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Abstract: This paper aims to investigate the nonlinear dynamic properties of a two-point and
symmetrically supported pipeline bracket system coated with the damping element using an
elastic-porous metal rubber. The dynamic model of the studied two-point and symmetric pipeline
system was established based on impulse response matrix for accurate and reliable description on
its nonlinear behaviours, e.g., energy dissipation and loss factor. The experimental verification of
the developed model was performed by means of dynamic test as well as the analyses of nonlinear
damping characteristics. The experimental results show a good agreement with the prediction results
obtained from the proposed dynamic model. This work provides an alternative method to investigate
the dynamics of pipeline vibration system equipped with a damping structure.

Keywords: pipeline system; pipeline vibration; nonlinear dynamic model; elastic-porous metal
rubber; experimental verification

1. Introduction

Flexible and vibrating structures of pipeline system are ubiquitous in extensive engineering areas
and industrial applications of civil, aerospace, marine and so on. These structures can experiment
harmful vibrations resulting from its interaction with the environment, as resonance and flutter
oscillations, that if are not correctly controlled, can lead to undesirable noise and even the collapsing
of the structure. In this scenario, the use of feasible damping materials for vibration control is an
attractive option to mitigate such vibrations. Modelling and/or control of such damping vibration
systems with nonlinear dynamic behaviours should be a challenge due to the complexity of the
characteristic polynomial.

Many researchers have extensively attempted to establish dynamic models and analyse the
vibration characteristics in terms of various pipeline systems. Li et al. [1] proposed a semi-analytical
method base on the He’s variational iteration method to analyse the conservative free vibration
problem of conveying fluid pipe. For almost the similar pipeline system, Zhou et al. [2] considered
the cantilevered fluid-transporting pipe as a non-conservative system and developed a model control
strategy involving the mass, damping, stiffness and suppression region using the idea of nonlinear
energy sink. Zhang et al. [3] provided a feasible solution for the nonlinear vibration problem of a
fluid-conveying pipeline system with general boundary working conditions, in which the pipeline
could be divided into the straight pipe and the bent pipe. Rong et al. [4] analysed the dynamics of
flexible beams with large deformations via the absolute nodal coordinate transfer matrix method.
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Some other scholars focused on the control strategies of vibration reduction associated with the
nonlinear dynamics of fluid conveying curved pipeline systems [5–9]. The pipeline systems with
two-point and symmetrically supported brackets are widely applied in some precise apparatus and
have also made some efforts in the past decade. For example, Modarres-Sadeghi et al. [10] attempted
to explore the dynamic characteristics of straight pipes which were supported at both ends. However,
the previous efforts have tended to focus on the rigidly supported pipeline system or linear vibration,
rather than on the elastic support with damping performance.

In the view of pipeline vibration system considering damping structure, some efforts on the theoretic
model have been made in terms of individual cases. Amabili et al. [11] studied the nonlinear damping
performance under large amplitude conditions and proposed a fractional linear solid model with the
geometrically nonlinear viscoelasticity. Kong et al. [12] attempted to explore the effects of damping,
the dynamical behaviours of coupled systems of nonlinear energy sink (NES) including the bifurcations
and strongly modulated regimes. In particular, the influence of a 2-dof NES on the response regimes
and performance of vibration suppression was analysed in detail. Rezaiee-Pajand and Sarafrazi [13]
introduced a novel dynamic relaxation method with zero damping terms. They indicated that a proper
time-step ratio is able to guarantee the convergence of the proposed model. Zhai et al. [14] reported that
the active constrained layer damping treatment was adopted to investigate the vibration control of an aero
pipeline system in terms of the vibration and stress distribution. Furthermore, a three-dimensional finite
element model of such a pipeline with active constrained layer damping (ACLD) patches was developed.
Recently, there has been growing interest in the high static and low dynamic characteristics with a
geometric nonlinear damping system. For example, a novel design of the geometric nonlinear damping
(GND) was presented to enhance the vibration isolation performance of the high-static—low-dynamic
stiffness (HSLDS) isolator under both base and force excitations [15]. The nonlinear dynamic stability of
Euler-Bernoulli beam-columns with damping structure was investigated by combining the analytical and
numerical methods [16]. Wang et al. utilized Riccati discrete time transfer matrix method to analyse the
dynamics of an underwater towed system and prove its capability [17]. Some researchers further applied
Riccati discrete time transfer matrix method to analyse the nonlinear dynamics of pipeline system [18,19].
Their results indicate that dynamic relaxation methods can be an effective nonlinear dynamic analysis
method for the truss and frame structures.

