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Abstract: The paper presents a complete geometric analysis of a novel parallel medical robotic
system designed for minimally invasive treatment of hepatic tumors using brachytherapy, ablation or
targeted chemotherapy. An algebraic method based on the study parameters of the special Euclidean
transformation Lie group SE(3) was used to determine the mechanism kinematics singularities and
workspace. Moreover, two particular medical tool manipulations for the minimally invasive medical
procedures are defined in terms of the Study parameters. The first manipulation of the medical tool
refers to the linear insertion (of e.g., needles) and the second one is the remote center of motion
manipulation of specific medical instruments (e.g., ultrasound probes). The constraint equations of
the robotic system are derived and then, the operational workspace is illustrated for the novel parallel
robotic system. Lastly, a numerical simulation is presented showing the behavior of the robotic
system manipulating the ultrasound probe constrained by the remote center of motion. The geometric
analysis of the operational workspace and the numerical simulation show promising results that
validate the novel robotic system (safe-wise) for the medical procedure.

Keywords: parallel robot; minimally invasive procedures; algebraic modeling; Study parameters

1. Introduction

In robotics and more specifically in mechanism analysis and synthesis there exists various
mathematical approaches to describe the mechanism kinematics, singularities and workspace,
which have both advantages and disadvantages [1]. Usually, the mathematical formulation used in
describing a mechanism is chosen to benefit from the specific advantages that the method provides
and depends strictly on the type (and even complexity) of the mechanism and sometimes on the task
of the robot. One algebraic method based on the Study parameters (or dual quaternion) of SE(3) which
is presented in [2–4], has the advantages (over some vector-based methods) that it describes the global
kinematics of the mechanisms (showing all the working modes and being a powerful tool to find the
mechanism singularities) and it is free of parameterization singularities. The Study parameters method
was used in the analysis of various robotic systems such as the Stewart-Gough platform [5], the 3-RPS
parallel manipulator [3], in the analysis of medical robots [4,6,7] and it was even tailored to analyze
rehabilitation robots such as the one found in [8].

Symmetry 2019, 11, 1491; doi:10.3390/sym11121491 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-4026-2318
https://orcid.org/0000-0001-7014-9431
http://dx.doi.org/10.3390/sym11121491
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/12/1491?type=check_update&version=2


Symmetry 2019, 11, 1491 2 of 17

In this paper, the authors exploited the advantages of the algebraic method based on the Study
parameters to achieve two main objectives: (i) a complete geometric analysis of the Pro-Hep-LCT robotic
system (which is designed for the liver cancer treatment through brachytherapy, ablation or targeted
chemotherapy under ultrasound imaging), and (ii) the analysis of the behavior of the robotic system
while it performs the medical task. The motivation of using the Study parameters for the first objective
is simply due to the fact that the Study parameters offer a description of the global kinematics of the
mechanism which in turn shows all the kinematic solutions, all the singularities and all the working
modes of the robotic system. All this information, especially the singularities of the mechanism (since
they define configurations where the control of the robotic system may be lost), should be valuable for
understanding the robotic system capabilities to perform the medical task from the safety point of view.
The motivation of the second objective was to provide the general Study parameter relations for two
fundamental ways in which the medical instruments are manipulated in minimally invasive procedures
(the linear insertion and the Remote Center of Motion (RCM) manipulation [9]) and use these general
relations (in combination with the constraint equations of the Pro-Hep-LCT robotic system) to assess
the robotic system behavior during the medical task (while the instruments are inserted inside the
patient body) to determine the geometry of the operational workspace of the robot). The constraint
equations (derived from the Study kinematic model) together with the general formulations for the
medical insertion and RCM manipulation will enable the development of a robust fail-safe control
algorithm. As explained in Ref. [10], interpolation may be used in combination to inverse kinematics of
the robotic system to determine accurate relations between the medical tool coordinates (constrained
by the RCM) and the active joints of the robot (this method was also demonstrated in Ref. [11] for serial
robots). Moreover, in Ref. [12] the authors used a so called RCM-constrained Jacobian for the control of
7 DOFs and 9 DOFs MIS robotic systems. In Ref. [13] the authors described a collaborative framework
for a 7 DOFs serial robot for minimally invasive surgery, showing also numerical simulations which
describe the operating workspace of the robot. Line symmetric motion generators (which are sub
manifold on the Study quadric) were presented in Ref. [14], showing their application in applications
that require RCM.

The paper is structured as follows: Section 2 presents the mathematical framework of the Study
parameters and it defines the mathematical relations for the linear insertion/retraction of a medical
instrument and for the RCM manipulation; Section 3 presents the Pro-Hep-LCT robotic system and
shows the kinematics, the singularity analysis and the workspace of the robotic system; Section 4
presents some numerical simulations for the Pro-Hep-LCT robotic system based on the previous
obtained results; Section 5 presents the conclusions and future work.

2. Mathematical Framework

In the fields of multi-body systems kinematics (e.g., mechanism analysis), the special Euclidean
group SE(3) describes every Euclidean displacement (with 6 DOFs) by means of homogeneous
transformation matrices which encode both translations and orientation information. A kinematic
mapping k, as found extensively in the scientific literature (see for example [2–4]), is defined as:

k : SE(3)→ Q ∈ P7

D(xi, yi)→ [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T , [0 : 0 : 0 : 0 : 0 : 0 : 0 : 0]T

(1)

and maps every Euclidean displacement D into a point Q from the projective space P7. The coordinates
of the point Q are based on a dual quaternion and are also called the Study parameters in the scientific
literature. The xi parameters show the orientation of a mobile coordinate frame (relative to a fixed one)
whereas the parameters yi represent the translation between the origins of the two coordinate frames.
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The trivial solution (where all Study parameters are 0) is excluded since it has no use in kinematics.
Moreover, the Study parameters must fulfill two conditions [2–4]:

x2
0 + x2

1 + x2
2 + x2

3 = 1 (2)

x0y0 + x1y1 + x2y2 + x3y3 = 0 (3)

where the first condition Equation (2) is the normalizing condition and the second one Equation (3) is
called the Studys’ quadric [15]. The Study parameters may be obtained directly from a homogeneous
transformation matrix using the following ratios [2–7]:

x0 : x1 : x2 : x3 = 1 + a11 + a22 + a33 : a32 − a23 : a13 − a31 : a21 − a12

= a32 − a23 : 1 + a11 − a22 − a33 : a12 + a21 : a31 + a13

= a13 − a31 : a12 + a21 : 1− a11 + a22 − a33 : a23 + a32

= a21 − a12 : a31 + a13 : a23 + a32 : 1− a11 − a22 + a33

(4)

y0 = − 1
2 (tzx3 + tyx2 + txx1)y1 = − 1

2 (tzx2 − tyx3 + txx0)

y2 = − 1
2 (−tzx1 − tyx0 + txx3)y3 = − 1

2 (−tzx0 + tyx1 − txx2)
(5)

where the terms aij are the entries of a 3 × 3 rotation matrix within a homogeneous 4 × 4 matrix
and [tx, ty, tz]T is the translation vector from the homogeneous matrix. As seen in Equation (4)
there are four ways to write the Study parameters and it is guaranteed that at least one way yields
a nonsingular representation of the Euclidean displacement (i.e., the Study parameters are free of
parametric singularities). As an example, as long as the Study parameters do not represent a rotation
by a value of π, the first ratio from Equation (4) may be used [2].

