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Abstract: The wide acceptability of Advanced Encryption Standard (AES) as the most efficient of
all of the symmetric cryptographic techniques has further opened it up to more attacks. Efforts that
were aimed at securing information while using AES is still being undermined by the activities of
attackers This has further necessitated the need for researchers to come up with ways of enhancing the
strength of AES. This article presents an enhanced AES algorithm that was achieved by modifying its
SubBytes and ShiftRows transformations. The SubBytes transformation is modified to be round key
dependent, while the ShiftRows transformation is randomized. The rationale behind the modification
is to make the two transformations round key dependent, so that a single bit change in the key will
produce a significant change in the cipher text. The conventional and modified AES algorithms are
both implemented and evaluated in terms avalanche effect and execution time. The modified AES
algorithm achieved an avalanche effect of 57.81% as compared to 50.78 recorded with the conventional
AES. However, with 16, 32, 64, and 128 plain text bytes, the modified AES recorded an execution time
of 0.18, 0.31, 0.46, and 0.59 ms, respectively. This is slightly higher than the results obtained with the
conventional AES. Though a slightly higher execution time in milliseconds was recorded with the
modified AES, the improved encryption and decryption strength via the avalanche effects measured
is a desirable feat.

Keywords: Data security; Information Security; Advanced Encryption Standard (AES); Modified AES

1. Introduction

The advancement in Information and Communication Technology (ICT) has made internet one
of the major mediums through which information is being shared in this 21st century. However, the
confidentiality, integrity, and availability of information shared over public network still remains an
open issue [1]. Information hiding techniques using watermarking and steganography as well as
cryptography have been widely explored to ensure the security of information transmitted over an
unsecured network. With emphasis on cryptography, information security is guaranteed by making a
secret message unreadable to a third party, but accessible by the sender and recipient alone while using
one or more secret keys. Cryptographic techniques could be symmetric—if the same key is used for
encryption and decryption or asymmetric—if different keys are used for encryption and decryption [2].
Symmetric cryptographic techniques are the most appropriate when a large amount of data is to be
secured [3]. Of the available symmetric cryptographic techniques, such as Data Encryption Standard
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(DES), Triple DES, and Advanced Encryption Standard (AES), AES is the most common and widely
used [4]. However, several attacks that aimed at undermining the strength of AES algorithm have been
reported in the literature. Differential fault analysis attacks that inject faults into AES structure with the
aim of retrieving the secret information were reported in [5], while cache timing attack, which uses side
channel information, such as power consumption statistics, timing information, and cache contents
to infer the unknown key used in data encryption, was reported in [6]. Most recently, related-key
differential attacks was reported in [7]. In this attack, the cryptanalyst queries the block ciphers with
plaintext pairs to deduce the secret key that was used. Similarly, cipher strength analysis carried out
by cipher analysts have revealed that with the current trend of increasing computational power, eight
out of ten rounds of AES has been brute forced successfully and soonest the remaining two rounds
may be broken [8]. This has called for the need to urgently explore techniques that could further
strengthen the AES algorithm. Therefore, this article introduces an enhanced AES algorithm that
was achieved by modifying its SubBytes and ShiftRows transformations. The rationale behind the
modification is to make the two transformations round key dependent, so that a change to any bit
of the key will result to a significant change in the cipher text. The rest of the paper is organized, as
follows: Section 2 explained the existing AES algorithm, its structure, and various transformation
stages. A review of recent works as regards AES modification was carried out in Section 3, while
the proposed methodology was explained in details in Section 4. The result of the modified AES
algorithm, its performance evaluation using avalanche effect, execution time is presented in Section 5.
A comparative analysis of the modified AES with those that were obtained from existing works is also
presented in Section 5. The study’s conclusion is provided in Section 6.

2. Existing AES Algorithm

The AES algorithm is a symmetric key algorithm that was established as the standard for
encrypting digital data by the US National Institute for Standard and Technology (NIST). It is an
iterative round block cipher that works on 128bit plaintext using three different key lengths 128, 192,
and 256 bits [9]. The key length determines the number of encryption and decryption rounds to be
performed which could be 10, 12, and 14 rounds for 128, 192, and 256-bit key length, respectively. It is
believed that the larger the key length, the higher the cryptographic strength [9]. The AES algorithm
consists of four invertible transformations: SubBytes, ShiftRows MixColumns, and AddRoundKey, as
shown in Figure 1.

All of these transformations are performed in all the encryption rounds, except the final round,
where the MixColumns transformation is omitted to make the encryption and decryption scheme
symmetric, these transformations are described below:

(i) SubBytes Transformation: as shown in Figure 2, SubBytes transformation is the only non-linear
and invertible byte transformation that replaces each byte of the input data block (D0, . . . , D15) by
the row (first 4-bits) and column (second 4-bits) of a 16× 16 Substitution Box (S-Box). The S-Box, as
shown in Figure 5, has special mathematical properties that ensure that changes in individual state
bits propagate quickly across the cipher text, which introduces confusion. Inverse substitution
table (InvS-Box) is used during decryption to undo the effect of the SubBytes transformation.