However, there is no comprehensive research so far available to well describe the nonlinear dynamic
characteristics of the supported pipeline system that contains a damping structure. Elastic-porous
metal rubber, also known as entangled wire mesh, exhibits typical nonlinear characteristics with a
hysteresis loop of displacement-force curve under dynamic loading conditions [20–23]. It has been
proved to effectively reduce the transmission of vibration in a variety of industrial structures such as
coated structure [24], smart rotor support [25] and the pipeline systems [26]. Wu et al. [24] designed a
new coated structure with large-size metal rubber bellows and investigated the energy dissipation
characteristics. Their results indicated that the dynamic vibration characteristics coated structure
with large-size metal rubber bellows has great dependence on the vibration amplitude and frequency.
Ma et al. [25] designed a smart rotor support with shape memory alloy metal rubber (SMA-MR) and
studied the mechanical performance of smart rotor support with SMA-MR under high temperature
variable amplitude vibrations. The results revealed that the smart rotor support with SMA-MR can
provide variable stiffness and damping characteristics with temperature, excitation amplitude and
frequency. Kwon et al. [26] developed a ring-type SMA mesh washer isolator that can be used in
both launch vibration and on-orbit micro-jitter environments without requiring a launch lock device.
The manufacturing processes of metal rubber generally include several steps including encircled tight
helix, coiled wire with a particular pitch, a rough blank in a crisscross pattern, press formation and
post-treatment [27,28].

The objective of this paper is to analyse the dynamic properties of the two-point and symmetrically
supported pipeline system coated with a damping structure (elastic-porous metal rubber) and establish
the dynamic model for the two-point and symmetrically supported pipeline brackets. The nonlinear
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dynamic analysis of long and straight pipeline with low-order modes can be performed as well as
the experimental verification of the developed dynamic model. In Section 2, the simplification of the
physical model of vibration isolation system for two-point and symmetrically supported pipeline
brackets is introduced. In Section 3, the dynamic model based on impulse response matrix for accurate
and reliable description on its nonlinear behaviors is established. In Section 4, the experiment for
two-point and symmetrically supported pipeline brackets under different excitation conditions are
carried out to analyze the nonlinear characteristics of the coated pipeline system. In Section 5, the main
conclusions of this paper are drawn.

2. Description of Pipeline Vibration Isolation System

For the pipeline coated system, due to the modal characteristics of the long pipeline and thin-plate
installation base, the whole pipeline system can be regarded as a physical structure of active vibration
isolation. As shown in Figure 1, the pipeline B that connected with the installation base A through
the coated damping structure G (the support) is subjected to external excitation force fB, which can be
weakened through the coated damping G. Thus, the pipeline system is able to realize the purpose of
the vibration reduction.
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Figure 1. Physical model of vibration isolation system for the two-point and symmetrically supported
pipeline bracket.

In this paper, the damping structure G contains metal rubber, and pipeline B connected with
installation base A through the two-point and symmetrically supported pipeline brackets. Based on
these assumptions, the studies of the dynamics for the coated pipeline system were performed.

2.1. Model Simplifications

To install the installation base A with concrete size, simplifying the installation base A can be
simplified as a regular elastic support with uniform thickness and considered as a uniform rectangular
plate (a × b). The material properties of the installation base A mainly include elastic modulus EA,
Poisson’s ratio µA, density ρA, etc. As a result of the restraint mode of the installation base A that is
supported and fixed at both ends, it has only an elastic mode and no rigid body displacement.

The pipeline B can be simplified as a geometric structure with length c, and the external diameter d.
For its material properties, the pipeline B has specific mechanical behaviours, such as elastic modulus
EB, Poisson’s ratio µB, density ρB, etc. The pipeline B connected on the installation base A by the coated
damping structure G in a manner using the two-point and symmetrically supported brackets which
have elastic and rigid modes when it is suffered by an external excitation.

In terms of the coordinate system, the earth is chosen and set as the absolute coordinate system,
and the left side of the installation base A is considered as the origin of the coordinate system.
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2.2. Junction Definition

A corresponds relationship is established one by one between the connection point on the
installation base A, and the connection point on the pipeline B are denoted as Ai (I = 1, 2) and
Bi (I = 1, 2), respectively. It is assumed that the coated damping structure has three-dimensional (x, y, z)
stiffness and damping characteristics. The isotropic mechanical behaviours are also assumed with the
same stiffness and damping characteristics in the three directions.