In the context of mechanism analysis, the relative position between a mobile coordinate frame,
which is located on the robot mobile platform (or end-effector) and a fixed coordinate frame (which is
at the base of robot) is studied. Homogeneous transformation matrices may be used in this context
(which are also called the Denavit-Hartenberg convention [16]) and the algorithm of applying this
method is straightforward: the first step is to define each transformation matrix for each joint and link;
the second step is to multiply the transformation matrices starting from the base coordinate frame
towards the mobile coordinate frame (for robots that contain multiple kinematic chains this procedure
is done for every chain). The Study parameters may be obtained thereafter from the transformation
matrix using Equations (4) and (5). The trigonometric functions (sines and cosines) may be substituted
with the tangent of half angle formulae resulting in a rational form of the Study parameters which may
be simplified further (by factoring the denominator and dividing through the greatest common divisor
as in [7]) to obtain polynomials (achieving thus an algebraic description of the constraint equations).
A more direct method to obtain the constraint equations of a mechanism is to write directly the Study
parameters for each element of the kinematic chain (joints and links) and then to use quaternion
multiplication to obtain the constraints (this is analog to multiplying the homogeneous matrices).
As mentioned before, the Study parameters are based on a dual quaternion which has a general form:

Q = x0 + x1i + x2 j + x3k +
1
2
ε(y0 + y1i + y2 j + y3k) (6)

where i, j, k are the imaginary parts and the following multiplication rules apply: i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j, ε , 0, ε2 = 0. The conjugate of the dual quaternion (which
represent the inverse transformation) is defined as [2,9]:

Q = x0 − x1i− x2 j− x3k +
1
2
ε(y0 − y1i− y2 j− y3k); Q ·Q = [1 : 0 : 0 : 0 : 0 : 0 : 0 : 0] (7)
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The Study Parameters for MIS Procedures

For the MIS procedures the two most fundamental instrument manipulations are: (i) the linear
insertion/retraction of a medical tool (e.g., needle); (ii) the Remote Center of Motion (RCM) manipulation
which is a combination of the insertion of a medical instrument with the orientation of the instrument
where the entry-point remains unchanged. Consequently the insertion/retraction procedure has 1 DOF,
whereas the RCM has a maximum of 4 DOF (3 orientations and one translation). The Study parameters
equations which describe these two procedures are based on dual quaternion multiplication and are
presented further.

Let P(x0:x1:x2:x3:y0:y1:y2:y3) be a point on the Study quadric x0y0 + x1y1 + x2y2 + x3y3 = 0 which
describe the position and orientation of the mobile platform (the end-effector) under the constraint of a
robotic device:

(1) The linear insertion/retraction of a medical tool is achieved by the translation on a given axis and is
defined by:

Pins = P · Pl (8)

P = Pins · Pl (9)

where the Pins represents the coordinates of the target point (encoding also the orientation
of the medical tool) P represents the insertion point and Pl represents the insertion length;
[1:0:0:0:0:−l/2:0:0] for the insertion along the X’ axis (of the mobile frame), [1:0:0:0:0:0:−l/2:0] for
the insertion along the Y’ axis and [1:0:0:0:0:0:0:−l/2] for the insertion along the Z’ axis. Equation
(8) represents the linear insertion whereas Equation (9) represents the retraction (i.e., the inverse
operation) and it is given by multiplying with the conjugate of the dual quaternion.

(2) The RCM manipulation between two configurations of the robot is given by:

PRCM = P · Po · Pl (10)

P = PRCM · Pl · Po (11)

where PRCM represents the Study parameters for a general point that is manipulated using the
RCM concept, Po are the Study parameters which describe a change in orientation and Pl are the
Study parameters describing the insertion of the medical instrument. Assuming that u is the
tangent of the half angle of a rotation angle, the Study parameters [1:u:0:0:0:0:0:0], [1:0:u:0:0:0:0:0]
and [1:0:0:u:0:0:0:0] represent rotations (by a value of u) about the X’, Y’ and Z’ axes respectively.
Equation (10) describes the manipulation using RCM whereas Equation (11) describes the inverse
operation which is achieved by multiplying with the quaternion conjugate. To describe a general
way in which the medical tool is displaced using RCM both Equations (10) and (11) are used:

PRCM = P · Po,1 · Pl,1 · Pl,1 · Po,1 · Po,2 · Pl,2 · Pl,2 · Po,2 · . . . · Po,n · Pl,n (12)

Although the quaternions offer a nice analytic method to operate the constraint equations,
the Euclidean representation of specific points (e.g., the insertion point) is also necessary to create an
intuitive description of the robotic assisted medical act (i.e., the Cartesian coordinates are used for
an unambiguous robot interface targeting medical experts, whereas the quaternions are used for the
computation). The relations between the Study parameters and points in 3D Cartesian space may
be obtained from Equation (5) together with the strong normalizing condition in Equation (1) and
are [2–4]:

tx = −2(x0y1 − x1y0 + x2y3 − x3y2)

ty = −2(x0y2 − x1y3 − x2y0 + x3y1)

tz = −2(x0y3 + x1y2 − x2y1 − x3y0)

(13)
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where again the t = [tx, ty, tz]T is the translation vector which describes the position of mobile frame
origin relative to the fixed frame origin.

3. Pro-Hep-LCT Parallel Robotic System

The Pro-Hep-LCT parallel robotic system is designed for the minimally invasive procedure of the
palliative treatment of the unresectable liver tumors using brachytherapy, chemotherapeutic agent
delivery or ablation. The procedure requires the accurate insertion of brachytherapy needles on linear
trajectories (and releasing them afterwards since the brachytherapy treatment is delivered in specialized
rooms), under the real live imaging given by an intra-operatory ultrasound probe. Consequently, two
independent modules are needed, one for the linear insertion of the needles, and the second one for
the RCM manipulation of the intra-operatory ultrasound probe [17]. In previous work, the authors
developed medical instruments with redundant DOFs for the needle insertion procedures (such as
the ones in [18,19]). The use of such instruments increases the precision of insertion, and reduces the
risk of the medical procedure. Such medical instruments will also be integrated on the Pro-Hep-LCT
robotic system, namely: one brachytherapy instrument which will insert and release the brachytherapy
needle with a redundant DOF; one US probe instrument which will insert/retract the probe (with a
redundant DOF).