(ii) ShiftRows Transformation: This manipulates the rows of the state by using a certain offset to shift
the bytes in each row, as shown in Figure 3. This is carried out to ensure that the columns of the
state are not independently encrypted. During this operation, the first row remains unchanged,
while one-byte, two-byte, and three-byte circular shift operation is performed on the second,
third, and fourth rows, respectively. For the decryption process, the first row remains unchanged,
while the other rows are shifted to the right based on the same offset used to shift them to the left
during encryption process

(iii) MixColumns Transformation: This is a linear diffusion process that sees the columns of the
state as coefficients of polynomial of order x7. It manipulates all the columns of the state by
carrying out multiplication and addition operation on their bytes. Exclusive OR (XOR) is used
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for the addition operation while modulo m(x) = x8 + x4x3 + x + 1 is used for the multiplication
operation. As shown in Figure 6, each column of the state obtained from shiftrow transformation
is multiplied by a mixing matrix to obtain the transformed matrix. With this manipulation, the
initial setting of the cipher text is changed, such that no bytes look similar. Inverse MixColumns
is used to undo this transformation during the decryption process.

(iv) AddRoundKey Transformation: This is the last transformation that will be done for each round.
As shown in Figure 4, an addition operation between the bytes of the transformed state and the
round key is carried out while using XOR.
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3. Related Works

Several research efforts have been directed at improving AES algorithm. A modified version of
AES that is specifically designed to handle the unique features of image encryption and decryption
was proposed in [11]. MixColumns transformation in the conventional AES was replaced with bit
permutation. The computed number of pixel change rate and the unified average change intensity
revealed that the modified AES is more sensitive to differential attack. Authors in [12] made the
various attacks that have been targeted at undermining the strength of AES known. Among these is
fault injection attacks that could be used to reveal AES key. Therefore, they proposed randomizing
the key generation process of AES as a way out. This led to a higher avalanche effect in the modified
AES. Additionally, it was envisaged that an increase in the number of rounds of AES could make
the algorithm more secured in [13]. The assumption was validated by increasing the rounds of AES
from 10 to 16. The results obtained revealed that the modified AES requires a higher computational
time when compared to the conventional AES. An attempt to reduce the complexity path of AES
was made in [14]. The complexity observed was as a result of redundant logical functions in the
MixColumn transformation of AES. These logical functions were eradicated in the modified version of
AES. After evaluating the modified AES, a 13.6% reduction in LUTs, 10.93% slice reduction, and a
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1.19% reduction in delay consumption were achieved. Similarly, the low diffusion rate encountered
by the conventional AES at the early cipher and key schedule rounds was addressed in [15]. XOR
operation was added between the SubBytes and ShiftRow transformation processes, while modulo
addition was added between the ShiftRow and MixColumn operations. The avalanche effect measured
achieved a 61.98% increase in diffusion for the round 1 and 14.79% and 13.87% increase in diffusion
for round 2 and 3, respectively. Furthermore, the increase in computational speed of computing
systems is a sign that AES algorithm could be broken. Therefore, the use of the system’s Media Access
Control (MAC) Address as an additional key to shuffle the substitution box and shift row stage of
the conventional AES algorithm was proposed in [16]. They permuted the six-bytes MAC Address to
produce two 4 × 4 matrices (W1 and W2). Each of the matrices was then XORed with the original key K
to obtain Sortkey1 = W1

⊕
K and Sortkey2 = W2

⊕
K. Sortkey1 and Sortkey2 were then used as row

and column respectively in the S-Box to substitute the state. Though, breaking the modified AES will
be more complex than the conventional AES, a higher execution time was recorded with the modified
AES. Authors in [16] were of the opinion that S-Box and Mix Columns are the most energy consuming
stages in encryption and decryption processes of the AES algorithm. They therefore proposed a
one-dimensional S-Box construction aimed at reducing AES energy consumption. The S-Box was
constructed from a formulated affine transformation equation in Galois Field (24). The proposed
method proved to be more efficient than conventional AES with 18.35% efficiency rate when compared
to conventional AES.

Additionally, the need to reduce the energy consumption of AES so as to make them suitable for
smart devices was explored in [17]. A Lorenz attractor which coupled three nonlinear differential
equation was employed to formulate a one-dimensional substitution box used by the modified AES.
This yielded a low energy consuming AES was achieved with a better latency and packet transmission
rate. Authors in [18] also observed that cryptanalysts have been exploiting the static nature of the
contents of S-Boxes. Therefore, a dynamic S-Box was created from the exsting S-Box and round keys,
such that, for roundi, the first byte of the round key (key[i] = roundKeyi[0, 0]) is XORed with all of the
bytes of the original S-Box, as shown in Equation (1):

DynamicSBoxi[x, y] = SBox[x, y]
⊕

key[i] (1)

