
symmetryS S

Article

Measurement-Based Power Optimization Technique
for OpenCV on Heterogeneous Multicore Processor

Hyeonseok Jung 1, Kyoseung Koo 2,† and Hoeseok Yang 1,*
1 Department of ECE, Ajou University, Suwon 16499, Korea; hyunsukdn@ajou.ac.kr
2 Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Korea;

koo@dbs.snu.ac.kr
* Correspondence: hyang@ajou.ac.kr
† A large part of this work was done while Kyoseung Koo was a B.S. student at Ajou University.

Received: 11 November 2019; Accepted: 2 December 2019; Published: 6 December 2019
����������
�������

Abstract: Today’s embedded systems often operate computer-vision applications, and are associated
with timing and power constraints. Since it is not simple to capture the symmetry between the
application and the model, the model-based design approach is generally not applicable to the
optimization of computer-vision applications. Thus, in this paper, we propose a measurement-based
optimization technique for an open-source computer-vision application library, OpenCV, on top
of a heterogeneous multicore processor. The proposed technique consists of two sub-systems: the
optimization engine running on a separate host PC, and the measurement library running on the
target board. The effectiveness of the proposed optimization technique has been verified in the case
study of latency-power co-optimization by using two OpenCV applications—canny edge detection
and squeezeNet. It has been shown that the proposed technique not only enables broader design
space exploration, but also improves optimality.

Keywords: measurement-based optimization; computer-vision; opencv; multicore processing

1. Introduction

Many existing embedded systems, such as robots, drones, or Internet-of-Things devices, often
utilize computer-vision processing. Examples of computer vision on embedded systems include obstacle
avoidance navigation systems on robots [1], yawning detection during driving [2], and drone-based
trail perception in forests [3]. They perform computer-vision algorithms that demand high computing
capability. Typically, embedded system designs are associated with non-functional concerns. They often
have execution time-constraints to guarantee real-time responsiveness. In addition, as many embedded
devices are battery-powered, minimizing power consumption is considered an important design
objective. Because the hardware platform for embedded devices is resource-constrained, it is a challenge
to fulfill the timing and power requirements simultaneously. Thus, in many cases, such computationally
intensive workloads of computer-vision algorithms are typically managed remotely by being offloaded
to high-performance cloud systems [4].

However, such an offloading approach incurs considerable communication between cloud systems
and devices, thus resulting in latency, bandwidth, and power issues. Furthermore, the offloading is only
feasible when reliable network supports are readily and constantly available. Thus, as an alternative
to cloud offloading, it is necessary to enable the on-device operation of computer-vision algorithms
in embedded systems. It is typical to computationally manage heavy workloads using specialized
accelerators or dedicated hardware logic in embedded systems; however, this accelerator approach
is no longer suitable for computer-vision algorithms, as the algorithms continuously evolve.
A software-based implementation is required to efficiently manage such constantly evolving algorithms.

Symmetry 2019, 11, 1488; doi:10.3390/sym11121488 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-7929-7470
http://dx.doi.org/10.3390/sym11121488
http://www.mdpi.com/journal/symmetry
https://www.mdpi.com/2073-8994/11/12/1488?type=check_update&version=2

Symmetry 2019, 11, 1488 2 of 14

Therefore, currently, commercial off-the-shelf multicore processors [5] are typically used in embedded
systems for managing computationally heavy workloads that are subject to changes in the future.

In the design of multicore embedded systems, it is essential to determine which part of the
algorithm is to be executed on a certain core—that is, mapping optimization. Many techniques or
computer-aided design tools have been proposed to solve this mapping problem [6]. To effectively
optimize complex applications on a multicore processor, nonfunctional behaviors, such as execution
time or power consumption, of each part of the target algorithm must be known a priori in the
optimization phase. Once the internal structure of the target algorithm and these nonfunctional
behaviors are modeled accordingly in a well-structured representation [7,8], mapping optimization can
be regarded as a combinatorial optimization, and any known mathematical solutions, such as integer
linear programming or evolutionary algorithms, can be used for optimization. This is a so-called
model-based design, and most existing multicore mapping techniques adopt this approach [6].

However, the symmetry between the algorithm and model cannot be easily captured
in the computer-vision applications considered herein, thus making the model-based design
methodology unsuitable. The reasons are as follows: Firstly, the complexity or level of abstraction
of the algorithm is much higher than that of ordinary embedded software. Many conditional
software execution paths and data-dependent processing are involved; therefore, a monolithic
representation of the algorithm is typically infeasible. Secondly, the execution time of a certain
part of the algorithm is difficult to model in a simple way. For instance, a function may exhibit vastly
different execution times and memory traffic depending on the image or window size. Finally, many
computer-vision algorithms are distributed as executable libraries, as exemplified in an open-source
library, OpenCV [9]; thus, restructuring the algorithms in a model-based design framework requires
considerable engineering efforts.

Hence, we herein propose to optimize computer-vision applications on a multicore processor
without any modeling. Conventionally, in model-based designs, the data or control flow of
software is specified as a directed graph; additionally, the execution time or power consumption
of nodes, called actors, must be modeled appropriately. To eliminate such modeling efforts,
we propose to perform measurement-based adaptive optimizations with respect to the given power or
timing constraints. That is, a simple profiling interface is inserted at the core parts of the application
source code; subsequently, the performance measurement and optimization are performed sequentially
and repeatedly. This measurement-based optimization has also been applied in other domains [10,11],
such as in cases where modeling and analysis are difficult.