For the installation base A, the set of connection degrees of freedom I is defined as:{
xA1 , yA1 , zA1

}
,
{
xA2 , yA2 , zA2

}
,
{

f xA1 , f yA1 , f zA1

}
,
{

f xA2 , f yA2 , f zA2

}
For the pipeline B, the set of connection degrees of freedom J can be denoted as follows:{

xB1 , yB1 , zB1

}
,
{
xB2 , yB2 , zB2

}
,
{

f xB1 , f yB1 , f zB1

}
,
{

f xB2 , f yB2 , f zB2

}
Based on the above two definitions, the set of connection degrees of freedom I is in one-to-one

correspondence with that of J, and the number of degrees of freedom for both A and B is 6.
{
xAi , yAi , zAi

}
,{

xBi , yBi , zBi

}
correspond to the absolute displacement components of the connecting points {Ai, Bi}

respectively;
{

f xAi , f yAi , f zAi

}
,
{

f xBi , f yBi , f zBi

}
represent the components of the connecting force

applied to A and B at the connecting points {Ai, Bi};
{
− f xAi ,− f yAi ,− f zAi

}
,
{
− f xBi ,− f yBi ,− f zBi

}
represent

the component of force applied to the coated damping structure G at the connecting points {Ai, Bi}.
For the absolute displacement component, a relation generally exists as follows:{

xAi , yAi , zAi

}
,

{
xBi , yBi , zBi

}
(i = 1, 2) (1)

This can be attributed to the elastic connection between installation base A and pipeline B, which
leads to the existence of relative displacement between freedom I and J. The relationship between
acting force and reaction force between joints is then given by the following relation:{

f xAi , f yAi , f zAi

}
= −

{
f xBi , f yBi , f zBi

}
.(i = 1, 2) (2)

3. Dynamic Modelling

Based on the above model simplification and junction definition, the dynamic model can be
established by analysing the two-point elastic partial impulse response function matrix in this section.
Firstly, the mathematical model of elastic partial impulse response function matrix on I and J is put
forward respectively. Then, response analysis of arbitrary points on A and B caused by connecting
force is provided. Finally, the dynamic model of two-point and symmetrically supported pipeline
brackets with elastic-porous metal rubber damper is proposed.

3.1. Elastic Partial Impulse Response Function Matrix on I

For the viscous damped nA DOF discrete vibration system with installation base A, the differential
equation of motion can be written as follows:

MA
..
xA + CA

.
xA + KAxA = fA(t). (3)

where, MA, CA, KA ∈ RnA×nA ; nA is the set of discrete degree of freedom (I ∈ nA) of the installation base A;
fA(t) is the external excitation (including connection force

{
f xAi , f yAi , f zAi

}
, (i = 1, 2), column vector

on nA;
..
xA,

.
xA and xA correspond to the acceleration, velocity and displacement column vectors on the

set of discrete degrees of freedom nA, respectively.



Symmetry 2019, 11, 1479 5 of 20

At present, the main work is to find the elastic partial impulse response function matrix on I.
Thus, only the external excitation (the connection force) on I is considered and the fA(t) is given by

fA(t) ∈ RnA×1 =
{
0, · · · , f xA1 , f yA1 , f zA1 , · · · , f xA2 , f yA2 , f zA2 , · · · 0

}T
. (4)

The position nA
{

f xA1

}
of mark f xA1 in fA(t) is denoted as ñ1A, then nA

{
f yA1

}
= ñ1A + 1,

nA
{
zyA1

}
= ñ1A + 2. Similarly, the position nA

{
f xA2

}
of mark f xA2 in fA(t) is expressed as, ñ2A,

then nA
{

f yA2

}
= ñ2A + 1, nA

{
zyA2

}
= ñ2A + 2.

