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Abstract: The predictive performance of different granular models (GMs) was compared and analyzed
for methods that evenly divide linguistic context in information granulation-based GMs and perform
flexible partitioning. GMs are defined by input and output space information transformations using
context-based fuzzy C-means clustering. The input space information transformation is directly
induced by the output space context. Usually, the output space context is evenly divided. In this
paper, the linguistic context was flexibly divided by stochastically distributing data in the output
space. Unlike most fuzzy models, this GM yielded information segmentation. Their performance
is usually evaluated using the root mean square error, which utilizes the difference between the
model’s output and ground truth. However, this is inadequate for the performance evaluation of
information innovation-based GMs. Thus, the GM performance was compared and analyzed using
the linguistic context partitioning by selecting the appropriate performance evaluation method for
the GM. The method was augmented by the coverage and specificity of the GMs output as the
performance index. For the GM validation, its performance was compared and analyzed using
the auto MPG dataset. The GM with flexible partitioning of linguistic context performed better.
Performance evaluation using the coverage and specificity of the membership function was validated.

Keywords: granular model (GM); context-based fuzzy C-means (CFCM) clustering; information
granulation; performance evaluation method; coverage; specificity

1. Introduction

Fuzzy modeling seeks to develop relationships between fuzzy sets or information granulations
considered as fuzzy relations. Various methods, structures, and algorithms have been explored in
the field of fuzzy modeling. Das [1] proposed an evolutionary interval type-2 neural fuzzy inference
system (IT2FIS), based on the Takagi–Sugeno–Kang fuzzy inference system and a completely sequential
learning algorithm. Jang [2] proposed an adaptive neuro-fuzzy inference system by fusing a fuzzy
inference system and an artificial neural network. Zhang [3] proposed a new fuzzy logic system
(FLS) modeling framework, termed the “data-driven elastic FLS” (DD-EFLS). Alizadeh [4] proposed
an eigen fuzzy inference system (eHFIS) that can simultaneously perform local input selection and
system identification of a fuzzy inference system. Cevantes [5] proposed a neuro-fuzzy system that
implements differential neural networks (DNNs) using the Takagi–Sugeno (T-S) fuzzy inference rules.
Despite the variety of design approaches that exploit the fuzzy modeling paradigm, one feature is
common to all of them, i.e., that all of them yield constant values, regardless of the use of the fuzzy set
technique [6,7].
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Pedrycz [8] proposed a granular model (GM) that yields a fuzzy number that is not a constant.
The GM directly uses the fundamental idea of fuzzy C-means (FCM) clustering. Information
granulation is generated using the context-based FCM (CFCM) clustering method [9]. This method
implements clustering using the homogeneity of data between the classifier’s input and output spaces.
The GM can capture the relationship between the information granulation expressed by the CFCM
clustering method.

The accuracy and clarity of a model are essential and important criteria for the model’s
evaluation [10]. Some of the most widely used accuracy criteria are the mean absolute error (MAE),
the mean absolute percentage error (MAPE), and the root mean square error (RMSE). The MAE
quantifies the performance of the model by averaging the absolute difference between the actual
value (ground truth) and the value predicted by the model. Juneja [11] proposed a fuzzy-filtered
neural-fuzzy framework to predict the flaws of internal and external software projects and confirmed
the model’s performance using the MAE. Chen [12] proposed a hybrid set and entropy consensus
fuzzy collaborative intelligence (FCI) method and confirmed the method’s performance using the MAE.
Sarabakha [13] used the MAE to verify the performance of pre-tuned type-1 fuzzy logic controllers and
pre-tuned type-2 fuzzy logic controllers. Yeom [14] proposed a TSK-based extreme learning machine
capable of knowledge representation and confirmed the performance of the model using the MAE.
Maroufpoor [15] proposed a hybrid intelligent model, ANFIS-GWO, and confirmed the performance
of the model using the MAE.

On the other hand, the MAPE metric evaluates the performance of the model by subtracting
the ground truth from the value predicted by the model and then dividing by the value predicted
by the model. In this regard, Ali [16] proposed a fuzzy-neuro model for predicting the temperature
and humidity of Mubi in Adamawa and validated the model’s performance using the MAPE metric.
Bacani [17] developed a fuzzy inference framework, based on the fuzzy relationship, for predicting
the temperature and humidity of a greenhouse for Brazilian coffee crops and validated the model’s
performance in terms of the MAPE metric. Tak [18] proposed a meta-fuzzy function based on the FCM
clustering method and confirmed the model’s performance using the MAPE metric. Carvalho [19]
proposed a hybrid method that combines classical time series modeling and fuzzy set theory to improve
the performance of the predictive algorithm and confirmed the performance of the model using the
MAPE metric. Roy [20] proposed a method for predicting the maximal yield of the almond oil using an
interval type-2 fuzzy logic approach and confirmed the model’s performance using the MAPE metric.