There have been some studies on the optimization of power and execution time of OpenCV
algorithms in embedded systems. Most of these studies pertain to real-time applications executed on
embedded systems using specific OpenCV image processing algorithms [12–14]. In addition, many
of them obtain improvements in performance by using GPGPUs [15,16]. Furthermore, OpenCV is
optimized for low power by configuring low-power, DSP- based hardware [17] or implementing
FPGA-based, low-power image processing platforms [18]. While certain OpenCV algorithms have
been optimized for specific embedded systems in these studies, our proposed technique enables general
design space explorations of power and execution time for various multicore embedded systems.

2. Background

In this section, we present background information regarding OpenCV, a public open-source
computer-vision library that we try to optimize, as well as a genetic algorithm (GA) which we used as
an optimization engine.

2.1. OpenCV

OpenCV [9] is a library that provides programming functions to solve computer-vision problems.
Many computer-vision applications use this library as it provides a considerable number of algorithms
and examples with well-documented references. Typically, a computer-vision application contains one

Symmetry 2019, 11, 1488 3 of 14

or more algorithms which are associated with each other in execution dependencies. Figure 1 illustrates
a canny edge detection application, an official OpenCV example, in which two OpenCV functions
are sequenced in a task graph format. In this example, two OpenCV functions are invoked in order:
cvtColor(), which converts the color type of an image; and Canny(), which performs the canny edge
detection algorithm.

Figure 1. Example for performing a canny edge detection application.

Note that some OpenCV algorithms can be executed in parallel, as they are operated upon multiple
independent data sets. Such a parallel algorithm is called a parallel task and is executed simultaneously
on a multicore processor using OpenCV’s parallel framework. In this example, three parallel tasks are
found: ConvertColor, EdgeDetecting, and FinalPass.

The parallel framework of OpenCV implements the parallel tasks in parallel_ f or_ functions.
Several parallelization alternatives are provided by OpenCV for the parallel_ f or_ functions which are
tailored to the special parallel architectures, such as CUDA or OpenCL-based GPGPUs, or low-level
parallelization libraries, such as POSIX Threads (pthread), Intel TBB [19], and OpenMP [20]. In this
work, we target the parallel_ f or_ function implemented using pthread, as it is generally applicable
to any multicore system. In this case, the parallelization decision is made by three configuration
parameters: v, w, and c. In order to utilize the data parallelism of an OpenCV application, the input
image is split into w sub-images (Parameter w here corresponds to variable nstripes in the OpenCV
source code). Parameter c means the chunk size is to be handled at a single thread execution—that
is, c sub-images are processed within a single thread execution. Lastly, parameter v represents the
number of thread instances generated to handle the given workload.

The parallel_ f or_ function processes an image with the above-mentioned configurations in the
following steps. Firstly, the input image is divided into pieces (w sub-images) and v threads are
spawned to handle the parallel task. Among the total w sub-images, a thread takes c sub-images per
invocation. Upon completion of a thread, it is checked to see whether there are any unprocessed
sub-images remaining. If so, it is invoked again for a new set of c sub-images. Otherwise, it reports the
completion of the parallel processing with an output image. In the case that we have <v = 2, w = 6,
c = 3>, for instance, the input image is partitioned into 6 sub-images, and 2 threads process them in a
simultaneous way. As a thread handles 3 sub-images (chunks) at a single invocation, those two threads
are only invoked once. The parallel framework of OpenCV can be seen as a realization of the fork-join
data parallelism [21,22], where the data parallel workloads are partitioned into small chunks of the
same size and properly distributed over a number of threads. Note that this fork-join parallelism can
also be found in other parallel and distributed processing domains, such as Hadoop [23].

In OpenCV (version 3.4.X), the above configurations remain unoptimized in a hard-coded way.
By default, v is fixed to be the number of cores in the target system, while w and c are determined in
an ad hoc manner. The sub-image size is manually defined as a constant by the algorithm designer.
For instance, in ConvertColor(), the sub-image size is fixed as 64 KB, and thus, w is also fixed to the
input image size divided by 64 KB. The chunk size c is fixed to 1—that is, the thread always handles a
single sub-image per invocation. We identify these crude constant parameter assignments as a big

Symmetry 2019, 11, 1488 4 of 14

room for optimization. For instance, embedded systems with insufficient power budgets require a
design that operates at low power by reducing v even if the execution time may get enlarged.

It is noteworthy that the latest version of OpenCV library is 4.1.2; however, the proposed technique
has been implemented and evaluated in version 3.4.1. Although the default thread function of OpenCV
4.0.0 (or later) has been changed from pthread to std :: thread, we believe that the proposed technique
can also be implemented in different thread libraries without loss of generality, as it is not dependent
upon a specific hardware.

2.2. Genetic Algorithm (GA)

The genetic Algorithm (GA) is an evolutionary algorithm that imitates the mechanism of
natural selection. This meta-heuristic algorithm is widely adopted for obtaining near-optimum
solutions in a large and complex design space exploration; therefore, it has been typically used
in optimization problems that are difficult to solve in polynomial time. For instance, Hornby
et al. [24] developed an evolved antenna by an evolutionary design program to obtain the best
radiation pattern, and Nakaya et al. [25] used an adaptive GA for sequence-pair-based, very large-scale
integration (VLSI) floor planning. In the case where more than one design objective is optimized at the
same time, multi-objective evolutionary algorithms have also been proposed [26,27]. Many existing
works, including that by Kang et al. [28] optimized the multi-objective mapping problem by using
multi-objective GA.