The dynamic S-Box was then used to perform sub byte operation for that round. Comparative
analysis carried out revealed that the new technique out performed the original AES in terms of the
avalanche effect though the execution time is doubled. Similarly, a modified AES algorithm that was
obtained by increasing the key length and the number of rounds was introduced in [19]. They are of
the opinion that an increase in the key length and number of rounds could further strengthen the AES
algorithm. The key length was increased to 320 bits, while the number of rounds was increased to
sixteen. The modification led to a higher execution time when compared to the original AES algorithm,
but lesser than 3DES. Additionally, the authors in [20] observed that most AES attacks target the secret
key used for the encryption and decryption. To this effect, the Genetic Algorithm (GA) was employed
to generate a secret key to be used for encryption and decryption purposes. Using text and audio data
for encryption, less encryption and decryption time was observed when compared to the conventional
128 bit AES algorithm. Similarly, Elliptic Curve Cryptography (ECC) was employed in [21] to generate
irreversible random numbers used as AES secret keys. X and Y coordinates used for random number
generation improved the entropy of the random numbers generated. Security analysis carried out
showed that the proposed technique is extremely sensitive to key changes and is also resistive to
certain attacks. Furthermore, a dynamic key and S-box generation approach to the conventional AES
algorithm was introduced in [22]. The dynamic key was generated by using the system time function
that randomly generates the secret key using the time recorded when the user logs into the system.
In the same way, the initial S-Box was transformed into a dynamic one with the aid of the dynamic
random key generated. In a similar manner, Pseudo-Noise (PN) sequence generator was employed
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in [23] to produce dynamic S-box values and initial secret keys needed for encryption and decryption.
Since the initial secret keys were internally generated, the seed value is difficult to deduce by an
attacker, therefore, the modified AES algorithm was impenetrable by brute force attack. The modified
AES algorithm also yielded a high encryption quality, an avalanche effect of 60%, a throughput of 3.039
Gbps, and a latency of 10 clock cycles.

4. Proposed Methodology

This section presents the methodology adopted in this study in detail.

4.1. Modified SubBytes Transformation

AES SubBytes transformation was modified to make it round key dependent; this is to ensure
that a change in the key is easily discovered in the cipher text. To achieve that, the 16 bytes round
key was used to obtain four eight-bit keys XORkey0, XORkey1, XORkey2, XORkey3 by XORing
all the bytes of the corresponding row (Rowi) in the round key matrix, as shown in Equation (2).
After obtaining the XORkeys, each XORkeyi as shown in Equations (3)–(6) was then added to all
of the bytes in the corresponding row (Rowi) of the state matrix before substituting the values in
the S-Box. Mathematically, given the state S and a round key K, represented as a 4 × 4 matrices:

S=

S 0,0 S 0,1 S 0,2 S 0,3

and K =

K0,0 K0,1 K0,2 K0,3
S 1,0 S 1,1 S 1,2 S 1,3 K1,0 K1,1 K1,2 K1,3
S 2,0 S 2,1 S 2,2 S 2,3 K2,0 K2,1 K2,2 K2,3
S 3,0 S 3,1 S 3,2 S 3,3 K3,0 K3,1 K3,2 K3,3

XORkeyi = Ki,0

⊕
Ki,1

⊕
Ki,2

⊕
Ki,3, where i = 0 to 3 (2)

Alternatively,
XORkey0 = K0,0

⊕
K0,1

⊕
K0,2

⊕
K0,3 (3)

XORkey1 = K1,0

⊕
K1,1

⊕
K1,2

⊕
K1,3 (4)

XORkey2 = K2,0

⊕
K2,1

⊕
K2,2

⊕
K2,3 (5)

XORkey3 = K3,0

⊕
K3,1

⊕
K3,2

⊕
K3,3 (6)

The new state matrix, S′ was obtained while using Equation (7).

S′i, j = Si, j

⊕
XORkeyi, where j = 0 to 3 where i ranges from 0 to 3 (7)

The operation can be seen clearly from the matrix below:

S ’ =

S 0,0
⊕

Key0 S 0,1
⊕

Key0 S 0,2
⊕

Key0 S 0,3
⊕

Key0
S 1,0

⊕
Key1 S 1,1

⊕
Key1 S 1,2

⊕
Key1 S 1,3

⊕
Key1

S 2,0
⊕

Key2 S 2,1
⊕

Key2 S 2,2
⊕

Key2 S 2,3
⊕

Key2
S 3,0

⊕
Key3 S 3,1

⊕
Key3 S 3,2

⊕
Key3 S 3,3

⊕
Key3

The resultant state matrix S′ is given as follows: S′=

S’
0,0 S’

0,1 S’
0,2 S’

0,3
S’

1,0 S’
1,1 S’

1,2 S’
1,3

S’
2,0 S’

2,1 S’
2,2 S’

2,3
S’

3,0 S’
3,1 S’

3,2 S’
3,3

After obtaining the new state matrix S′, the bytes are then substituted in the substitution table
(S-Box) using normal SubBytes operation, as shown in Equation (8):

S′i, j = SubstitutionBox[S′i, j], where j = 0 to 3 for every i = 0 to 3 (8)
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4.2. Modified Inverse SubBytes Transformation

To obtain the modified inverse SubBytes operation, the SubBytes transformation was proved to be
invertible, as shown in Equation (9). Given two polynomials f (x) and f (k) operating in Galois Field 28