Different from the previous two methods, the RMSE method evaluates the performance of the
model by averaging the square of the difference between the ground truth and the predicted value and
taking the square root of the resulting average. Khalifa [21] proposed a type-2 fuzzy winner structure
with a cascade structure and validated the model using the RMSE measure. Naderi [22] used two
rule-based fuzzy reasoning systems based on the Mamdani-type and TSK model to predict oil economic
variables and confirmed the performance of the model using the RMSE metric. Xie [23] proposed a
hybrid fuzzy control method by combining a type-1 fuzzy logic controller and a type-2 fuzzy logic
controller and confirmed the performance of the model in terms of the RMSE metric. Altunkaynak [24]
predicted river levels using combined DWT-fuzzy and CWT-fuzzy models and confirmed the resultant
model’s performance using the RMSE metric. Yeom [25] proposed an improved incremental model
(IIM) that combines linear regression and the linguistic model and confirmed the performance of the
model using the RMSE metric.

While many methods for model accuracy quantification have been developed, methods for
evaluating model clarity and interpretability are still explored. Pedrycz proposed a method to evaluate
the performance of a model by calculating the performance index (PI), which uses the coverage and
specificity of the membership function. In this study, the performance of the proposed model was
evaluated in terms of coverage and specificity. Tsehayae [26] proposed a refined fuzzy modeling
method to extract the labor productivity knowledge and confirmed the performance of the proposed
method in terms of the coverage and specificity. Pedrycz [27] introduced the concept of hierarchical
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refined FCM clustering, proposed an algorithm, and confirmed the performance of the model in
terms of the coverage and specificity. Pedrycz [28] designed a fuzzy set using the principle of
granular parameters and confirmed the model’s performance by justification. Zhu [29] considered the
reconstruction ability of the designed information granulation system, designed a set of meaningful
elliptical information granulations using the principle of granularity, and confirmed the performance of
the model in terms of the coverage and specificity. Hu [30] proposed a granular evaluation method of
a fuzzy model from a generally accepted position and confirmed the performance of the fuzzy model
by forming an information granulation around the parameters and the numerical values of the model.
Zhu [31] proposed a novel design methodology for a refined fuzzy model and introduced additional
generalizations in the form of a higher-type refined fuzzy model. The detection and characterization of
outliers expressed for the constructed information granulation was described. Galaviz [32] studied the
design of a detailed fuzzy model. We proposed a model that intuitively constructed a set of interval
information granulations described in the output space and a set of derived information granulations
in the input space, and confirmed the performance of the proposed model in terms of the coverage and
specificity. In general, the performance evaluation is commonly performed by root mean square error
(RMSE), representing the error between the model output and the actual output in the existing studies.
However, because the output of the GM is in the form of fuzzy number, the traditional performance
evaluation methods are not suitable. In addition, the contexts generated in the previous works are
divided evenly in the design of the GM. In this paper, we focus on the theory that the contexts are
flexibly divided, according to the data distribution, to improve the prediction performance.

In this paper, we analyzed the different performance evaluation methods for the GM evaluation.
We evaluated the relation of a fuzzy set (i.e., information granulation) generated in the GM’s input and
output spaces using performance evaluation methods, which utilize coverage and specificity, rather
than using general performance evaluation methods, such as MAE, MAPE, and RMSE. To validate the
performance evaluation method, we conducted experiments on the estimation of fuel consumption of
automobiles and the prediction using the auto MPG dataset. This paper is organized as follows. Chapter
1 provides the background for this research. Chapter 2 explains the GM, while Chapter 3 explains the
general performance evaluation method and the GM performance evaluation method. Chapter 4 uses
the auto MPG dataset to predict and compare the performance of the car fuel consumption. Chapter 5
compares and analyzes car fuel consumption forecasts. Finally, conclusions and future research plans
are stated in Chapter 6.