3. Proposed Optimization Technique

We propose to take a measurement-based approach to the optimization of OpenCV parallelization
with respect to the given execution time (latency) and power consumption requirements.
Thus, it requires no prior knowledge on the application and underlying hardware architecture.
As shown in Figure 2, the proposed technique comprises two distinct parts: optimization and
measurement. The optimization part is not performed on the target board directly, but separately
performed on a host PC to avoid adverse effects on the measurement. Its objective is to derive
optimized configurations for the parallel_for_ functions using a design space exploration (DSE) engine
running on the host. Once a candidate configuration is obtained, it is sent to the target board over the
TCP/IP channel established between the host PC and target board. Then, the configuration is applied
to the target board by means of the developed configuration manager, and the latency and power
consumption are directly measured in the target board. These measurements are delivered back to the
DSE engine on the host PC, and the optimization procedure continues using these as evaluation results.

Figure 2. Overview of the proposed technique.

3.1. Optimization Part

The optimization part shown in the left-hand side of Figure 2 uses the DSE engine on the host PC
to search for the optimal configuration. Since the derivation of optimal parallel configuration over

Symmetry 2019, 11, 1488 5 of 14

the power and latency is a complex combinatorial optimization, we implemented the multi-objective
GA-based DSE engine based on a publicly available meta-heuristic solver framework, Opt4J [29].
Figure 2 shows the genotype structure of the GA designed to solve the proposed parallel configuration
optimization problem. Note that P is the parallel configurations to be derived, and the ith configuration
point is denoted as pi ∈ P, where it is associated with three positive integers, <vi, wi, ci>,
as stated above. Thus, a genotype is assigned 3 · n slots, each of which is to be filled with a positive
integer when there are n parallel configuration points in the target problem—that is, |P| = n.

Among the three values of pi, vi denotes the number of parallel and independent threads to handle
the function, and thus a value is chosen in the range of 1 to the maximum parallelism degree (mpd).
The number of sub-image partitions, wi is determined within the range of [vi, wmax] where wmax

denotes the upper bound of the number of sub-image partitions. At last, the number of chunks, ci is
determined within the range of [1, wi/vi]. Note that the minimum value of wi is lower-bounded
by vi to avoid under-utilized threads. For instance, with <vi = 3, wi = 2, ci = 1>, two threads are
simultaneously working on three sub-image partitions. In this case, after the first iteration, only one
sub-image is left, meaning that one thread remains idle. These range adjustments of w and c are
implemented in the GA engine, as illustrated in Algorithm 1.

Algorithm 1 Procedure of GA for the DSE of the proposed technique.

1: n← number of parallel tasks in the application;
2: mode← selecting mode in [mean, median, worst];
3:
4: procedure CREATOR(n)
5: genotype← initializing genotype;
6: for i = 1 to n do . adding <vi, wi, ci> about pi to genotype
7: genotype.add([1, mpd], integer);
8: genotype.add([1, wmax], integer);
9: genotype.add([1, wmax], integer);

10: end for
11: return genotype;
12: end procedure
13:
14: procedure DECODER(genotype, n)
15: phenotype← initializing phenotype;
16: index ← 1
17: for i = 1 to n do
18: vi ← genotype[index];
19: wi ← genotype[index + 1];
20: if wi < vi then wi ← gene_regeneration([vi, wmax], integer);
21: ci ← genotype[index + 2];
22: if ci > wi/vi then ci ← gene_regeneration([1, wi/vi], integer);
23: phenotype.add([vi, wi, ci]);
24: index ← index + 3;
25: end for
26: return phenotype;
27: end procedure
28:
29: procedure EVALUATOR(phenotype, mode)
30: tcp.send(convert_send_protocol(phenotype, mode);
31: [power, execution_time]← convert_receive_protocol(tcp.receive());
32: objective.add(power, min);
33: objective.add(execution_time, min);
34: end procedure

Symmetry 2019, 11, 1488 6 of 14

Algorithm 1 is an overview of the implementation of the DSE engine in Opt4J. A combinatorial
optimization using the Opt4J framework requires the definitions of the following three procedures:
Creator, Decoder, and Evaluator. The generation of initial candidate solutions is implemented in Creator,
as illustrated in lines 4–12. For each of pi among n configurations, three positive integers are randomly
assigned for vi, wi, and ci. The generated candidate solutions are verified and properly modified,
if necessary, in Decoder. The range corrections for wi and ci are illustrated in lines 20 and 22, respectively.
By using Decoder, arbitrarily generated candidate solutions (genotypes) are now corrected and returned
as valid solutions (phenotypes). The optimality of each phenotype is evaluated by Evaluator. As the
evaluations are made by actual measurements performed at the target board, information on the
phenotype should be transferred to the target board (line 30). Then, the measurement results are
obtained at line 31 through the blocking TCP/IP read from the target board, and these evaluation
results are delivered to the DSE engine (lines 32–33).

Note that an evaluation transaction is not based on a single measurement, but consists of a
number of measurements of the repeated executions of the application. To be more specific, each
configuration is measured by Imax times, as will be illustrated in the following subsection. This is
to cope with the uncertainties or variations of the performance in OpenCV applications running on
modern computer systems, where many SW or HW components are dynamic. For instance, the CPU
scheduler or frequency governor may work differently depending on the given working conditions,
such as the temperature or power budget.