(GF (28)), such that:

f (h) = f (x)
⊕

f (k), and f (x) = ( f (x) ⊕ f (k)) ⊕ f (k) = f (h)
⊕

f (k) (9)

The proof is given, as follows:
Given two hexadecimal numbers ED (11101101 in binary) and BF (10111111 in binary), the number

x, which is the XOR of ED and BF can be obtained by adding BF to ED while using and exclusive OR
operation. The operation is shown, as follows:

ED and BF can be expressed in terms of polynomial f (x) and f (k), respectively, in Galois Field 28

(GF (28)) as:
f (x) = x7 + x6 + x5 + x3 + x2 + 1 = ED (10)

f (k) = x7 + x5 + x4 + x3 + x2 + x1 + 1 = BF (11)

Therefore,

f (h) = f (x)
⊕

f (k) = x7 + x6 + x5 + x3 + x2 + 1
⊕

x7 + x5 + x4 + x3 + x2 + x1 + 1
= x6 + x4 + x1 (12)

f (h) = x6 + x4 + x1 = 01010010 in binary, and 52 in hexadecimal. To prove that f (x) = ( f (x) ⊕ f (k))⊕
f (k) = f (h)

⊕
f (k), using the polynomials f (h)

⊕
f (k), we obtain:

f (x) = f (h)
⊕

f (k) = x6 + x4 + x1
⊕

x7 + x5 + x4 + x3 + x2 + x1 + 1 = x7 + x6 + x5 + x3 + x2 + 1
(13)

Since f (x) = ( f (x) ⊕ f (k)) ⊕ f (k) = f (h)
⊕

f (k), the SubBytes operation is proven to be invertible.
During the inverse SubBytes operation, the substitution is done before XORing the state matrix

with the XORkeys using

S′i, j = InverseSubstitutionBox[S′i, j], where j = 0 to 3, for every i = 0 to 3 (14)

The matrix S′ is then obtained after the substitution as:

S ’ =

S’
0,0 S’

0,1 S’
0,2 S’

0,3
S’

1,0 S’
1,1 S’

1,2 S’
1,3

S’
2,0 S’

2,1 S’
2,2 S’

2,3
S’

3,0 S’
3,1 S’

3,2 S’
3,3

Hence, the original state S is obtained by XORing the S′ matrix with the XORkeys using Equation
(15):

Si, j = S′i, j
⊕

XORkeyi, where j = 0to3 for each ifrom 0to3 (15)

The inverse SubBytes operation is shown in the matrix below:

S =

S’ 0,0
⊕

Key0 S’ 0,1
⊕

Key0 S’ 0,2
⊕

Key0 S’ 0,3
⊕

Key0
S’ 1,0

⊕
Key1 S’ 1,1

⊕
Key1 S’ 1,2

⊕
Key1 S’ 1,3

⊕
Key1

S’ 2,0
⊕

Key2 S’ 2,1
⊕

Key2 S’ 2,2
⊕

Key2 S’ 2,3
⊕

Key2
S’ 3,0

⊕
Key3 S’ 3,1

⊕
Key3 S’ 3,2

⊕
Key3 S’ 3,3

⊕
Key3

The resultant matrix S, which is the original state is obtained, as follows:

S =

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

The proof above shows that the SubBytes operation is invertible, since
SubstitutionBox[Si, j

⊕
XORkeyi]= InverseSubstitutionBox[S′i, j

] ⊕
XORkeyi,
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where j = 0 to 3, for each i from 0 to 3.

4.3. Modified ShiftRows Transformation

Modification to the ShiftRows operation was achieved by randomizing the entire operation.
In the conventional AES algorithm, the ShiftRows operation depends on a fixed number,
called the offset, which determines the number of byte position(s) each row of the state will
be shifted. With this modification, the operation does not have to depend on the fixed
offset, it now depends on a number, called the Rank Number (RNo), which is obtained by
manipulating each row of the state matrix with the corresponding row of the round key matrix.
The rows of the state are shifted based on the rank number obtained. To obtain the rank
number using a state matrix S and a round key matrix K, the following steps were adopted:

S=

S 0,0 S 0,1 S 0,2 S 0,3

and K =

K0,0 K0,1 K0,2 K0,3
S 1,0 S 1,1 S 1,2 S 1,3 K1,0 K1,1 K1,2 K1,3
S 2,0 S 2,1 S 2,2 S 2,3 K2,0 K2,1 K2,2 K2,3
S 3,0 S 3,1 S 3,2 S 3,3 K3,0 K3,1 K3,2 K3,3

Step 1: Each row (Rowi) of the state matrix was added to the corresponding row in the round key
matrix using XOR to obtain a 4-byte vector called State-Key (SKey) vector.
Step 2: The four-byte of the State-Key vector are then XORed together to obtain an 8-bit value called
the Rank Value (RVal).
Step 3: The eight-bit Rank Value (RVali) is then stored in corresponding Rowi of the state matrix.
Step 4: Steps 1–3 will be repeated for the remaining rows Row1 to Row3
Step 5: Attach Rank Number (RNo) to the Rank Values obtained in Step 3 above for each of the rows
of the state (Row0 to Row3) in ascending order with the minimum rank value having 1 as the rank
number while the maximum rank value has 4 as the Rank Number.