2. GM

2.1. CFCM Clustering

The GM was constructed using the information granulation generated by the CFCM clustering
method proposed by Pedrycz [8]. Unlike the conventional FCM clustering method, the CFCM
clustering method can group the information granulation more precisely, because data homogeneity is
assumed between the input and output spaces. This explains why the GM uses a set of information
granulations in the input and output spaces. A brief description of the CFCM clustering method is as
follows. The fuzzy set of the output space is defined as:

T : D → [0, 1] (1)

where D is the entire set of output variables and the value of the context is available for a given datum.
fk = T(dk) represents the degree of inclusion of kth datum in an arbitrary fuzzy set, generated in the
output space. Here, the value of fk represents the belonging value between 0 and 1. If the requirement
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of the belonging matrix is modified by these characteristics, Equation (2) is obtained. The modified
membership matrix U is shown in Equation (3).

U( f ) =


uik ∈ |0, 1| |

c∑
i=1

uik = fk ∀ k

and 0 <
N∑

k=1
uik < N

 (2)

uik =
fk∑c

j=1

(
‖xk−ci‖
‖xk−c j‖

) 2
m−1

(3)

where m represents the fuzzification coefficient and, generally, m = 2 is used. The linguistic context
consists of 1

2 an overlap between the consecutive fuzzy sets and is generated as a triangular membership
function that is evenly distributed in the output space. Figure 1 shows the concept of the CFCM
clustering method. There were six equal contexts in the output space, indicating that three clusters were
created in each context. The CFCM clustering method proceeded in the following order. The linguistic
contexts were produced by several fuzzy sets in the output space. These contexts were used when
context-based fuzzy c-means clustering was performed. In general, the linguistic contexts were
generated through a series of triangle membership functions, equally spaced in output space. However,
the contexts produced in this paper were divided by a stochastic data distribution in the output space.

[Step 1 ] The number of linguistic contexts (2 to 20) and the number of clusters to be created in each
context (2 to 20) was selected. The belonging matrix U was initialized to an arbitrary value
between 0 and 1.

[Step 2 ] A linguistic context was created using a triangular membership function that was evenly
distributed in the output space.

[Step 3 ] For each context, the cluster center c and the belonging value u were calculated.

ci =

∑N
k=1 um

ikxk∑N
k=1 um

ik

(4)

[Step 4 ] The objective function was calculated, as given by Equation (6), and if the degree of
improvement obtained through the previous iteration wasless than the threshold value,
the process was stopped.

J =
c∑

i=1

N∑
k=1

um
ikd2

ik (5)

∣∣∣Jp
− Jp−1

∣∣∣ ≤ ε (6)

Here, dik represents the Euclidean distance between the center of the i-th cluster and k−th datum.
The parameter p is the number of repetitions.

[Step 5 ] The new membership matrix U was calculated from Equation (3), and control was returned to
[Step 3].
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Figure 1. Conceptual description of the context-based fuzzy C-means (CFCM) clustering method:
(a) Linguistic context generated in the output space; (b) clusters estimated for each context.

2.2. Structure of the GM

Figure 2 shows the structure of the GM, with the input layer, the output layer, and three
intermediate layers. The input space represents the input data, and layer 1 represents the set of
activation levels of the CFCM clustering method. In layer 2, conditional clustering was performed
on the linguistic context, and layers 1 and 2 were connected to each other. Given a linguistic context,
clusters were inferred considering each context. Layer 3 was composed of single-particle neurons in
the output layer and it calculated the final output. The main goal of making this granulation available
was to create a model on the information granulation level. The characteristics of the GM were as
follows. First, it was designed in terms of a set of information granulations in the input and output
spaces. The information granulation of the input space was determined by the information granulation
of the output space. Second, the final output value of the GM was represented by the information
granulation, not by the numerical value. The final output value of the GM was calculated by the
number of fuzzy numbers, as shown by Equation (7), in which generalized addition and multiplication
(⊕, ⊗) operation signs are used to emphasize the information granulation.