In this regard, the profiling mode (a variable called mode) should be properly set, as the second
argument (line 29) during the evaluation, to be one of the followings: mean, medium, and worst.
Depending on the characteristics of the target system to be optimized, one of the mean, median,
and worst values of the multiple measurements is chosen as the representative evaluation value.
For instance, in the case that it is crucial to respect the given latency constraint, it is desirable to
adopt the worst mode, since the execution latency is optimized considering the worst case during
the measurement.

3.2. Measurement Part

The measurement part shown in the right-hand side of Figure 2 is responsible for the actual
measurement of the application with respect to the given candidate solution P derived by the
DSE engine. As the proposed technique performs the measurement directly in the target board,
it requires modifications of the OpenCV code. In order for the proposed technique to be generically
applicable to any OpenCV applications, the required code modifications should not include any
application- or system-specific statements. In this sense, a set of generic APIs that encapsulate the
activities of the measurement part, as summarized in Table 1, is defined and implemented as a library
to enhance the portability of the proposed technique.

Table 1. Summary of APIs developed in the proposed technique.

API Types API Names Functionalities

TransmissionManager send() Transfer power and execution time to the host PC

receive() Receive P and mode from the host PC

ParallelConfiguration

setEnable() Turn on or off the measurement mode for openCV

getEnable() Check if the measurement mode is on or not

set() Apply the configuration of P to the target parallel function

MeasurementUnit

start()/stop() Set the starting and end point of the measurement

getProfiling() Obtain the measured power consumption and execution time

getProfilingStatistics() Obtain the statistics value for the given mode value

Symmetry 2019, 11, 1488 7 of 14

The TransmissionManager library is for the communication between the host PC and the
target board. The target board can obtain the candidate configuration (P) and profiling mode (mode)
by invoking receive(). On the completion of profiling, the measurement results, that is, the power
consumption and latency, are sent to the host side via send().

The second library, ParallelConfiguration, was developed in parallel.cpp and parallel_impl.cpp in
the OpenCV source codes to manage the profiling on the target board. The measurement mode can
easily be turned on and off by invoking setEnable(), and it can be checked whether the system is under
measurement or not with getEnable(). A candidate configuration can be applied to the target board by
invoking set() of ParallelConfiguration.

After the configuration is applied as intended, the MeasurementUnit library actually performs the
measurements of the running application. Note that this library is implemented using system-specific
APIs. In the proposed technique, we used Linux system calls to measure the execution time, while the
device driver provided by the board vendor [30] was utilized to access the integrated power sensor.
The starting and end points of the profiling were set by invoking start() and stop(), respectively.
When the measurement mode is on, the profiling is automatically performed for the marked region, and
the individual result is obtained by invoking getPro f iling(). As stated in the previous section, multiple
measurements, that is, Imax times, are repeatedly performed for the same application, and a statistically
representative value, e.g., mean, median, or worst, is chosen depending on the mode value. By invoking
getProfilingStatistics(), a proper statistical value for the given argument mode can be obtained.

Algorithm 2 exemplifies how the measurement part works in the canny edge detection application
shown in Figure 1 using the APIs explained above. At the beginning, the TransmissionManager receives
the candidate configurations and profiling mode at line 1, and turns on the measurement mode at line 2.
Note in Figure 1 that there are three parallel tasks to be optimized in the given example. So, the parallel
configuration also consists of three configurations: p1 for ConvertColor(), and p2 and p3 for the two
parallel tasks in Canny(). The starting and end positions were set at lines 5 and 10, respectively to
encompass the core part of the OpenCV workload. After the measurements were performed by Imax

times by iterating the loop in lines 3–12, the representative statistical values were derived at line 13
and transferred to the host side at line 14.

Algorithm 2 An OpenCV code modification example using the proposed technique for the canny edge
detection application.

1: [P, mode]← TransmissionManager.receive();
2: ParallelConfiguration.setEnable(true);
3: for i = 1 to Imax do
4: input_image← getting input image;
5: MeasurementUnit.start();
6: ParallelConfiguration.set(p1);
7: ConvertColor(input_image, gray_image); . Function with a parallel task
8: ParallelConfiguration.set([p2, p3]);
9: Canny(gray_image, output_image]); . Function with two parallel tasks

10: MeasurementUnit.stop();
11: [poweri, execution_timei]←MeasurementUnit.getProfiling();
12: end for
13: [powerselect, execution_timeselect]←MeasurementUnit.getProfilingStatistics(mode);
14: TransmissionManager.send(powerselect, execution_timeselect);

4. Evaluations

As evaluations, we performed the co-optimization of the power consumption and latency of
OpenCV applications using the proposed optimization technique in a heterogeneous multicore
embedded system. As summarized in Table 1, the proposed technique was implemented in C++ as
libraries, and thus can be applied to any OpenCV application that uses OpenCV’s parallel framework.

Symmetry 2019, 11, 1488 8 of 14

We adopted two widely used examples from the OpenCV tutorial for evaluations. Also, in order to
demonstrate the effectiveness of the proposed technique in comparative evaluations, we chose two
comparison targets: the original OpenCV configuration (without any modification), and an ad hoc
optimization. For the ad hoc optimization, we tried to keep the parallelism degree (v) and the number
of sub-image partitions (w) the same, based on the observation that this is good for avoiding the
unbalanced assignment of sub-images to threads, while keeping the chunk size as 1—that is, c = 1.
A number of configurations can be generated from this ad hoc optimization by varying v within the
range of [1, mpd].