3.1. Pro-Hep-LCT Parallel Robotic System Description

The two guiding modules of the Pro-Hep-LCT robotic system are identical and operate “in mirror”
relative to each other (as illustrated in Figure 1). This allows more access possibilities for the medical
tools since both of the guiding modules may guide either the needle instrument or the ultrasound
probe instrument.
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Figure 1. The CAD model for the Pro-Hep-LCT robotic system.

The kinematic scheme of the intra-operatory US probe guiding module is presented in Figure 2.
The robotic module contains two planar modules which guide the robot end effector through a pair of
universal joints. Since the two planar mechanisms are displaced by a constant value, the end effector
must have a free prismatic joint to allow its orientation. To facilitate the computation, the ultrasound
probe guiding module is decoupled into 3 mechanisms and the relation among them is the following:

1. The upper planar mechanism guides a point Pu (Xu, Yu) in a plane parallel to the XOY plane (of the
fixed coordinate system and displaced by Dz). The point Pu is located at the intersection of the
rotation axes of the Universal joint U1. The upper chain type is PRR-PP (prismatic-revolute-revolute
coupled with prismatic-prismatic) and has 2 DOF actuated by the q4 and q5 active joints (see
Figure 2);

2. The lower planar mechanism guides a point Pd (Xd, Yd) in the plane XOY and it is located on
a platform with constant orientation (hence it has only two translational DOFs actuated by
the two active rotatory joints q2 and q3). The point Pd is chosen to be at the middle point of
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the link d. The lower planar chain type is RRR-RRR (revolute-revolute-revolute coupled with
revolute-revolute-revolute) which is similar to a six bar planar mechanism but has a platform
with constant orientation due to the two concatenated parallelogram mechanisms Par1 and Par2;

3. The mobile platform (or the end-effector) of the robot is guided by the two planar
mechanisms through a pair of Universal joints. Consequently the platform is of type U-P-U
(universal-prismatic-universal) and it relates the points Pu and Pd with the mobile coordinate
system X’Y’Z’ which has the origin at the tip of the medical instrument (see Figure 2);

4. The last active DOF is actuated by the active joint q1 and it displaces the entire mechanism in the
Z direction of the fixed coordinate system by moving the mechanical frame on which the two
planar mechanisms are assembled. This DOF will be used only to guide the medical tool at the
patient entry point and the manipulation of the medical instrument thereafter is done by the
robot end-effector using redundant DOFs.
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3.2. Pro-Hep-LCT Kinematics

The algebraic method used in the paper, for the Pro-Hep-LCT analysis has the potential
to offer a generalized solution for the kinematics (both forward and inverse) and shows
a complete description of the workspace (together with the singularities). Although at
times the constraint equations become complicated the method exploits the fact that the
constraints are algebraic varieties and Groebner bases may be computed to obtain “fundamental”
polynomials which describe the constraint varieties. The constraint equations for the
Pro-Hep-LCT parallel robotic system are obtained for all three component mechanisms and
the forward and inverse kinematics are obtained using the following stepwise procedures:

For the Forward Kinematics: For the Inverse Kinematics:

1. Substitute the numerical values for the
geometric parameters and the active joints (t1,
w1, q4, q5) into the constraint equations;

2. Solve the constraints of the upper planar
mechanism for Xu Yu (Figure 2);

3. Solve the constraints of the lower planar
mechanism for Xd, Yd (Figure 2);

4. Substitute Xu, Yu, Xd, Yd into the constraints of
the mobile platform and solve for the Study
parameters (the outputs).

1. Substitute the numerical values for the
geometric parameters and the Study parameters
into the constraint equations;

2. Solve the constraints of the mobile platform
yielding Xu, Yu, Xd, Yd (Figure 2);

3. Substitute Xu, Yu, into the upper planar
mechanism constraints and solve for q4, q5 (the
inputs);

4. Substitute Xd, Yd, into the lower planar
mechanism and solve for t1, w1 (the inputs).
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Moreover, since the robotic system uses end-effectors for the insertion of the medical tools, the
mathematical description for the medical procedure using the quaternion viewpoint is straightforward
and also easy to implement in the robot control. Assuming that the robotic system is in a configuration
where the medical tool tip is at the patient insertion point, the Study parameters of the mobile platform
are known. The manipulation of the medial tool constrained by RCM is achieved using Equation (12)
and the active joint parameters are obtained using the inverse kinematics algorithm.

Observation 1: Although the Study parameters show computational advantages, there is a
fundamental problem that must be overcome. For the displacement of the ultrasound probe from an
initial configuration to the next configuration by using Equation (12) the Cartesian coordinates of the
entry point will not change. However, in-between the two configurations, there is no guarantee that
the entry point will not move. A numerical solution for this drawback is to use smaller displacements
for the tool manipulations and interpolation to determine the tool path.

3.2.1. The Upper Planar Mechanism Kinematics

The upper planar mechanism (Figure 2) is described by the constraints of the point Pu (located at the
intersection axes of U1). Using dual quaternion multiplication (described by Equation (6) and the rules
of the imaginary parts multiplication) the constraint equations for the point Pu are:

Pu = Pu1 · Pu2 · Pu3 · Pu4

Pu(xi, yi)→ [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T = [1 : 0 : 0 : 0 : 0 : − 1

2 (lq5 + lq4) : − 1
2 q5 : 0]

T

lq4 =
√

l2d4 − (q5 − q4)
2

(14)

where the dual quaternions used in obtaining the Pu map are detailed in Table 1.

Table 1. The quaternions used in defining the constraints of the upper planar chain.