Y =
∑
⊕

Wt ⊗ zt =

p∑
t=1

(
zt(x_k) ∗

[
w−t , wt, w+

t

])
(7)

Figure 3 shows the output of the GM with the actual output and fuzzy numbers. The output
value of the GM is a triangle that consists of a lower limit value, a model-generated value, and an
upper limit value. The respective formulae are as follows:

y−(lower value) =
p∑

t=1

ztw−t + w0 (8)

y(modal value) =
p∑

t=1

ztwt + w0 (9)

y+(upper value) =
p∑

t=1

ztw+
t + w0 (10)
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2.3. Structure of the GM

In the structure of the GM, the parameters of the premises were obtained in terms of the clusters’
centroids obtained, using the CFCM clustering method. The linguistic context generated in the output
space was the conclusion parameter. A typical GM uniformly divides linguistic contexts. A uniform
division of linguistic context amounts to placing same-size linguistic contexts at equal intervals.
The method of uniform partitioning can present a data shortage problem, owing to the small amount
of data contained in any linguistic context. As a result, it was difficult to infer the clusters’ centroids
and fuzzy rules using the CFCM clustering method. Thus, in this paper, the linguistic context was
divided stochastically, distributing the data in the output space. Here, the language context division
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represented the boundary of the fuzzy set, and the linguistic context was generated by the equally
distributed trigonometric function using the probabilistic distribution information in the output space.
Figure 4 shows the even partitioning context, and Figure 5 shows the flexible partitioning context.
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3. Performance Evaluation Method

The accuracy and clarity of the model are essential and important criteria for model evaluation [10].
As described above, the MAE, MAPE, and RMSE methods are widely used for determining the accuracy
of predictive models. The MAE metric quantifies the difference between two consecutive variables.
Suppose that X and Y are predictive variables that represent the same shape. Examples of Y versus X
include prediction time versus observation time, subsequent time versus initial time, and comparison
of one measurement technique with an alternative measurement technique. The MAE computes the
average vertical distance between predicted and ground truth data points and is used as a general
measure for estimating the prediction error in the analysis of time series.

MAE =

∑n
i=1

∣∣∣yi − xi
∣∣∣

n
=

∑n
i=1|ei|

n
(11)
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The MAPE metric quantifies the prediction accuracy of a predictive method in statistics and trend
estimation. It is also used for evaluating the performance of the loss function for regression problems
in the field of machine learning. Typically, the accuracy is expressed as the percentage accuracy, where
At represents the actual value (ground truth) and Ft represents the predicted value. The difference
between At and Ft is divided by the ground truth value At, and the absolute values are added to obtain
the expected value. The result is divided by the number of data points n.

MAPE =
100%

n

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (12)

The RMSE measures the difference between the predicted values and the ground truth values.
This metric is suitable for quantifying precision, and the difference per datum is called the residual.
The mean square deviation is used to combine the residuals into one measure. Here, θ̂ represents the
value predicted by the model and θ is the ground truth value.

RMSE =
√

MSE
(
θ̂
)
=

√
E
((
θ̂− θ

)2
)

(13)

3.1. Performance Evaluation Method Suitable for the GM

In this paper, we compared and analyzed performance evaluation methods suitable for the
GM, which could evaluate the clarity and analytical ability of the model, instead of the performance
evaluation methods, such as the MAE, MAPE, and RMSE. A performance evaluation method suitable
for the GM was proposed by Pedrycz and required us to know the coverage and specificity. Coverage
is related to the linguistic context and the number of clusters to be created in each context. Specificity
is related to the length of the triangular fuzzy number and indicates how specific and detailed the
fuzzy number is. Using the coverage and specificity measures, we obtained the PI [26–32] as the final
performance quantifier. In this paper, the predicted performances of different particle models, taken
from several studies [26–32], were compared and analyzed using the performance evaluation method
proposed by Hu [30]. The concepts of coverage and specificity are explained in Table 1.

Table 1. Equations that describe different performance evaluation methods.

PI (Performance Index)
Methods Equations

Hu [30]
Coverage Cov = 1

N

N∑
k=1

incl(yk, Yk)

Specificity Spec =
(

1
N

N∑
k=1

exp
(
−

∣∣∣y+k − y−k
∣∣∣))104

Performance index PI = Cov·Spec

Zhu [31]
Coverage Cov = 1

N

N∑
k=1

cov(tarketk, Yk)

Specificity
Spec = 1

N

N∑
k=1

spec(Yk),

spec(Yk) = max
(
0, 1−

∣∣∣y+K−y−k
∣∣∣

range

)
Performance index PI = argmax(Cov·Spec)

Galaviz [32]
Coverage f1(cov) = 1

N

N∑
k=1

(tk ∈ Yk)

Specificity f 2(spec) = e−α(l/L)

Performance index Q(PI) = f1· f2
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3.1.1. Coverage