4.1. Experimental Setup

We evaluated OpenCV 3.4.1 on an embedded multicore board, Odroid-XU3 [30], which has
a heterogeneous octa-core architecture with 2 GB memory that runs Ubuntu 16.04 LTS
(kernel version 4.9.61). This board has a big.LITTLE architecture with four Cortex-A15 (big) and four
Cortex-A7 (LITTLE) cores. The big core showed faster performance with larger power consumption,
while the LITTLE one exhibited slower performance with reduced power consumption. The target
board Odroid-XU3 uses clock gating, in which the operating frequencies of the big cores can be
throttled when the temperature gets too high. In order to perform the evaluation within the
reasonable temperatures without losing the cores dynamically, we turned off two big cores—that
is, we only used two big and four LITTLE cores. The power measurement on Odroid-XU3 is
enabled by its on-chip current sensor, INA231, which is integrated in the board and accessed by the
developed MeasurementUnit library. It is noteworthy that such heterogeneous architectures motivate
the proposed technique. In a homogeneous architecture, replicating the parallel tasks by the number
of cores would not result in significantly unbalanced workloads between the cores. On the other hand,
in the case that the computed capabilities of cores are heterogeneous as above, some cores may remain
idle if the parallelism degree and workload partitioning do not fit well to the given architecture.

The parameters of the GA engine were set as follows. The maximum parallelism degree (mpd)
which upper-bounds v values was set to the number of cores 6, that is, mpd = 6, while the number
of sub-image partitions was upper-bounded by 128, that is, wmax = 128. The number of repeated
profiling, Imax, was set to 16.

Figure 3 shows the actual experimental environment of the proposed technique. The host PC
runs Opt4J, the DSE engine, and connects to the target board Odroid-XU3 via TCP/IP communication
on ethernet. On the bottom-left of the Figure, it can be seen that Odroid-XU3 executes the target
OpenCV application with the parallel configurations derived from the DSE engine on the host PC.

Figure 3. Configuration of the actual experimental environment of the proposed technique.

Symmetry 2019, 11, 1488 9 of 14

4.2. OpenCV Examples Used for Evaluation

The official OpenCV repository contains a number of examples that support various computer
languages and platforms. Among them, for the purposes of evaluation, we selected two popular
examples written in C++: (1) the canny edge detection application, and (2) the squeezeNet [31]
application (for deep neural networks). The canny edge detection is a popular and important
application that is directly used in video object segmentation and tracking [32] or robot path
planning [33]. It takes 1920× 1080 images as input, and processes them through ConvertColor() and
Canny(). As shown in Figure 1, ConvertColor() has one parallel task, while Canny() has two. Thus,
in total, three parallel configurations need to be optimized for the three parallel tasks. The squeezeNet
application is a deep neural network module which was pre-trained through Caffe [34] using ImageNet
datasets [35]. Cases of real-world use of SqueezeNet include real-time road-object segmentation [36]
and semantic segmentation for autonomous driving [37]. It works with 227 × 227 input images,
and there exist two parallel tasks in convolution and max-pooling, respectively. Thus, the SqueezeNet
application has two parallel configuration points to be optimized.

4.3. Latency-Power Co-Optimization of OpenCV Applications

We performed latency-power co-optimization for the above-mentioned OpenCV applications
using the proposed technique. That is, we tried to discover parallel configurations that formed a
pareto-front solution on two-dimensional co-ordinates of the two design objectives to be minimized:
latency and power consumption.

The co-optimization results of the canny application are shown for the different profiling
modes—mean, median, and worst—in Figure 4a–c, respectively. The original OpenCV configuration was
plotted as ‘+’ as a comparison target. Note that it has a single fixed point, where the execution latency
is 65.68 ms and the power consumption is 3.91 W in the mean mode, as the parallel configuration is
hard-coded as follows: <v1 = 6, w1 = 31, c1 = 1> for ConvertColor(), <v2 = 6, w2 = 6, c2 = 1> for
EdgeDetecting(), and <v3 = 6, w3 = 6, c1 = 1> for FinalPass(). In addition, six different configurations
derived by the ad hoc optimization (from v = w = 1 to v = w = 6) (the maximum value is set to 6 as
the maximum parallelism degree (mpd) is 6) were also plotted as ’X’ in the Figures. In all three modes,
the original OpenCV configuration is dominated (In the multi-objective optimization, solution A is
said to be dominated by B if all the objectives of A are worse than those of B) by one of the configurations
derived from the ad hoc optimization.

Figure 4. Power consumption and latency measurements of the canny edge detection algorithm for
three different profiling modes: (a) mean, (b) median, and (c) worst.

The configurations obtained by the proposed technique are plotted as green circles in the Figures.
It can easily be noticed that a broader design space exploration is enabled by the proposed technique,
and a pareto-front that dominates both the original OpenCV and the ad hoc optimizations is derived.

Symmetry 2019, 11, 1488 10 of 14

Among the derived configurations, the one with the lowest power (1.44 W) resulted in the latency
of 254.86 ms in the mean mode. This suggests that the proposed technique could reduce the power
consumption by 63.17% at the cost of increased latency. On the other extreme, the configuration with
the smallest latency (48.78 ms) resulted in a power consumption of 4.27 W. This proves the effectiveness
of the proposed technique as a constraint-aware optimization method. If the system is to be optimized
with respect to the target latency of 300 ms, for instance, we could reduce the power consumption by
more than 60% from the original configuration.