Symbol Details Description

Pu1 [1:0:0:0:0:0:0:−1/2 Dz] Geometric parameter; translation along OZ axis

Pu2 [1:0:0:0:0:0: −1/2 q5:0] Active motion parameter; translation along OY axis

Pu3 [1:0:0:0:0: −1/2 lq5:0:0] Geometric parameter; translation along OX axis

Pu4 [1:0:0:0:0: −1/2 lq4:0:0] Active motion parameter; translation along OX axis

3.2.2. The Lower Planar Mechanism Kinematics

For the lower planar mechanism (Figure 2) the Study parameters are written for the two kinematic
chains (both RRR) which are coupled at the point Pd (located at the midpoint of the link d). Therefore
the point Pd must simultaneously satisfy two equations:{

Pd = Pd1 · Pd2 · Pd3 · Pd4 · Pd5 · Pd6
Pd = Pd7 · Pd8 · Pd9 · Pd10 · Pd11 · Pd12

Pd(xi, yi)→ [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T = [x0 : 0 : 0 : x3 : 0 : y1 : y2 : 0]T

x0 = 4(t1t2 + t1t3 + t2t3 − 1) x0 = 4(w1w2 + w1w3 + w2w3 − 1)
x3 = 4(t1t2t3 + t1 + t2 − t3) x3 = 4(w1w2w3 + w1 + w2 −w3)

y1 = t1t2(dt3 + 2l1 − 2l2) + t1t3(2l1 + 2l2) + t2t3(−2l1 + 2l2) − d(t1 + t2 + t3) + 2(l1 + l2)
y1 = w1w2w3(d + 2lq3) + 2w1w2(l3 − l4) + 2w1w3(l3 + l4) + 2w2w3(−l3 + l4) − d(w1 + w2 + w3)+

2lq4(w1 + w2 + w3) + 2(l3 + l4)
y2 = 2t1t2t3(l2 − l1) − d(t1t2 + t2t3 + t1t3) + 2l1(t1 − t2 − t3) + 2l2(t1 + t2 − t3) + d

y1 = w1w2w3(2l4 − 2l3) −w1w2(d + 2lq4) −w1w3(d + 2lq4) − 2w2w3(d + 2lq4) + l3(w1 −w2 −w3)+

2l4(w1 + w2 −w3) + d + 2q4

(15)

The twelve quaternions used in obtaining the map Pd are detailed in Table 2. It is already visible
from the zeroes of the Study parameters in Equation (15) that the point Pd is constrained to move
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on a plane. However, Equation (15) describe the constraints of a six bar mechanism and a change in
orientation (of the link d) is still possible. The solution to this is to simply set x0 = 1 and x3 = 0, which
will also satisfy the normalization condition defined in Equation (2).

Table 2. The quaternions used in defining the constraints of the lower planar chain.

Symbol Details Description

Pd1 [1:0:0:t1:0:0:0:0] 1 Active motion parameter; rotation around OZ axis

Pd2 [1:0:0:0:0: −l1/2:0:0] Geometric parameter; translation along OX axis

Pd3 [1:0:0:t2:0:0:0:0] 1 Free motion parameter; rotation around OZ axis

Pd4 [1:0:0:0:0: −l2/2:0:0] Geometric parameter; translation along OX axis

Pd5 [1:0:0:t3:0:0:0:0] 1 Free motion parameter; rotation around OZ axis

Pd6 [1:0:0:0:0:0: −d/4:0] Geometric parameter; translation along OY axis

Pd7 [1:0:0:0:0:0: −lq4/2:0] Geometric parameter; translation along OY axis

Pd8 [1:0:0:w1:0:0:0:0] 1 Active motion parameter; rotation around OZ axis

Pd9 [1:0:0:w2:0:0:0:0] 1 Free motion parameter; rotation around OZ axis

Pd10 [1:0:0:0:0: −l3/2:0:0] Geometric parameter; translation along OX axis

Pd11 [1:0:0:w3:0:0:0:0]1 Free motion parameter; rotation around OZ axis

Pd12 [1:0:0:0:0:0:d/4:0] Geometric parameter; translation along OY axis
1 The ti and wi represent the tangent of half angles parameters.

The fact that the Study parameters Equation (15) describe varieties in the Study parameter space,
allows the elimination of the t2, t3, w2, w3 parameters (which are the free motion parameters in the
planar mechanisms) by computing elimination ideals with Groebner bases (this technique is detailed
in [20] and was used in the analysis of various robotic systems such as [4,7]); it is worth mentioning that
the parameter elimination can be also achieved with the Linear Implicitization Algorithm (LIA) [21]
which was used in [6]. The resulting constraints in this case will be the union of the equations found in
the two Groebner bases which were computed to eliminate the free motion parameters and are:

Gd =< 16(t2
1 + 1)y2

1 − 16l1(t2
1 − 1)y1 + 16(t2

1 + 1)y2
2 + 8(dt2

1 + 4l1t1 + d)y2 + (d2 + 4l21 − 4l22)t
2
1 + 8dl1t1

+d2 + 4(l21 − l22); 16(w2
1 + 1)y2

1 − 16l3(w2
1 − 1)y1 + 16(w2

1 + 1)y2
2 + 8((2lq4 + d)w2

1 + 4l3w1 + 2lq4 + d)y2

+(d2 + 4(dlq4 + l23 − l24 + l2q4))w
2
1 + 8l3(d + 2lq4)w1 + d2 + 4(dlq4 + l23 − l24 + l2q4) >

(16)

3.2.3. The Mobile Platform Mechanism Kinematics

For the mobile platform (Figure 2) the forward kinematics is written using the Study parameters
with the observation that the inputs are the two points Pu(Xu,Yu) and Pd(Xd,Yd) (were the eight dual
quaternions used in the P map are presented in Table 3):{

P = P1 · P2 · P3 · P4

P = P5 · P6 · P7 · P8

Pu(xi, yi)→ [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3]
T = [2 : 2u1 : −2u2 : −2u1u2 : y0 : y1 : y2 : y3]

T

= [2 : 2v1 : −2v2 : −2v1v2 : y0 : y1 : y2 : y3]
T

y0 = −Dnu1u2 + Xdu1 −Ydu2 + cu1 y0 = v1v2(Dn −Dz + p) + Xuv1 −Yuv2

y1 = Ydu1u2 + Dnu2 −Xd − c y1 = v2(Yuv1 −Dn −Dz − p) −Xu

y2 = −(Xd + c)u1u2 + Dnu1 −Yd y2 = v1(Xuv2 −Dn −Dz − p) −Yu

y3 = (Xd + c)u2 + Ydu1 −Dn y3 = Xuv2 + Yuv1 + Dn −Dz + p

(17)
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Table 3. The quaternions used in defining the constraints of the robot mobile platform.

Symbol Details Description

P1 [1:0:0:0:0:(Xd+c)/2: Yd/2:0] Active motion parameter; translation on the XY plane

P2 [1:0:u1:0:0:0:0:0] 1 Free motion parameter; rotation around OY axis

P3 [1:0:u2:0:0:0:0:0] 1 Free motion parameter; rotation around OZ axis

P4 [1:0:0:0:0:0:0: Dn/2] Geometric parameter; translation along OZ axis

P5 [1:0:0:0:0: −Xu/2: −Yu/2: −Dz/2] Active motion parameter; translation on a plane
parallel to the XY plane

P6 [1:0:v1:0:0:0:0:0] 1 Free motion parameter; rotation around OY axis

P7 [1:0:v2:0:0:0:0:0] 1 Free motion parameter; rotation around OZ axis

P8 [1:0:0:0:0:0:0:p/2] Active motion parameter; rotation around OZ axis

P9 [1:0:0:0:0:0:0:Dn/2] Active motion parameter; rotation around OZ axis
1 The ui and vi represent the tangent of half angles parameters.