This is the most basic metric for evaluating the GM performance. Figure 6 illustrates the concept
of coverage. Coverage represents the extent to which information granulation is expressed as a result
generated by the model. Higher coverage improves a GM’s modeling capabilities. If the actual value is
in the range, 1 is returned, otherwise 0 is generated. After calculating the purge water, which is the
output of GM, it is confirmed whether the actual output value belongs to the purge water range or not.
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Figure 8 shows the relationship between coverage and specificity. It can be seen that the two
quantities exhibit a tradeoff: For higher coverage, the specificity is lower, while for lower coverage,
the specificity is higher. The results of the performance evaluation method vary depending on how the
above-described coverage and specificity are defined.
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4. Experimental Results

In this section we compare the predictive performances of different GMs using the linguistic
context segmentation, using the performance evaluation method proposed by Hu [30] among the
performance evaluation methods suitable for the GM, as described in Section 3. To evaluate the
predictive performances of different GMs, an experiment was conducted to estimate the vehicle fuel
consumption using the auto MPG database.

4.1. Auto MPG Database

In this experiment, we compared and analyzed the predictive performances of different GMs
using the auto MPG database. The auto MPG [33] data were obtained for different car types, in terms
of the vehicle fuel consumption. The size of the dataset is 392 × 8, with six input variables: number of
cylinders, displacement, horsepower, weight, acceleration, and model year. The output variable is the
car fuel consumption. Although the car model names were given as a string, this descriptor was not
used in this experiment. The data were partitioned by 50:50 into the training set and validation set,
and the values were standardized (rescaled to the 0–1 range) for more accurate classification.

4.2. Experiment Method and Analysis of Results

The experimental method was as follows. To evaluate the predictive performance of the GM
that divided the linguistic context evenly and the GM that flexibly divided the linguistic context,
Hue [30] proposed the use of comparative analysis. The number of the linguistic contexts of the
GM varied from 2 to 10, in steps of 1. The number of clusters generated for each linguistic context
varied from 2 to 10 in steps of 1, and the fuzzification coefficient was fixed to 2; the experiment was
conducted under these conditions. First, the model output of the GM was compared with the output
of the auto MPG database. Next, we validated the predictive performance of the GM using the RMSE
metric, a general performance evaluation method, and the predictive performance of the GM using the
coverage and specificity.
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Figure 9 shows the output of the GM that equally divides the output value of the auto MPG
validation data and the linguistic context, and the output of the GM that flexibly divides the linguistic
context. The figure shows that the values predicted by the model are similar to the ground truth
values. Figures 10 and 11 show the performance evaluation results for the GM that flexibly divides the
linguistic context, in terms of the RMSE. Tables 2 and 3 shows the performance evaluation results for
each GM, in terms of the RMSE. The performance evaluation in terms of the RMSE show that the GM
that flexibly divides the linguistic context and exhibits excellent results, with the RMSE of 3.73.
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flexibly splits the linguistic context.

Table 2. RMSE prediction performance results for the GM that evenly divides the linguistic context.

Algorithm Performance Evaluation Method

Granular Model RMSE

Number of Contexts Number of Clusters Training RMSE Testing RMSE

10

2 3.96 4.15
3 3.98 4.18
4 3.69 3.91
5 3.72 3.90
6 3.90 4.10
7 3.89 4.07
8 3.98 4.09
9 3.95 4.15

10 3.54 4.17

Table 3. RMSE prediction performance results for the GM that flexibly divides the linguistic context.

Algorithm Performance Evaluation Method

Granular Model RMSE

Number of Contexts Number of Clusters Training RMSE Testing RMSE

10

2 3.75 3.79
3 3.65 3.80
4 3.71 3.73
5 3.95 3.93
6 3.79 4.13
7 3.87 4.12
8 3.75 3.95
9 3.89 4.31

10 3.78 4.41
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Figures 12 and 13 show the predictive performance results for the GM that flexibly segments
the linguistic context obtained through the performance evaluation method proposed by Hu [30].
Figure 14 shows the predictive performance results in the form of a line chart.

Symmetry 2019, 11, 1480 13 of 17 

 

Table 3. RMSE prediction performance results for the GM that flexibly divides the linguistic context. 