Among the configurations derived from the proposed technique, the one that showed the closest
latency to the original OpenCV configuration is highlighted as blue squares (�). In the mean mode,
it exhibited a slightly increased latency of 65.71 ms. In this case, however, the power consumption
was reduced by 12.53% (to 3.42 W). We also made a comparison with the one with the closest power
consumption, highlighted as blue triangles (N). While its power consumption was slightly less than the
original (3.90 W), the latency was improved by 15.16% (55.72 ms). These observations confirm that the
individual configurations derived by the proposed technique outperform the original configuration in
terms of both latency and power consumption.

We could observe the similar tendencies from other profiling modes, as shown in Figure 4b,c.
In the worst mode, the derived solution with the closest latency to the original OpenCV (�) resulted
in the worst-case latency of 71.18 ms, and the worst-case power consumption of 3.41 W. In this case,
the power consumption was reduced by 15.17% at the cost of slightly increased (about 0.8%) latency.
In this case, the standard deviations of the worst-case latency and power were 2.71 and 0.15,
respectively, over the Imax = 16 measurements. Regarding the derived solution with the closest
power consumption (N), while its power consumption was slightly more than the original one
(increased from 4.02 W to 4.03 W), the latency was improved by 21.99% (reduced from 70.57 ms
to 55.05 ms). In this case, the standard deviations were 0.66 and 0.11 over the Imax = 16 measurements.
Again, the optimized configurations derived by the proposed technique outperformed the original
configuration. It is noteworthy that in the worst mode, the proposed solution could not successfully
derive many low-power configurations below 2 W, compared to other modes. Due to the conservative
latency estimation in the worst mode, some configurations that were OK in other modes were not
qualified in terms of latency.

The same latency-power co-optimization was performed for the squeezeNet application, and the
results are shown in Figure 5. The original OpenCV configurations of the squeezeNet application are
again shown as ’+’ marks for the three different profiling modes in Figure 5a–c. In the mean mode,
the configuration was <v1 = 6, w1 = 6, c1 = 1> for convolution and <v2 = 6, w2 = 6, c2 = 1> for
max-pooling, which resulted in a latency of 270.34 ms and power consumption of 4.08 W. In this case,
the original OpenCV configuration was identical to one of the configurations obtained by the ad
hoc optimization.

Similarly to the previous case, the proposed technique not only enabled broader design space
exploration, but also showed better optimality over the latency and power consumption, as revealed
by the green circles. In the mean mode, it could derive a number of configurations from the most
power-efficient one (latency: 931.19 ms, power: 1.69 W) to the fastest one (latency: 204.05 ms, power:
4.53 W). In all three modes, the pareto-front curves obtained by the proposed technique dominated the
configurations derived by the ad hoc optimization. Again, in the worst mode, it has been observed that
the standard deviations of the worst-case latency and power are not so significant. In the closest latency
solution (�), the standard deviations were 3.54 and 0.06 for latency and power, respectively over the
Imax = 16 measurements, while they were 0.88 and 0.07 in the closest power solution (N). Similarly
to the previous case, the proposed technique derived a less number of low-power configurations
compared to other modes, due to the conservative latency estimation.

Symmetry 2019, 11, 1488 11 of 14

Figure 5. Power consumption and latency measurements of the squeezeNet application for three
different profiling modes: (a) mean, (b) median, and (c) worst.

Lastly, we report the overheads caused by the proposed technique. We measured the latency
and power consumption overheads by repeating the measurements with the optimization option
enabled or disabled, that is, setEnable(true) or setEnable(f alse). Throughout the entire experiment set,
the worst-case latency and power overheads were 1.22% and 0.41%, respectively, which we believe
were insignificant. Furthermore, once a single optimal configuration is fixed for a certain system,
it is possible to hard-code the obtained parameters in the OpenCV source codes without using the
developed library.

5. Conclusions and Future Work

We herein proposed a latency-power co-optimization of OpenCV applications in a heterogeneous
multicore processor. The existing model-based multi-core optimization techniques are not suitable
for this problem since it is not easy to capture the behavior of OpenCV applications in formal models.
Alternatively, we proposed taking a measurement-based optimization approach that requires no
modeling efforts for the application and system. The proposed technique consists of two parts:
optimization and measurement. For the optimization part, a GA-based optimization engine was
executed on a separate host PC. The evaluations of the candidate configurations considered in the
optimization part were performed in the target board by actually measuring the power and latency.
Two popular OpenCV applications, canny edge detection and squeezeNet, were also optimized using
the proposed technique as a case-study. The existing approaches, including the original OpenCV
configuration, spawn threads as many as the number of cores and distribute the workload uniformly
over the cores without considering the heterogeneous multi-core architecture. Compared with these
existing methods, the proposed technique has been proven to be effective in finding a number of
optimal solutions for various latency or power requirements.

Although the proposed approach has been verified only with two OpenCV applications on
a single heterogeneous multi-core architecture in this paper, it is generally applicable to any
system where performance or power measurements and TCP/IP communications are available.
Regarding the application, the proposed technique is generally effective for any algorithm with
fork–join data parallelism. As future work, we plan to generalize the proposed technique both in target
applications and architecture. On one hand, it can be extended to consider other kinds of parallelisms,
such as task or pipeline parallelisms; and on the other hand, it is also necessary to enhance the
optimization engine to consider other parallel architectures, such as GPGPU. Both extensions require
redefinitions of the genotype structure, tailored to the parallelism characterization or the workload
hierarchy of the GPGPU programming framework, such as thread and thread block in CUDA.