The above steps can be mathematically expressed, as follows:
The State–Key (SKey) vector is obtained using Equation (16), such that:

SKeyi = ((Si,0

⊕
Ki,0), (Si,1

⊕
Ki,1), (Si,2

⊕
Ki,2), (Si,3

⊕
Ki,3)) (16)

Equation (16) can be further reduced into Equation (17), such that:

SKeyi = (SKi,0, SKi,1, SKi,2, SKi,3), where SKi, j = Si, j

⊕
Ki, j (17)

Alternatively, Equation (17) can be decomposed into Equations (18)–(20):

SKey0 = (SK0,0, SK0,1, SK0,2, SK0,3) (18)

SKey1 = (SK1,0, SK1,1, SK1,2, SK1,3) (19)

SKey2 = (SK2,0, SK2,1, SK2,2, SK2,3) (20)

SKey3 = (SK3,0, SK3,1, SK3,2, SK3,3) (21)

The Rank Values (RVals) are then obtained using Equation (22), such that:

RVali = (SKi,0

⊕
SKi,1

⊕
SKi,2

⊕
SKi,3), where i = 0 to 3 (22)

Alternatively, Equation (22), which is generic, can further be broken into four independent
equations representing each row of the state shown in Equations (23)–(26):

RVal0 = SK0,0

⊕
SK0,1

⊕
SK0,2

⊕
SK0,3 (23)
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RVal1 = SK1,0

⊕
SK1,1

⊕
SK1,2

⊕
SK1,3 (24)

RVal2 = SK2,0

⊕
SK2,1

⊕
SK2,2

⊕
SK2,3 (25)

RVal3 = SK30

⊕
SK3,1

⊕
SK3,2

⊕
SK3,3 (26)

After obtaining the Rank Values (RVals), Rank Number (RNo) is then attached to these values in
ascending order, with RNo of 1 being attached to the smallest RVal, while RNo of 4 is attached to the
biggest RVal.

Lastly, each row of the state is then shifted RNo− 1 positions to the left. This means that the row
with RNo = 1 is not shifted, the one with RNo = 2 is shifted one-byte position to the left, followed by
the row with RNo = 3, which is shifted two-byte position to the left, and lastly, the row with the highest
rank number, RNo = 4 is shifted three-byte position to the left. Table 1 displays the above statements.

Table 1. Relationship Between Rank Number and Number of Byte Position to Shift Each Row in
Modified ShiftRows Operation of the Enhanced AES.

S/No Rank Number (RNo) No. of Byte Position to Shift (RNo-1)

1 1 0
2 2 1
3 3 2
4 4 3

Given the state matrix S and round key matrix K, the modified ShiftRows operation is

described below: S =

4D 87 F2 97

and K =

11 55 75 A1
EC 6E 4C 90 1F 44 53 CA
4A C3 46 E7 83 E6 90 3D
8C D8 95 A6 D4 31 77 9F

The State-Key (SKey) vectors are obtained, as follows:

SKey0 = ((4D
⊕

11), (87
⊕

55), (F2
⊕

75), (97
⊕

A1)) = (5C, D2, 87, 36)

SKey1 = ((EC
⊕

1F), (6E
⊕

44), (4C
⊕

53), (90
⊕

CA)) = (F3, 2A, 1F, 5A)

SKey2 = ((4A
⊕

83), (C3
⊕

E6), (46
⊕

90), (E7
⊕

3D)) = (C9, 25, D6, DA)

SKey3 = ((8C
⊕

D4), (D8
⊕

31), (95
⊕

77), (A6
⊕

9F)) = (58, E9, E2, 39)

The Rank Values (RVals) are then obtained, as follows:

RVal0 = 5C
⊕

D2
⊕

87
⊕

36 = 3F

RVal1 = F3
⊕

2A
⊕

1F
⊕

5A = 9C

RVal2 = C9
⊕

25
⊕

D6
⊕

DA = E0

RVal3 = 58
⊕

E9
⊕

E2
⊕

39 = 6A

Table 2 depicts the Rank Values (RVals), their corresponding Rank Numbers (RNos), and state
row number.
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Table 2. Rank Values with their Corresponding Rank Numbers.

S/No RVals Value (Hex) Value (Dec) RNos State Row No

1 RVal0 3F 63 1 0
2 RVal1 9C 156 3 1
3 RVal2 E0 224 4 2
4 RVal3 6A 106 2 3

From Table 2, based on the rank numbers that were obtained for each row, the corresponding row
will have to shift one less than the RNo value of that row. Row 0 will not shift, Row 1 will have to
shift two-byte position to the left, row 2 will have to shift three-byte position to the left, and finally
row 3 will have to shift one-byte position to the left. After performing these ShiftRows operations on
the above state while using the state and the round key matrices S and K, the state matrix obtained
is given as S and S′ for state matrix before and after the modified ShiftRows operation, respectively:

S =

4D 87 F2 97

S’ =

4D 87 F2 97
EC 6E 4C 90 4C 90 EC 6E
4A C3 46 E7 E7 4A C3 46
8C D8 95 A6 D8 95 A6 8C

4.4. Modified Inverse ShiftRows Transformation

The rank number computation for the modified InvShiftRows operation remains the same as that
of modified ShiftRows operation since the round keys are read in reverse order during decryption
process. The only difference is the direction to which the rows of the state matrix are shifted. For the
inverse, the rows are shifted to the right based on the rank number.

