 4(25µ− 27)

]
.

For µ ∈ [µ0, 1], we obtain:

∂g
∂p

(−1, µ) = (4µ− 27)(9− 8µ) < 0 ,

and:
∂g
∂p

(2/5, µ) = 4 (1033µ− 972) (9− 8µ) /25 > 0 .

This means that:

min{g(p, µ) : p ∈ (−1, 2/3) , µ ∈ [µ0, 1]} = min{g(p, µ) : p ∈ (−1, 2/5] , µ ∈ [µ0, 1]} .
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Since (16µ− 9)p + 18(4µ− 3) ≥ 0 for µ ∈ [µ0, 1] and p ∈ (−1, 2/3), we have:

min{g(p, µ) : p ∈ (−1, 2/3) , µ ∈ [µ0, 1]}

> min
{

4(25µ− 27)(9− 8µ)p− 8(32µ2 − 117µ + 81) : p ∈ (−1, 2/5] , µ ∈ [µ0, 1]
}

≥ 4(25µ− 27)(9− 8µ) · 2/5− 8(32µ2 − 117µ + 81)

= 144(−20µ2 + 57µ− 36)/5 > 0 .

In this way, we have proven that b2 + 4a(1− c2)/c ≥ 0.

IV. Let us denote V = c(b + 4a) + ab and:

h(p, µ) = 32(p2 + 4p + 6)(2p + 5)2µ2 − 36(2 + p)(16p2 + 71p + 82)µ + 81(2− p)(2 + p)3 .

We have

V =
4h(p, µ)

81(2 + p)2(4− p2)
.

The function h of a variable µ increases for µ ∈ [µ0, 1]. Indeed, for a fixed p ∈ (−1, 2/3),

∂h
∂µ

(p, µ) = 64(p2 + 4p + 6)(2p + 5)2µ− 36(2 + p)(16p2 + 71p + 82)

≥ 64(p2 + 4p + 6)(2p + 5)2 · 18
19 − 36(2 + p)(16p2 + 71p + 82)

= 36
19

[
32(p2 + 4p + 6)(2p + 5)2 − 19(2 + p)(16p2 + 71p + 82)

]
= 36

19

[
351 + 474(p + 1) + 395(p + 1)2 + 336(p + 1)3 + 128(p + 1)4

]
and is greater than zero. Finally,

361
81 h(p, 18

19 ) = 151p4 + 732(p + 1)p2 + 176
3 p2 + 4

3 (6− 7p)2 > 0 ,

so h, as well as V are positive for µ ∈ [µ0, 1] and p ∈ (−1, 2/3).

Proof of Theorem 4. From Lemma 14, we know that if a ≤ 0 and µ ∈ [µ0, 1], then (36) holds. Assume
now that a > 0 and µ ∈ [µ0, 1]. By Lemmas 7 and 15, and Formula (37),

|Φ f (µ)| ≤ 1
16 (4− p2)(2 + p)(−|a|+ |b|+ |c|) = 1

16 (4− p2)(2 + p)(−a− b− c) .

This expression is the same as in the second line in (38), and it takes the
maximum value µ/(9− 8µ) for p = p∗∗ = 2(10µ− 9)/(9− 8µ). Observe that the function
[µ0, 1] 3 µ 7→ 2(10µ− 9)/(9− 8µ) increases. Hence, 2/3 ≤ p∗∗ ≤ 2, so p∗∗ is not less than 2/3.
For this reason, the maximum value of |Φ f (µ)| is equal to µ/(9− 8µ), but this value is obtained
if a ≤ 0.

It is easy to check that both values of Φ f (µ) for f (z) = 1
2 log 1+z

1−z and f (z) = k(z), which are given
in (33), are less than or equal to µ/(9− 8µ). This completes the proof.

Theorem 6. Let f ∈ C0(k), µ ∈ [63/92, 18/19], and a2 be a real number, a2 ∈ [0, 2]. Then:

|Φ f (µ)| ≤ (396− 361µ)/81 .

Proof. By Theorems 4 and 5, |Φ f (63/92)| ≤ 169/92 and |Φ f (18/19)| ≤ 2/3. Putting
α = 4(414− 437µ)/459, we can write:

Φ f (µ) = α(a2a4 − 63
92 a3

2) + (1− α)(a2a4 − 18
19 a3

2) .
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Applying the triangle inequality, we obtain our claim.

The results presented in Theorems 2–6 can be collected as follows.

Corollary 1. Let f ∈ C0(k) be given by (1), a2 be a real number, and a2 ∈ [0, 2]. Then:

|Φ f (µ)| ≤



8− 9µ, µ ≤ 63/92 ,

(396− 361µ)/81, µ ∈ [63/92, 18/19] ,
µ

9− 8µ
, µ ∈ [18/19, 1] ,

9µ− 8, µ ≥ 1 ,

The results are sharp for µ ≤ 63/92 and µ ≥ 18/19. The equality holds for the Koebe function (2)
in the first and the last case. The function F given by (15) is an extremal function when µ ∈ [18/19, 1].
The assumption a2 ∈ [0, 2] is not necessary for µ ≤ 63/92 and µ ≥ 1.

Observe that for µ ∈ (18/19, 1), we have µ/(9− 8µ) < 1, so the sharp bound for C0(k) is less
than the sharp bound for S∗ given by (5).

6. Concluding Remarks

In this paper, we estimated two functionals Θ f (µ) = a4 − µa2a3 and Φ f (µ) = a2a4 − µa3
2

for the family C0(k), where µ is a real number. This family is a subset of the class C of all
close-to-convex functions.

The results presented above broaden our knowledge about the behavior of the coefficient
functionals defined for functions not only in C, but also generally in the class S of univalent functions.
Unfortunately, there are no good estimates of the discussed functionals in the whole classes C and S .
It seems that further research on the classes of the type C0( f ), where f is different from k, may result in
obtaining some conclusions about S .

In our opinion, the most important problem to be solved now is the estimating of the second
Hankel determinant, or in other words Φ f (1) for f ∈ S . Even in the class C0, the exact bound is
unknown. It is only known that for C0, there is |a2a4 − a3

2| < 1.242 . . . (see [25]). On the other hand,
the conjecture posed by Thomas [26] about 30 years ago that |anan+2 − an+1

2| ≤ 1 for S and n ≥ 2 was
disproven. This means that there are functions in S for which |anan+2 − an+1

2| > 1. Finding (even
non-sharp) estimates of Φ f (1) for f ∈ S remains an interesting open problem.
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