Symmetry 2019, 11, 1488 12 of 14

Author Contributions: Conceptualization, H.Y., H.J. and K.K.; methodology, H.Y., H.J. and K.K.; software, H.J.
and K.K.; validation, H.J.; investigation, H.Y., H.J. and K.K.; writing—original draft preparation, H.Y., H.J.
and K.K.; writing—review and editing, H.Y. and H.J.; supervision, H.Y.; project administration, H.Y.; funding
acquisition, H.Y.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-2019-2018-0-01424) supervised by the IITP
(Institute for Information & communications Technology Promotion), and by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1F1A1064209).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ohya, I.; Kosaka, A.; Kak, A. Vision-based navigation by a mobile robot with obstacle avoidance using
single-camera vision and ultrasonic sensing. IEEE Trans. Robot. Autom. 1998, 14, 969–978. [CrossRef]

2. Omidyeganeh, M.; Shirmohammadi, S.; Abtahi, S.; Khurshid, A.; Farhan, M.; Scharcanski, J.; Hariri, B.;
Laroche, D.; Martel, L. Yawning detection using embedded smart cameras. IEEE Trans. Instrum. Meas. 2016,
65, 570–582. [CrossRef]

3. Giusti, A.; Guzzi, J.; Cireşan, D.C.; He, F.L.; Rodríguez, J.P.; Fontana, F.; Faessler, M.; Forster, C.;
Schmidhuber, J.; Di Caro, G.; et al. A machine learning approach to visual perception of forest trails
for mobile robots. IEEE Robot. Autom. Lett. 2015, 1, 661–667. [CrossRef]

4. Soyata, T.; Muraleedharan, R.; Funai, C.; Kwon, M.; Heinzelman, W. Cloud-vision: Real-time face recognition
using a mobile-cloudlet-cloud acceleration architecture. In Proceedings of the 2012 IEEE Symposium on
Computers and Communications (ISCC), Cappadocia, Turkey, 1–4 July 2012; pp. 59–66.

5. Levy, M.; Conte, T.M. Embedded multicore processors and systems. IEEE Micro 2009, 29, 7–9. [CrossRef]
6. Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. Mapping on multi/many-core systems: survey of current

and emerging trends. In Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, USA, 29 May–7 June 2013; pp. 1–10.

7. Bhattacharyya, S.S.; Murthy, P.K.; Lee, E.A. Synthesis of embedded software from synchronous dataflow
specifications. J. VLSI Signal Proces. Syst. Signal Image Video Technol. 1999, 21, 151–166. [CrossRef]

8. Stefanov, T.; Zissulescu, C.; Turjan, A.; Kienhuis, B.; Deprettere, E. System design using Kahn process
networks: the Compaan/Laura approach. In Proceedings of the Conference on Design, Sutomation and Test
in Europe-Volume 1, Paris, France, 16–20 February 2004; IEEE Computer Society: Washington, DC, USA;
p. 10340.

9. Bradski, G. The OpenCV Library. Dr. Dobbs J. Softw. Tools 2000, 120, 122–125.
10. Ng, T.E.; Chu, Y.H.; Rao, S.G.; Sripanidkulchai, K.; Zhang, H. Measurement-based optimization techniques

for bandwidth-demanding peer-to-peer systems. In Proceedings of the IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428),
San Francisco, CA, USA, 30 March–3 April 2003; Volume 3, pp. 2199–2209.

11. Rapita Systems Ltd. RapiTime. Available online: http://www.rapitasystems.com (accessed on 30 July 2019).
12. Anuar, A.; Saipullah, K.M.; Ismail, N.A.; Soo, Y. OpenCV based real-time video processing using

android smartphone. Int. J. Comput. Technol. Electron. Eng. (IJCTEE) 2011, 1, 58–63.
13. Gurav, R.M.; Kadbe, P.K. Real time finger tracking and contour detection for gesture recognition using

OpenCV. In Proceedings of the 2015 International Conference on Industrial Instrumentation and Control
(ICIC), Pune, India, 28–30 May 2015; pp. 974–977.

14. Li, D.; Liang, B.; Zhang, W. Real-time moving vehicle detection, tracking, and counting system implemented
with OpenCV. In Proceedings of the 2014 4th IEEE International Conference on Information Science and
Technology, Shenzhen, China, 26–28 April 2014; pp. 631–634.

15. Pulli, K.; Baksheev, A.; Kornyakov, K.; Eruhimov, V. Real-time computer vision with OpenCV. Commun. ACM
2012, 55, 61–69. [CrossRef]

16. Sung, H.W.; Chang, Y.M.; Wang, S.C.; Lee, J.K. OpenCV Optimization on Heterogeneous Multi-core Systems
for Gesture Recognition Applications. In Proceedings of the 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), Philadelphia, PA, USA, 16–19 August 2016; pp. 59–65.

http://dx.doi.org/10.1109/70.736780
http://dx.doi.org/10.1109/TIM.2015.2507378
http://dx.doi.org/10.1109/LRA.2015.2509024
http://dx.doi.org/10.1109/MM.2009.41
http://dx.doi.org/10.1023/A:1008052406396
http://www.rapitasystems.com
http://dx.doi.org/10.1145/2184319.2184337

Symmetry 2019, 11, 1488 13 of 14

17. Coombs, J.; Prabhu, R. OpenCV on TI’s DSP+ ARM R© platforms: Mitigating the challenges of porting
OpenCV to embedded platforms. Texas Instrum. 2011. Available online: https://www.embedded-vision.com/
platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%
99s-dsparm%C2%AE-plat (accessed on 6 December 2019).