4.5. Evaluating the Performance of the Modified AES

The strength of a cryptographic algorithm can be determined by measuring its diffusion and
confusion property while using the avalanche effect. The term avalanche effect was first used by
Horst Feistel in his article titled “Cryptography and Computer Privacy” published in 1973. Later, the
concept was identified as Shannon’s property of confusion. The avalanche effect is used to measure
the amount of randomness (non-linearity) of hash functions and cryptographic algorithm, especially
block ciphers, such as Data Encryption Standard (DES) and Advance Encryption Standard (AES).
The avalanche effect to some extent, tries to reflect the intuitive idea of high non-linearity. Meaning that,
a small change in either the plaintext or the key (by flipping a single bit), propagates and significantly
produces changes in the output (at least half the output bits [24]. Strict Avalanche Criterion (SAC)
test of a cryptographic algorithm is conducted by comparing two encrypted texts before and after
complementing some bits of the original plain text or encryption key. This is achieved by obtaining
the Hamming Distance between the two encrypted text represented as vectors x = (x1, x2, x3, . . . , xn)

and y = (y1, y2, y3, . . . , yn). x is generated before flipping any bit of the plain text or encryption key,
while y is generated after randomly flipping one bit of the plain text or encryption key. The Hamming
Distance should be, on average, n

2 . This implies that SAC is satisfied if, whenever a single bit in the
input is complemented, each of the output bit changes with at least 50% probability.

Mathematically,

∀xi, yi : H(xi, yi) = 1, Average(h( f (xi), f (yi))) =
n
2

Where i = 0, 1, 2, . . . , n − 1 and h = Hamming Distance. The Hamming Distance for two vectors
x, y ∈ T, where T belong to the set {0, 1} defined as the number of positions h (where 0 ≤ h ≤ n)
where the vectors differ. Alternatively, it can be defined as the number of ones (1s) of the vector
z = x ⊕ y [25]. Given two vectors b = (b1, b2, b3, . . . bn) and b′ = (b′1, b′2, b′3, . . . b′n), where b is a
binary representation of the cipher text obtained before flipping a bit in the encryption key, and b’ is
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the binary representation of the cipher text that is obtained after flipping a single bit in the encryption
key. The resultant vector z, which is the binary representation of the result obtained after adding b and
b′ using exclusive OR (XOR) operation, represent the hamming distance vector.

z = ((b1

⊕
b′1), (b2

⊕
b′2), (b3

⊕
b′3), . . . , (bn

⊕
b′n))

Using the vector z, the hamming distance h, can be obtained as the number of 1’s in the vector z.
The avalanche effect can now be computed as the number of 1’s in the z vector divided by the total
number of elements n, in the vector, that is,

Avalanche E f f ect =
Hamming Distance (h)

Number o f Elements in z(n)

Let x = 1101001010111001 and y = 1011011001010010

1101001010111001⊕
1011011001010010 z = x

⊕
y = 0110010011101011

The Hamming Distance, h = 9 and Number o f Elements in z vector, n = 16. The Hamming
distance satisfies the condition 0 ≤ h ≤ n, since 0 ≤ 9 ≤ 16. Hence,

Avalanche E f f ect =
Hamming Distance (h)

Number o f Elements in z (n)
=

9
16

= 0.5625

Avalanche E f f ect = 0.5625 ∗ 100 = 56.25%

Avalanche effect could also be computed using Equation (27) such that:

Avalanche E f f ect =
No. o f bits di f f ers in two cipher texts

Total No. o f bits in cipher text
× 100%. (27)

If a cryptographic algorithm does not exhibit a significant degree of avalanche effect (at least 50%),
then that algorithm has poor randomization. Thus, cryptanalysts can make predictions about the input,
only being given the output. This may be enough to partially or worst, completely break the algorithm.
In addition to the avalanche effect, the time taken for encryption and decryption were also measured.

5. Results and Discussion

The modified AES and the conventional AES were evaluated in terms of the avalanche effect and
execution time (encryption/decryption time). The avalanche effect is a desirable property of block
ciphers that ensures a single bit flip in input text produces at least 50% change in the output text.
Execution time refers to the time taken by the algorithm to encrypt or decrypt a given input text.

5.1. Measuring the Avalanche Effect

The avalanche effect of the modified AES was carried out while using a short plain text and a 0.5
MB text file. The text file was encrypted with two different keys: key1 (original key) and key2 (obtained
by flipping single bit (112th bit) of key1 from 0 to 1).