The Study parameters equations found in Equation (17) represent a variety in Study space. Like
in the previous case the free motion parameters are eliminated from the equations (the rotation
parameters u1, u2, v1, v2 and the translation parameter p) by computing elimination ideals using
Groebner bases. Consequently, the resulting input/output equations relate the terms Xd, Xu, Yd, Yu

with the Study parameters (the mobile platform coordinates and orientation). The constraints of the
mobile platform are given by the union of the Study parameter equations of the two elimination ideals
(describing P—see Equation (17)) which are four linear equations (in the Study parameters), nine
quadratic equations, one cubic equation, the Study quadric and the normalizing condition (due to the
complexity of the equations they are shown only in general form—e.g., g1 is a linear equation in the
unknowns x3, y0, y1, y2, g5 is an quadratic equation in the unknowns y0, y1, y2, y3 and so on):

G =< g1(x3, y0, y1, y2), g2(x2, y0, y1, y3), g3(x1, y2, y0, y3), g4(x0, y1, y2, y3), g2
5(y0, y1, y2, y3),

g2
6..10(x0, x1, x2, x3, y0, y1, y2, y3), g2

11..12(x0, x1, x2, x3), g2
13(x0, x1, x2, x3, y1), x2

0 + x2
1 + x2

2 + x2
3 − 1,

x0y0 + x1y1 + x2y2 + x3y3, g3
16(x0, x1, x2, x3, y0, y1, y2, y3) >

(18)

At this point it can be checked that the basis G has the Hilbert dimension 0 which corresponds
to the forward kinematic solution being points (not necessarily unique since for one set of input
parameters the mechanism may pose in different ways). Moreover, the basis may be solved for both
the Study parameters (when the active joints are inputs) achieving the forward kinematics and for the
active joints (when the Study parameters are inputs) achieving the inverse kinematics.

3.3. Pro-Hep-LCT Singularities

This section describes the Pro-Hep-LCT robotic system singularities which are determined from
the constraint equations obtained in the previous section. Consequently, the singularities are analyzed
for each component mechanism individually. This is possible due to the fact that the robot is a hybrid
(and the end effector is guided by two planar mechanisms). The inputs of the lower planar mechanism
(t1 and w1 being the tangents of the half angles of q2 and q3 respectively) do not influence the point Pu

(of the upper mechanism) and the inputs of the upper chain (q4 and q5) do not influence the point Pd.
For the input singularities, while the robot is rigid, an infinitesimal change in the inputs will produce
no change in the outputs, whereas for the output singularities, an infinitesimal change in the output
is possible even though there is no change in the input. The singularities for the robotic system are
determined using the rank of the input and output Jacobians for the three presented mechanisms.
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If the Jacobians of any of the mechanism are rank deficient a singularity occurs. The input and output
Jacobians were determined for each component mechanism and are:

Ji,1 ·
.
qu + Jo,1 ·

.
Pu = 0 Ji,1 =

[
∂(Gu[1],Gu[2])

∂(q4,q5)

]
; Jo,1 =

[
∂(Gu[1],Gu[2])
∂(y1,y2)

]
;

.
qu = [

.
q4,

.
q5]

T;
.
Pu = [

.
y1,

.
y2]

T
(19)

Ji,2 ·
.
qd + Jo,2 ·

.
Pd = 0 Ji,2 =

[
∂(Gu[1],Gu[2])

∂(q4,q5)

]
; Jo,2 =

[
∂(Gd[1],Gd[2])
∂(y1,y2)

]
.
qd = [

.
t1,

.
w1]

T

.
Pd = [

.
y1,

.
y2]

T
(20)

Ji,3 ·
.
q + Jo,3 ·

.
P = 0 Ji,3 =

[
∂(G[1]...G[16])

∂(q4,q5)

]
; Jo,3 =

[
∂(G∗[1]...G∗[8])

∂(xi,yi)

]
.
q = [

.
Xu,

.
Yu,

.
Xd,

.
Yd]

T

.
Pd = [

.
x0 . . .

.
x3,

.
y0..

.
y3]

T
(21)

The G* basis represents a pure lexicographic Groebner base computed from the G base and has the
advantage that it has 8 equations and the Jacobian Jo,3 remains a square matrix. This is not true for the
Ji,3, therefore, all the determinants of the square minors must be computed for the singularity analysis.

Analyzing the rank deficiency conditions of the Jacobians, the output singularities are given by
the following 12 polynomial equations (Equations (24)–(27) and (32)–(36) are only presented in the
general form since they are lengthy):

sg1 : w2
1 + 1 = 0 (22)

sg2 : t2
1 + 1 = 0 (23)

sg3(t1, w1, l1, l3) = 0 (24)

sg4(t1, w1, l1, l3, lq4, d) = 0 (25)

sg5(t1, w1, l1, l2, l3, lq4, d) = 0 (26)

sg6(t1, w1, l1, l2, l3, lq4, d) = 0 (27)

sg7 : Yd−Yu = 0 (28)

sg8 : Xd−Xu + c = 0 (29)

sg9 : Dz = 0 (30)

sg10 : D2
z + Y2

d − 2YdYu + Y2
u = 0 (31)

sg11(Xu, Yu, Xd, Yd, Dz, c) = 0 (32)

sg12(Xu, Yu, Xd, Yd, Dz, c) = 0 (33)

and the input singularities are given by three polynomials and an irrational function (due to the
substitution found in the map defined in Equation (14)):

sg13(y1, y2, l3, l4, lq4, d) = 0 (34)

sg14(y1, y2, l3, l4, lq4, d) = 0 (35)

sg15(y1, y2, l3, l4, lq4, d) = 0 (36)

sg16 :
q4 − q5√

(q4 − q5 + ld4)(−q4 + q5 + ld4)
= 0 (37)

Equations (22)–(37) represent the general singularities of the Pro-Hep-LCT robotic system.
The simple equations are straight forward to analyze: Equations (22), (23) and (31) have no real
solutions and are not of interest in kinematics; Equation (30) cannot be true since it implies that the
two planar mechanisms operate in the same plane (which is not the case); Equation (37) represents a
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singularity when active joints q4 and q5 are overlapped or are at a distance lq4 apart (both conditions
being physically impossible due to mechanism design considerations). Although the conditions from
Equations (24), (28) and (29) make the Jacobians rank to drop, they are not singularities of the constraint
varieties. Further investigations showed that the algorithm used in computing the Groebner bases Gd
and G divided through (t1 ± w1), (Xd − Xu + c) and (Yd − Yu) respectively. Consequently the bases are
not correct when these conditions are met since the division by 0 is not allowed. In a sense, Equations
(24), (28) and (29) represent singularities of the computed Groebner bases and are not singularities of
the constraint varieties. To check that this is true, the conditions were substituted into the kinematic
model before the computation of the Groebner bases (Gd and G) and no singularity was found.