18. Monson, J.; Wirthlin, M.; Hutchings, B.L. Implementing high-performance, low-power FPGA-based optical
flow accelerators in C. In Proceedings of the 2013 IEEE 24th International Conference on Application-Specific
Systems, Architectures and Processors, Washington, DC, USA, 5–7 June 2013; pp. 363–369.

19. Pheatt, C. Intel R© Threading Building Blocks. J. Comput. Sci. Coll. 2008, 23, 298–298.
20. Dagum, L.; Menon, R. OpenMP: An Industry-Standard API for Shared-Memory Programming. IEEE Comput.

Sci. Eng. 1998, 5, 46–55. [CrossRef]
21. Martorell, X.; Ayguadé, E.; Navarro, N.; Corbalán, J.; González, M.; Labarta, J. Thread fork/join techniques

for multi-level parallelism exploitation in NUMA multiprocessors. In Proceedings of the 13th International
Conference on Supercomputing, Rhodes, Greece, 20–25 June 1999; Volume 20, pp. 294–301.

22. Amer, A.; Maruyama, N.; Pericàs, M.; Taura, K.; Yokota, R.; Matsuoka, S. Fork-join and data-driven execution
models on multi-core architectures: Case study of the FMM. In Proceedings of the 2013 28th International
Supercomputing Conference, Berlin, Germany, 16–20 June 2013; pp. 255–266.

23. Shafer, J.; Rixner, S.; Cox, A.L. The hadoop distributed filesystem: Balancing portability and performance.
In Proceedings of the 2010 IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS 2010), White Plains, NY, USA, 28–30 March 2010; pp. 122–133.

24. Hornby, G.; Globus, A.; Linden, D.; Lohn, J. Automated antenna design with evolutionary algorithms.
In Proceedings of the Space 2006, San Jose, CA, USA, 19–21 September 2006; p. 7242.

25. Nakaya, S.; Koide, T.; Wakabayashi, S. An adaptive genetic algorithm for VLSI floorplanning based
on sequence-pair. In Proceedings of the 2000 IEEE International Symposium on Circuits and Systems.
Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No. 00CH36353), Geneva, Switzerland,
28–31 May 2000; Volume 3, pp. 65–68.

26. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Rep.
2001, 103. [CrossRef]

27. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

28. Kang, S.H.; Yang, H.; Schor, L.; Bacivarov, I.; Ha, S.; Thiele, L. Multi-objective mapping optimization via
problem decomposition for many-core systems. In Proceedings of the 2012 IEEE 10th Symposium on
Embedded Systems for Real-Rime Multimedia, Tampere, Finland, 11–12 October 2012; pp. 28–37.

29. Lukasiewycz, M.; Glaß, M.; Reimann, F.; Teich, J. Opt4J—A Modular Framework for
Meta-heuristic Optimization. In Proceedings of the Genetic and Evolutionary Computing Conference
(GECCO 2011), Dublin, Ireland, 12–16 July 2011; pp. 1723–1730.

30. Hardkernel. Odroid-XU3. Available online: https://www.hardkernel.com/shop/odroid-xu3 (accessed on
30 July 2019).

31. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50× fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360

32. Kim, C.; Hwang, J.N. Fast and automatic video object segmentation and tracking for content-based
applications. IEEE Trans. Circuits Syst. Video Technol. 2002, 12, 122–129.

33. Al-Jarrah, R.; Al-Jarrah, M.; Roth, H. A novel edge detection algorithm for mobile robot path planning.
J. Robot. 2018, 2018, 1–12. [CrossRef]

34. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional Architecture for Fast Feature Embedding. arXiv 2014, arXiv:1408.5093.

35. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition CVPR09,
Miami Beach, FL, USA, 20–25 June 2009; pp. 248–255.

36. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time
road-object segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference
on Robotics and Automation (ICRA), Brisbane, Australia, 21–26 May 2018; pp. 1887–1893.

https://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
https://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
https://www.embedded-vision.com/platinum-members/texas-instruments/embedded-vision-training/documents/pages/opencv-ti%E2%80%99s-dsparm%C2%AE-plat
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.3929/ethz-a-004284029
http://dx.doi.org/10.1109/4235.996017
https://www.hardkernel.com/shop/odroid-xu3
http://dx.doi.org/10.1155/2018/1969834

Symmetry 2019, 11, 1488 14 of 14

37. Treml, M.; Arjona-Medina, J.; Unterthiner, T.; Durgesh, R.; Friedmann, F.; Schuberth, P.; Mayr, A.; Heusel, M.;
Hofmarcher, M.; Widrich, M.; et al. Speeding up semantic segmentation for autonomous driving.
In Proceedings of the MLLITS, NIPS Workshop, Barcelona, Spain, 5–10 December 2016.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	OpenCV
	Genetic Algorithm (GA)

	Proposed Optimization Technique
	Optimization Part
	Measurement Part

	Evaluations
	Experimental Setup
	OpenCV Examples Used for Evaluation
	Latency-Power Co-Optimization of OpenCV Applications

	Conclusions and Future Work
	References