5.1.1. Avalanche Effect with a Short Plain Text File

A short plain text: I Love Unilorin! with hexadecimal values: 49 20 4C 6F 76 65 20 55 6E 69 6C
6F 72 69 6E 21 was first used to measure the avalanche effect of the modified and conventional AES.
The plain text was encrypted with two different keys: key1 (original key) and key2 (obtained by flipping
single bit (112th bit) of key1 from 0 to 1). Based on the computed results in Table 3, the modified AES
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achieved higher avalanche effect as compared to the conventional AES algorithm. The conventional
AES achieved an avalanche effect of 50.7812%, while that of the Modified AES is 57.8125%. This means
that, more than 57% of the bits that made up the cipher text changes after encryption by flipping just
a single bit (112th bit) in the secret key while using the Modified AES as compared to less than 51%
changes when the conventional AES was used.

Table 3. Avalanche Effect Test Result Obtained After Flipping Single Bit in the Secret Key.

AES Name Secret Key (Plain) Secret Key (Hex) Cipher Text (Hex) Avalanche Effect

Conventional AES
dKro9Wahme#dHrn7 64 4B 72 6F 39 57 61 68 6D 65

23 64 48 72 6E 37
83 4A A0 CB 25 78 FD FB 5D

14 24 BD 32 CD E0 00 0.5078125
(50.78123%)

dKro9Wahme#dHsn7 64 4B 72 6F 39 57 61 68 6D 65
23 64 48 73 6E 37

BB 87 74 9F 78 20 28 D8
40 1D DE 6C F7 41 3A E7

Modified AES
dKro9Wahme#dHrn7 64 4B 72 6F 39 57 61 68 6D 65

23 64 48 72 6E 37
D6 BA 33 8A C3 61 3A 74 B5

FB EB A4 EA 97 B1 10 0.578125 (57.8125%)

dKro9Wahme#dHsn7 64 4B 72 6F 39 57 61 68 6D 65
23 64 48 73 6E 37

5D 2D A4 39 11 04 95 C8
2E 17 D3 7F 5C 43 22 86

Table 4 presents the avalanche effect that was obtained after flipping a single bit in the plain text.
From the result, the modified AES achieved an avalanche effect of 56.25% when compared to 49.21875%
achieved by the conventional AES algorithm. This signifies that, more than 56% of the bits that made
up the cipher text changes after encryption by flipping just a single bit (88th bit) in the plain text while
using the Modified AES as compared to less than 50% changes when the conventional AES was used.

Table 4. Avalanche Effect Test Result Obtained After Flipping Single Bit in the Plain Text.

AES Name Secret Key Plain Text Plain Text (Hex) Cipher Text (Hex) Avalanche
Effect

Conventional
AES dKro9Wahme#dHrn7

I Love Unilorin! 49 20 4C 6F 76 65 20 55 6E
69 6C 6F 72 69 6E 21

83 4A A0 CB 25 78 FD FB
5D 14 24 BD 32 CD E0 00 0.4921875

(49.21875%)
I Love

Unimorin!
49 20 4C 6F 76 65 20 55 6E

69 6D 6F 72 69 6E 21
F2 96 36 B1 6A FA 68 D2

C4 4A DF 2D BA 64 CA A9

Modified AES
I Love Unilorin! 49 20 4C 6F 76 65 20 55 6E

69 6C 6F 72 69 6E 21
D6 BA 33 8A C3 61 3A 74
B5 FB EB A4 EA 97 B1 10 0.5625 (56.25%)

I Love
Unimorin!

49 20 4C 6F 76 65 20 55 6E
69 6D 6F 72 69 6E 21

6B CC 92 7D 1E C2 74 B4
E7 EB 7E 0A D1 CA 67 6F

5.1.2. Avalanche Effect with a 0.5 mb Text File

In addition to the short plain text file, a 0.5 mb text file was also used to measure the avalanche
effect of the modified AES. As documented in Table 5, the conventional AES achieved an avalanche
effect of 49.973%, while that of the Modified AES is 56.3625%. This means that more than 56% of the
bits that made up the cipher text changed after encryption when the 112th bit in the secret key was
flipped. This showed that the modified AES achieved a higher avalanche effect when compared to the
conventional AES algorithm.

Table 5. Avalanche Effect Test Result Obtained After Flipping Single Bit in the Secret Key.

AES Name Secret Key (Plain) Secret Key (Hex) File Size Avalanche Effect

Conventional AES
dKro9Wahme#dHrn7 64 4B 72 6F 39 57 61 68 6D

65 23 64 48 72 6E 37 0.5 MB 0.49973 (49.973%)

dKro9Wahme#dHsn7 64 4B 72 6F 39 57 61 68 6D
65 23 64 48 73 6E 37

Modified AES
dKro9Wahme#dHrn7 64 4B 72 6F 39 57 61 68 6D

65 23 64 48 72 6E 37 0.5 MB 0.563625 (56.3625%)

dKro9Wahme#dHsn7 64 4B 72 6F 39 57 61 68 6D
65 23 64 48 73 6E 37



Symmetry 2019, 11, 1484 13 of 16

Table 6 presents the avalanche effect test result that was obtained after flipping a single it in the
plain text. From the result, the modified AES achieved an avalanche effect of 55.735% as compared to
50.4715% achieved by the conventional AES algorithm. This signifies that more than 55% of the bits
that made up the cipher text changes after encryption by randomly flipping just a single bit (3751st bit)
in the plain text while using the Modified AES as compared to 50.4% changes when the conventional
AES was used.