In the same manner, the velocity and the displacement for the column vectors of acceleration on
the set of discrete degrees of freedom nA. They can be expressed as:

xA ∈ RnA×1 =
{
· · · , xA1 , yA1 , zA1 , · · · , xA2 , yA2 , zA2 , · · ·

}T
(5a)

.
xA ∈ RnA×1 =

{
· · · ,

.
xA1 ,

.
yA1

,
.
zA1 , · · · ,

.
xA2 ,

.
yA2

,
.
zA2 , · · ·

}T
(5b)

..
xA ∈ RnA×1 =

{
· · · ,

..
xA1 ,

..
yA1

,
..
zA1 , · · · ,

..
xA2 ,

..
yA2

,
..
zA2 , · · ·

}T
(5c)

nA
{
xAi

}
= nA

{ .
xAi

}
= nA

{ ..
xAi

}
= ñiA(i = 1, 2) (6)

Considering the consistency of finite element analysis and modal experimental analysis for A,
it is suggested that the two methods should have combined in an identical way. Each grid node is
described by

{
x, y, z

}
coordinate (degree of freedom) and labelled continuously according to node and

order of x→ y→ z . In this case, ñiA can be determined uniquely. Then, block matrix is introduced as
follows:

R =


CA · · · MA

...
...

MA · · · 0

, S =


KA · · · 0

...
...

0 · · · −MA

, y =


xA
...

.
xA

, z′ =


fA(t)

...
0

 (7)

Equation (3) is algebraically treated according to Equation (7) and solved by homogeneous breeze
equation. Then, its eigenvalues are obtained as well as feature vectors, marked as λ1, λ2, . . . , λnA , λ∗1,
λ∗2, . . . , λ∗nA

, and ϕ′1, ϕ′2, . . . , ϕ′nA, ϕ′1
∗, ϕ′2

∗, . . . , ϕ′nA
∗ respectively.

By solving the equation and transforming some columns, the displacement expression of the
system in the physical coordinate system under the zero initial condition is obtained as:

xA(t) =
nA∑
i=1

{
ϕiϕ

T
i

ai

∫ t

0
eλi(t−τ) fA(τ)dτ+

ϕ∗iϕ
H
i

a∗i

∫ t

0
eλ
∗

i (t−τ) fA(τ)dτ}. (8)

where ai, called complex mode mass, is consistent with the expression of natural frequency. By applying
Laplacian transformation on both sides of Equation (8) and using the properties of convolution Laplacian
transformation, Equation (8) can be further transformed into:

L[xA(t)] = XA(s) =
nA∑
i=1

{
ϕiϕ

T
i

ai(s− λi)
+

ϕ∗iϕ
H
i

a∗i (s− λ
∗

i )
}L[ fA(t)]. (9)

In order to solve the transfer function matrix from I to the whole A, a series of transformations are
requested for Equation (9). They mainly include expanding and extracting the elements in fA(t) of
Equation (9) to form a new matrix f̃A(t), and the concept of ϕIi, ϕ∗Ii. Therefore, ϕiϕ

T
i

ai(s− λi)
+

ϕ∗iϕ
H
i

a∗i (s− λ
∗

i )

L[ fA(t)] =

 ϕiϕ
T
Ii

ai(s− λi)
+

ϕ∗iϕ
H
Ii

a∗i (s− λ
∗

i )

L[ f̃A(t)]. (10)



Symmetry 2019, 11, 1479 6 of 20

where ϕIi, ϕ∗Ii represent the components of ϕi, ϕ∗i on the mode vector, respectively. By substituting
Equation (10) into Equation (9), one obtains:

L[xA(t)] = XA(s) =
nA∑
i=1

 ϕiϕ
T
Ii

ai(s− λi)
+

ϕ∗iϕ
H
Ii

a∗i (s− λ
∗

i )

L[ f̃A(t)]. (11)

In this case, the transfer function matrix from I to the whole A can be obtained as:

HAI(s) =
XA(s)

L[ f̃A(t)]
=

XA(s)

F̃A(s)
=

nA∑
i=1

 ϕiϕ
T
Ii

ai(s− λi)
+

ϕ∗iϕ
H
Ii

a∗i (s− λ
∗

i )

. (12)

Based on Equation (12), the impulse response function matrix from I to the whole A can be
derived as:

hAI(t) =
nA∑
i=1

ϕiϕ
T
Ii

ai
eλit +

ϕ∗iϕ
H
Ii

a∗i
eλ
∗

i t. (13)

By expanding, the Equation (11) can be transformed into:

L
{
· · · , xA1 , yA1 , zA1 , · · · , xA2 , yA2 , zA2 , · · ·

}T

=
nA∑
i=1

{
1

ai(s−λi)
{ ϕiϕIi1 ϕiϕIi2 · · · ϕiϕIi6 }+

1
a∗i (s−λ

∗

i )
{ ϕ∗iϕ

∗

Ii1 ϕ∗iϕ
∗

Ii2 · · · ϕ∗iϕ
∗

Ii6 }

}
F̃A(s).