Algorithm Performance evaluation method 

Granular model RMSE 

Number of contexts Number of clusters Training RMSE Testing RMSE 

10 

2 3.75 3.79 

3 3.65 3.80 

4 3.71 3.73 

5 3.95 3.93 

6 3.79 4.13 

7 3.87 4.12 

8 3.75 3.95 

9 3.89 4.31 

10 3.78 4.41 

Figures 12 and 13 show the predictive performance results for the GM that flexibly segments 

the linguistic context obtained through the performance evaluation method proposed by Hu [30]. 

Figure 14 shows the predictive performance results in the form of a line chart. 

 

Figure 12. Predictive performance for the GM that flexibly divides the linguistic context using the 

method proposed by Hu [30] (using training data). 

Figure 12. Predictive performance for the GM that flexibly divides the linguistic context using the
method proposed by Hu [30] (using training data).

Symmetry 2019, 11, 1480 14 of 17 

 

 

Figure 13. Performance index of the GM by the variation of the number of contexts and clusters 

(flexible contexts). 

 

Figure 14. Performance index of the GM by the variation of the number of contexts (flexible 

contexts). 

Figure 13. Performance index of the GM by the variation of the number of contexts and clusters
(flexible contexts).



Symmetry 2019, 11, 1480 14 of 17

Symmetry 2019, 11, 1480 14 of 17 

 

 

Figure 13. Performance index of the GM by the variation of the number of contexts and clusters 
(flexible contexts). 

 

Figure 14. Performance index of the GM by the variation of the number of contexts (flexible 
contexts). 

0
10

0.5

10

10-3

pe
rfo

rm
an

ce
 in

de
x

1

8

num. of context

5 6

num. of cluster

1.5

4
2

0 0

2 3 4 5 6 7 8 9 10
num. of cluster

0

0.2

0.4

0.6

0.8

1

1.2

1.4

pe
rfo

rm
an

ce
 in

de
x

10-3

p2
p3
p4
p5
p6
p7
p8
p9
p10

Figure 14. Performance index of the GM by the variation of the number of contexts (flexible contexts).

Tables 4 and 5 show the predictive performance of the different GMs by Hu’s [30] method. The GM
that evenly divides the linguistic context shows the best results when the number of contexts is 10
and the number of clusters is 10. The GM that flexibly partitions the linguistic context yields the best
results when the number of contexts is 10 and the number of clusters is 8.

Table 4. Predictive performance for the GM that evenly divides the linguistic context using the method
proposed by Hu [30].

Granular Model That Evenly Divides Linguistic Context (No. Context = 10)

Number of Clusters Coverage Specificity Performance Index

2 0.72 2.35 1.70
3 0.69 2.35 1.63
4 0.72 2.35 1.69
5 0.71 2.35 1.68
6 0.69 2.35 1.61
7 0.68 2.35 1.60
8 0.70 2.35 1.64
9 0.72 2.35 1.70
10 0.68 2.35 1.61
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Table 5. Predictive performance for the GM that flexibly divides the linguistic context using the method
proposed by Hu [30].

Granular Model That Flexibly Divides Linguistic Context (No. Context = 10)

Number of Clusters Coverage Specificity Performance Index

2 0.74 12.39 9.23
3 0.76 15.36 11.68
4 0.69 13.69 9.50
5 0.71 16.8 11.91
6 0.75 16.5 12.38
7 0.70 17.53 12.26
8 0.74 18.18 13.45
9 0.66 17.77 11.78
10 0.64 19.64 12.63

5. Discussion

In the case of contexts that are equally spaced in the output space in the design of the GM, the PI
value was 1.70 when the number of contexts and clusters per context were 10 and 9, respectively. Here,
we obtained the best case as the number of clusters per context increased from 2 to 10. On the other
hand, in the case of flexible contexts generated in the output space, the PI value was 13.45 when the
number of contexts and clusters per context were 10 and 8, respectively. As a result of comparing the
predicted performances of the two GMs, it was confirmed that the GM performance in the case of
flexible contexts was excellent, and the predication performance of GMs could be interpreted with the
use of coverage and specificity.

6. Conclusions

In this paper, we compared and analyzed the predictive performances of linguistic context
segmentation methods of GMs constructed by information granulation. Partitioning of the linguistic
context was considered separately for methods that partition evenly and flexibly, and the performance
evaluation method proposed by Hu [30] was used, which is suitable for the RMSE and GMs.
The experimental results revealed that GM with flexible contexts in the output space showed good
prediction performance in comparison to that with equally spaced contexts. In future work, we will
consider ways of improving the prediction performance by using optimization algorithms with the
linguistic context segmentation method.
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