For the lengthy polynomial equations which describe singularities of the Pro-Hep-LCT the
numerical values for the geometric parameters resulted from the robot design (the links lengths
as shown in Table 4) were used to evaluate the equations to allow a geometric interpretation of
the singularities.

Table 4. Numerical values for the lengths of the Pro-Hep-LCT robotic system.

Component Mechanism Link Notation/Length [mm]

Upper planar mechanism lq5 = 160; lq4 = 284.

Lower planar mechanism l1 = 168; l2 = 168; l3 = 168; l4 = 168; lq3 = 400; d = 150; c = 61.

Mobile platform Dz = 108; Dn = 110; p = [108, 125]

After the numerical evaluation of the remaining equations, Equations (25) and (27) showed only
complex solutions and are not of interest. Equation (26) showed a configuration where the link d is
aligned with either of the links l2 or l4 (see Figure 3a). This singularity represents the separation of
two working modes of the lower planar mechanism and it is part of the boundary of the operational
workspace (as illustrated in following sections). Equations (32) and (33) showed a configuration which
was already described in Equation (30), namely the Dz parameter being zero. However, this condition
is not allowed since the mechanism in not constructed in such way.

Symmetry 2019, 11, 1491 11 of 17 

 

4 5
16

4 5 4 4 5 4

: 0
( )( )d d

q q
sg

q q l q q l

−
=

− + − + +  (37) 

Equations (22)–(37) represent the general singularities of the Pro-Hep-LCT robotic system. The 
simple equations are straight forward to analyze: Equations (22), (23) and (31) have no real solutions 
and are not of interest in kinematics; Equation (30) cannot be true since it implies that the two planar 
mechanisms operate in the same plane (which is not the case); Equation (37) represents a singularity 
when active joints q4 and q5 are overlapped or are at a distance lq4 apart (both conditions being 
physically impossible due to mechanism design considerations). Although the conditions from 
Equations (24), (28) and (29) make the Jacobians rank to drop, they are not singularities of the 
constraint varieties. Further investigations showed that the algorithm used in computing the 
Groebner bases Gd and G divided through (t1 ± w1), (Xd − Xu + c) and (Yd – Yu) respectively. 
Consequently the bases are not correct when these conditions are met since the division by 0 is not 
allowed. In a sense, Equations (24), (28) and (29) represent singularities of the computed Groebner 
bases and are not singularities of the constraint varieties. To check that this is true, the conditions 
were substituted into the kinematic model before the computation of the Groebner bases (Gd and G) 
and no singularity was found. 

For the lengthy polynomial equations which describe singularities of the Pro-Hep-LCT the 
numerical values for the geometric parameters resulted from the robot design (the links lengths as 
shown in Table 4) were used to evaluate the equations to allow a geometric interpretation of the 
singularities. 

Table 4. Numerical values for the lengths of the Pro-Hep-LCT robotic system. 

Component Mechanism Link Notation/Length [mm] 
Upper planar mechanism lq5 = 160; lq4 = 284. 
Lower planar mechanism l1 = 168; l2 = 168; l3 = 168; l4 = 168; lq3 = 400; d = 150; c = 61. 

Mobile platform Dz = 108; Dn = 110; p = [108, 125] 

After the numerical evaluation of the remaining equations, Equations (25) and (27) showed only 
complex solutions and are not of interest. Equation (26) showed a configuration where the link d is 
aligned with either of the links l2 or l4 (see Figure 3a). This singularity represents the separation of 
two working modes of the lower planar mechanism and it is part of the boundary of the operational 
workspace (as illustrated in following sections). Equations (32) and (33) showed a configuration 
which was already described in Equation (30), namely the Dz parameter being zero. However, this 
condition is not allowed since the mechanism in not constructed in such way. 

For the input singularities the equations were also evaluated with the numerical values detailed 
in Table 4. Through a close analysis it was found that Equation (34) describes a self-motion of the 
link d which is present when the links l2 and l4 are parallel (Figure 3b). This configuration must be 
avoided using the robot control since it may cause harm to the patient during the medical procedure. 
Equation (35) describes a singularity when t1 = 1 and w1 = –1 which is physically impossible since in 
the robot design it implies that various mechanical links (l3, l4) will overlap. Equation (36) describes 
configurations where the link l1 is aligned with l2 (Figure 3c) or the link l3 is aligned with l4. This 
actually represents the boundary of the workspace of the lower planar mechanism. 

 

(a) (b) 

 

(c) 

Figure 3. Singularities of the Pro-Hep-LCT robotic system; (a) configuration where the links l2 and d
are aligned; (b) self-motion when the links l2 and l4 are parallel; (c) configuration were the links l1 and
l2 are aligned.

For the input singularities the equations were also evaluated with the numerical values detailed
in Table 4. Through a close analysis it was found that Equation (34) describes a self-motion of the
link d which is present when the links l2 and l4 are parallel (Figure 3b). This configuration must be
avoided using the robot control since it may cause harm to the patient during the medical procedure.
Equation (35) describes a singularity when t1 = 1 and w1 = –1 which is physically impossible since in
the robot design it implies that various mechanical links (l3, l4) will overlap. Equation (36) describes
configurations where the link l1 is aligned with l2 (Figure 3c) or the link l3 is aligned with l4. This actually
represents the boundary of the workspace of the lower planar mechanism.
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3.4. Pro-Hep-LCT Workspace

Analyzing the constraint equations for the Pro-Hep-LCT robotic system (Equations (14), (16) and
(18)) it can be shown that the lower planar mechanism has four working modes, the upper planar
mechanism has two working modes and even the end effector has four working modes (at least
theoretically). For this reason, the geometry of the workspace is complex and the focus hereafter
switches towards the operational workspace (the set of configurations intended for achieving the
medical task).