Table 6. Avalanche Effect Test Result Obtained After Flipping Single Bit in the Plain Text.

AES Name Secret Key File Size Avalanche Effect

Conventional AES dKro9Wahme#dHrn7 0.5 MB 0.504715 (50.4715%)

Modified AES dKro9Wahme#dHrn7 0.5 MB 0.55735 (55.735%)

5.2. Measuring the Execution Time

The execution time is a function of the time that is taken to convert a plain text to a cipher text
(encryption time) and the time that is needed to convert the cipher text back to the plain text (decryption
time). The encryption time and decryption time is expected to be small in order to have a responsive
and fast system. Furthermore, the execution time depends to some extent on the configuration of the
system used. Therefore, the execution time reported was carried out on a laptop with the following
configuration:

(i) 4.00 GB Random Access Memory (RAM).
(ii) 500 GB Hard Disk Drive (HDD).
(iii) Intel(R) Core i3 Processor clocking @ 2.27 GHz Dual Core.
(iv) A 64 bit Microsoft Windows 10 Pro Operating System.

Table 7 presents the execution time test results in milliseconds (ms), which was obtained by
computing the average encryption/decryption time after encrypting/decrypting the same input text
while using the same key five times.

Table 7. Execution Time Test Result.

Plain Text Size AES Name Avrg. Encryption Time
(ms)

Avrg. Decryption Time
(ms)

16 Byte Conventional AES 0.1215 0.1637
Modified AES 0.1658 0.1789

32 Byte Conventional AES 0.2156 0.2232
Modified AES 0.2976 0.3114

64 Byte Conventional AES 0.4154 0.3326
Modified AES 0.4564 0.4626

128 Byte Conventional AES 0.4333 0.4076
Modified AES 0.6984 0.5911

0.5 mb
Conventional AES 1769.85 1684.17

Modified AES 2359.65 2269.32

The above result indicates that the modified AES has a slight increase in the encryption and
decryption time when compared to the conventional AES algorithm.

5.3. Comparative Analysis of Computed Results with Existing Works

A comparative analysis of the results that were obtained with those presented in existing works
was carried out. This was a little bit of tasking, as there is no standard performance metrics that
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are widely and generally acceptable by all researchers in this regard. While some measured the
performance of their modified AES version using text files of different sizes, some used images and
video files. However, most authors employed execution time as their performance metrics while few
used avalanche effect. As presented in Table 8, the proposed technique recorded a slightly higher
execution time in seconds than the conventional AES. Though this may not be clearly noticeable in real
life application, yet it is significant.

Table 8. Execution Time Comparison.

S/N Author Test Data
Execution Time

Difference (s)
Conventional

AES (s)
Modified AES

(s)

1. [11] 256 × 256 image 12.1760 11.4190 0.7570
2. [16] 16 bytes text file 0.0113 0.2414 −0.2301

3. [24] Three 256 × 256
coloured images 86.5342 9.0000 77.5342

4. [26] 4.45MB image 3.7390 3.6490 0.0900
5. [27] 128 × 128 image 0.2330 0.0840 0.1490
6. [28] Image files 41.4573 18.9419 22.5154
7. [29] 16 bytes text file 1.9259 1.8749 0.0510
8. [30] Text File 0.2467 0.2461 0.0006
9. [31] Text File 0.6000 0.6010 −0.0010

10. [32] Plain text 6.2100 6.1700 0.0400
11. [33] 256 × 256 image of 192 KB 6.4430 6.3490 −0.0940

Proposed Technique 16 bytes text file 0.0713 0.1723 −0.1010

Table 9 presents a comparison of the avalanche effect of the modified AES with those that are
available in existing literature. Few researchers have employed the avalanche effect to measure the
performance of their algorithms. Therefore, it is recommended that more researchers should use it, as it
is a desirable property of encryption algorithms. The proposed technique achieved a higher avalanche
effect when compared to the Conventional AES. The difference obtained is higher than that obtained
in [32,34].

Table 9. Avalanche Effect Comparison.

S/N Author
Avalanche Effect

Difference (%)
Conventional AES (%) Modified AES (%)

1. [12] 15.81 24.31 8.50
2. [32] 50.78 52.34 1.56
3. [34] 49.21 52.34 3.13
4. [34] 47.7 58.59 10.89

Proposed Technique 49.973 56.3625 6.3895

6. Conclusions

The proposed method attempts to strengthen the conventional AES algorithm by making the
SubBytes transformation round key dependent and randomizing the ShiftRows transformation. This is
to ensure that a single bit change in either the key or the plain text produces significant changes in the
cipher text, thereby increasing its avalanche effect. The modified algorithm is evaluated in terms of
avalanche effect and execution time and the results that were obtained revealed that the modified AES
achieved a higher avalanche effect with a slight increase in the execution time. The high avalanche effect
recorded, as further shown that the conventional AES can still be strengthened and it is recommended
that more researchers should use the avalanche effect as a performance evaluation metric.
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