The operational workspace was analyzed in two ways: at first the operational workspace
describing the tip of the medical tool was determined (which for the medical task at hand represents the
skin entry-point); and second, the redundant DOF for the medical tool was introduced to geometrically
illustrate the Pro-Hep-LCT robotic system capabilities to achieve the medical task. Figure 4a shows
the boundary of the operational workspace in which the end-effector of the Pro-Hep-LCT robotic
system has no orientation (i.e., the medical tool points vertically downwards) and Figure 4b shows a
cross-section of the space. Within this cross-section of the workspace, there exists a subspace (on the
right hand side of the blue line X = 214, see Figure 3b) in which all the possible orientations of the
medical tool are possible (i.e., the dexterous workspace). In this region of the workspace the robotic
assisted medical procedure should be the least limited (due to the mechanism constraints). However,
there is a point that describes the self-motion of the mechanism (of coordinates X = 286.66 mm, Y = 200
mm) which must be avoided (using the control algorithm) since in this configuration the control of the
robot is lost and injury may occur.
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work-space.

To illustrate the operational workspace while the medical tool is inserted in the patient, two entry
points are chosen. First, an entry point was chosen within the dexterous workspace (X = 260 mm,
Y = 180 mm, Z = 200 mm) and Figure 5a illustrates two spherical surfaces defining two different depths
of insertion (108 mm and 70 mm, respectively). The second example was chosen outside the dexterous
workspace (see Figure 5b), having the entry point at (X = 200 mm, Y = 180 mm, Z = 200 mm), with two
insertion depths (108 mm and 70 mm, respectively).
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4. Numerical Results and Discussion

A numerical simulation is illustrated in this section to show how the results presented in Section 2
apply to the Pro-Hep-LCT robotic system functionality. To illustrate an example a Cartesian point is
chosen as an entry-point E on the patient abdomen with the numerical coordinates [XE = 300 mm,
YE = 180 mm, ZE = 110]. Furthermore, for this example, the ultrasound probe at the entry-point is
chosen in a configuration where it points directly downwards in a vertical pose. The configuration
has the following numerical values of the Study parameters [x0 = 1, x1 = 0, x2 = 0, x3 = 0, y0 = 0, y1 =

−150, y2 = −90, y3 = 55] (relative to the fixed coordinate frame XYZ; to achieve this q1 = 220 mm is a
necessary condition). The inverse kinematics is computed from Equations (14), (16) and (18) with the
numerical values for the Study parameters substituted in, yielding the numerical values for the active
joint parameters [t1 = −0.1343, w1 = 0.0214, q4 = 20.802 mm, q5 = 180 mm] (solution describing the
intended working mode for the Pro-Hep-LCT robotic system). Table 5 shows the initial configuration
of the ultrasound probe (O at the entry-point) and two points A and B which are the end points of
two simple tool paths (at 100 mm insertion depths). The Study parameters required for the RCM
manipulation are also shown for the two tool paths with a discretization by angular values of 5◦

starting from 0◦ (the initial configuration) and ending at 30◦ (for point A with ϕ being a rotation about
X’ axis and for point B where θ represents a rotation about Y’ axis).

Table 5. Numerical values for two paths of the ultrasound probe constrained by RCM.

Point Study Parameters Active Joint Numerical Values [Scalars, mm]

O [1:0:0:0:0:−150:−90:55] [t1 = −0.1343, w1 = 0.0214, q4 = 20.802, q5 = 180, n = 0]

A

[1:ϕ:0:0:0:0:0:0]
ϕ = −0.0437
ϕ = −0.0875
ϕ = −0.1317
ϕ = −0.1763
ϕ = −0.2217
ϕ = −0.2679

[t1 = −0.1077, w1 = 0.0492, q4 = 39.8745, q5 = 199.0725, n = 100.4202]
[t1 = −0.0804, w1 = 0.077, q4 = 59.2413, q5 = 218.4392, n = 101.6969]
[t1 = −0.0518, w1 = 0.1052, q4 = 79.2149, q5 = 238.4129, n = 103.8804]
[t1 = −0.0213, w1 = 0.1344, q4 = 100.1475, q5 = 259.3455, n = 107.0596]
[t1 = 0.012, w1 = 0.1653, q4 = 122.4570, q5 = 281.6550, n = 111.3716]
[t1 = 0.0496, w1 = 0.1984, q4 = 146.6643, q5 = 305.8623, n = 117.0170]

B

[1:0:θ:0:0:0:0:0]
θ = 0.0437
θ = 0.0875
θ = 0.1317
θ = 0.1763
θ = 0.2217
θ = 0.2679

[t1 = −0.1189, w1 = 0.0070, q4 = 23.8913, q5 = 180, n = 100.4202]
[t1 = −0.1031, w1 = 0.0101, q4 = 29.5461, q5 = 180, n = 101.6969]

[t1 = −0.0835, w1 = −0.0316, q4 = 38.3570, q5 = 180, n = 103.8804]
[t1 = −0.0597, w1 = −0.0596, q4 = 51.5117, q5 = 180, n = 107.0596]
[t1 = −0.0294, w1 = −0.1007, q4 = 71.5689, q5 = 180, n = 111.3716]
[t1 = 0.0131, w1 = −0.1977, q4 = 106.0062, q5 = 180, n = 117.0170]

The t1 and w1 are the tangent of the half angle of q2 and q3 respectively; n represents the value for the redundant
DOF from the robot end-effector.
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Lastly, Table 5 shows the numerical values of the active joint parameters for each ultrasound
probe pose (computed by means of inverse kinematics using Equations (14), (16) and (18)).

Figure 6 illustrates the discretization of the two paths of the ultrasound probe tip starting from a
point O’ (where the tool is in a vertical pose and inserted at a 100 mm depth) and ending at the points A
and B respectively (with 30◦ angle values about X’ and Y’ axes respectively). These paths are simulated
with the ultrasound probe constrained by the RCM. Figure 6a illustrates the Cartesian positions of
each computed point from the two paths whereas Figure 6b illustrates the active joint values changing
over a period of 6 s (using linear interpolation) required for the specified paths.
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The computed numerical values (for the active joints) that describe the two paths were used in
a kinematic simulation using the Siemens NX software. The simulation purpose was to analyze the
motion of the insertion point in Cartesian coordinates during the ultrasound probe manipulation on
the two paths A and B over a period of 6 s (since in between two consecutive points of a path there is no
guarantee that the RCM point is unchanged). For the path O’A, Figure 7a shows the simulation from
the Siemens NX environment where the variation of the entry-point E in each X, Y and Z direction
relative to the predefined point [XE = 300 mm, YE = 180 mm, ZE = 100] is highlighted. On the X
direction, the maximum variation during the simulation was about 0.5 mm, reaching to a maximum
error of 1.45 mm. (error that may be introduced by numerical errors of the interpolation). On the Y
direction, the maximum variation was 0.05 mm adding to a maximum error of 0.15 mm which is less
than the total error from the X displacement.

On the Z direction the maximum variation was about 0.12 mm. leading to a total error of 0.18 mm.
For the path O’B, the simulation is shown in Figure 7b where the error in the displacement on X
direction is about 3 mm, the error in the Y direction is about 2 mm and the error in the Z direction
is about 0.2 mm. There are two types of fluctuations present in the displacement graphs illustrated
in Figure 7, the first type being most likely due to the kinematic model and it was expected (see
Observation 1 in Section 3.1) since the RCM is guaranteed to be kept only in the control points of the
path and not in between. The second fluctuation refers to the shift in the curve (e.g., the 5 s mark for
the Y displacement in Figure 7a) which is introduced by interpolation errors, most likely amplified by
changing the simulation environment from Maple (where the inverse kinematics was computed) to
Siemens NN (where the RCM point was studied). However, the magnitude of the errors presented so
far is not significant for the medical task since a bigger error may be introduced by the tissue motion
during the respiration process.



Symmetry 2019, 11, 1491 15 of 17Symmetry 2019, 11, 1491 15 of 17 

 

 

(a) 

 

(b) 

Figure 7. Simulation in the Siemens NX environment (variation of the entry-point Cartesian 
coordinates); (a) displacement of the entry point while the ultrasound probe was manipulated on 
path O’A; (b) displacement of the entry point while the ultrasound probe was manipulated on path 
O’B. 

By utilizing the Study parameters method the authors managed to achieve a complete 
geometric analysis (obtaining the constraints, singularities and describing the workspace) of the 
Pro-Hep-LCT parallel robotic system designed for the minimally invasive task of targeted liver 
treatment (through brachytherapy, ablation of chemotherapy) under ultra sound imaging. Although 
the robotic system may appear complex, analyzing the “segments” that compose it (referred as the 
lower, upper and mobile platform mechanisms in Section 3) facilitated the computation of the 
constraints and singularities without any disadvantages (in the beginning of Section 3.2 it is 
explained why segmenting the robotic system is allowed). Moreover, the use of quaternion 
multiplication for the medical tools manipulation (Equations (8)–(12)) offered a distinct computation 
advantage since it complements well with the constraints computed with the Study parameters 
model. The dual quaternion approach for RCM manipulation is not novel (see e.g., [9]) and it has 
been shown that the main disadvantage (which is discussed in Observation 1 Section 3.1) may be 
minimized using interpolation (this method was proven on a serial manipulator in [9]). Since the 
solutions for the forward kinematics of the Pro-Hep-LCT parallel robotic system had the dual 
quaternion form (i.e., Study parameters) the manipulation of the medical instruments constrained 
by RCM was straightforward (see Section 2.1 Equations (8)–(12)). By means of linear interpolation it 
was also shown that the displacement of the insertion point is insignificant for the medical 
procedure. Of course more refined interpolation methods (or more control points) may be used if 
needed to increase precision but the tradeoff must be considered (computation time vs. precision 
since a real time control must be achieved). Besides RCM manipulation using dual quaternions, 
other medical applications may be considered as well, e.g., motor rehabilitation, or even 
determining the kinematics of the human finger in an analytical manner (in contrast to the 
experimental models—see e.g., [22]).  

Figure 7. Simulation in the Siemens NX environment (variation of the entry-point Cartesian coordinates);
(a) displacement of the entry point while the ultrasound probe was manipulated on path O’A;
(b) displacement of the entry point while the ultrasound probe was manipulated on path O’B.

By utilizing the Study parameters method the authors managed to achieve a complete geometric
analysis (obtaining the constraints, singularities and describing the workspace) of the Pro-Hep-LCT
parallel robotic system designed for the minimally invasive task of targeted liver treatment (through
brachytherapy, ablation of chemotherapy) under ultra sound imaging. Although the robotic system
may appear complex, analyzing the “segments” that compose it (referred as the lower, upper and mobile
platform mechanisms in Section 3) facilitated the computation of the constraints and singularities
without any disadvantages (in the beginning of Section 3.2 it is explained why segmenting the robotic
system is allowed). Moreover, the use of quaternion multiplication for the medical tools manipulation
(Equations (8)–(12)) offered a distinct computation advantage since it complements well with the
constraints computed with the Study parameters model. The dual quaternion approach for RCM
manipulation is not novel (see e.g., [9]) and it has been shown that the main disadvantage (which is
discussed in Observation 1 Section 3.1) may be minimized using interpolation (this method was proven
on a serial manipulator in [9]). Since the solutions for the forward kinematics of the Pro-Hep-LCT
parallel robotic system had the dual quaternion form (i.e., Study parameters) the manipulation of
the medical instruments constrained by RCM was straightforward (see Section 2 Equations (8)–(12)).
By means of linear interpolation it was also shown that the displacement of the insertion point is
insignificant for the medical procedure. Of course more refined interpolation methods (or more control
points) may be used if needed to increase precision but the tradeoff must be considered (computation
time vs. precision since a real time control must be achieved). Besides RCM manipulation using
dual quaternions, other medical applications may be considered as well, e.g., motor rehabilitation,
or even determining the kinematics of the human finger in an analytical manner (in contrast to the
experimental models—see e.g., [22]).
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5. Conclusions

Based on a mathematical method that describes the global kinematics (using the Study parameters
of the total Euclidean displacement), the Pro-Hep-LCT robotic system was completely analyzed to
determine its forward and inverse kinematics, singularities and workspace. To determine the robot
capabilities to perform the medical task, the operational workspace of the robotic system was described
in two different ways: first, based on the medical relevant position of the robot (relative to the patient)
the singularity free operational workspace was shown which also contains the dexterous workspace
(which is especially relevant for the medical task); second, the manipulation of the medical instrument
under the constraint of the RCM was studied creating also a description of the active joint space
in a discrete manner. The analysis of the singularity free operational workspace shows that the
Pro-Hep-LCT parallel robotic system is feasible for the RCM manipulation within the angular values
of ±30◦ (relative to the vertical direction) in all directions. The numerical values of the active joint
parameters which were computed via inverse kinematics (for consecutive points on predefined tool
paths) were linearly interpolated and used as inputs for a kinematic simulation in the Siemens NX
environment which showed a maximum relative deviation (from the insertion point) of 1.45 mm.
The preliminary numerical results show that the robot control based on the Study parameters is feasible
due to the insignificant deviation of the insertion point (with respect to the imposed point).

Further work is intended for developing the robotic system, namely the development of the
mechanical architecture of the robotic system, the development of a controls system which uses the
constraint equations together with the instrument manipulation method based on the dual quaternions.
Moreover, further work is intended to test the precision of the prototype and optimize the control to
account for needed corrections during the RCM manipulation (e.g., when parasite motions are present).
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