(14a)

Similarly, we extracted and reorganized the
{̃
niA, ñiA + 2

}
, (i = 1, 2) element in xA(t) to obtain a

new displacement column vector x̃A(t) on I, that is

x̃A(t) =
{
xA1 , yA1 , zA1 , xA2 , yA2 , zA2

}T
. (14b)

Based on Equations (14a) and (14b), the I→ I impulse response function matrix hII(t) can be
derived as:

hII(t) = L−1[HII(s)] = L−1
[

X̃A(s)
F̃A(s)

]
= L−1

[ nA∑
i=1

{
ϕIiϕ

T
Ii

ai(s−λi)
+

ϕ∗Iiϕ
H
Ii

a∗i (s−λ
∗

i )

}]
=

nA∑
i=1

ϕIiϕ
T
Ii

ai
eλit +

ϕ∗Iiϕ
H
Ii

a∗i
eλ
∗

i t.
(15a)

Due to the necessity of distinguishing the parameters A and B, ai → aAi , λi → λAi , a∗i → a∗Ai ,
λ∗i → λ∗Ai are introduced, and Equation (15a) can be rewritten as:

hII(t) =
nA∑
i=1

ϕIiϕ
T
Ii

aAi
eλAit +

ϕ∗Iiϕ
H
Ii

a∗Ai
eλ
∗

Ait. (15b)

3.2. Impulse Response Function Matrix on J

The pipeline B and installation base A elastically connected each other by the coated damping
structure G in a manner of two-point and symmetrically supported brackets which have elastic and
rigid modes when they are suffered external excitation. Then, elastic modes are analysed firstly. The
differential equation of motion for the viscous damped nB DOF discrete vibration system of B can be
achieved according to the analysis of A as follows:

MB
..
xB + CB

.
xB + KBxB = fB(t). (16)

where, MB, CB, KB ∈ RnB×nB ; nB is the set of discrete degree of freedom (I ∈ nA) of the base B; fB(t) is the
external excitation (including connection force

{
f xBi , f yBi , f zBi

}
, (i = 1, 2), column vector on nA;

..
xB,

.
xB

and xB correspond to the acceleration, velocity and displacement column vectors on the set of discrete
degrees of freedom nB, respectively.
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To achieve the impulse response function matrix from J to B, only the external excitation on J is
considered when fB(t) is set. Then,

fB(t) ∈ RnB×1 =
{
0, · · · , f xB1 , f yB1 , f zB1 , · · · , f xB2 , f yB2 , f zB2 , · · · 0

}T
. (17)

Referring to the derivation process of A, and introducing similar vector element position symbols,
block matrices, and vectors as well as meshing B in the same way, the elastic partial transfer function
matrix from J to B can be shown as below after a series of deductions:

H̃BJ(s) =
XB(s)

F̃B(s)
=

nB∑
i=1

 ϕiϕ
T
Ji

ai(s− λi)
+

ϕ∗iϕ
H
Ji

a∗i (s− λ
∗

i )

. (18)

After simplification, the elastic partial transfer function matrix from J to B can be obtained:

h̃BJ(t) =
nB∑

i=1

ϕiϕ
T
Ji

ai
eλit +

ϕ∗iϕ
H
Ji

a∗i
eλ
∗

i t. (19)

Then, referring to the deduction process and considering the same parameter discrimination
between A and B, ai → aBi , λi → λBi , a∗i → a∗Bi , λ∗i → λ∗Bi are introduced. Therefore, the elastic partial
impulse response function matrix on J to J can be represented as:

h̃JJ(t) =
nB∑

i=1

ϕJiϕ
T
Ji

aBi
eλBit +

ϕ∗Jiϕ
H
Ji

a∗Bi
eλ
∗

Bit. (20)

The relevant symbolic parameters in Equation (18) to Equation (20) are specified in the derivation
process of A.

In order to improve the reliability of the analysis about the rigid modes, we need to locate
the coordinate system on B (mass mB, moment of inertia

{
Jx, Jy, Jz

}
), and establish the origin of this

coordinate system at the centre of mass of B. As shown in Figure 2, the coordinate is parallel to the
coordinate system

{
x, y, z

}
set up earlier. Then, a series of assumptions are made, including assuming L

at any point on B. L
{
xl, yl, zl,θxl ,θyl ,θzl

}
denotes six degrees of freedom of L, and L

{
xL, yL, zL

}
represents

the position of L point in B coordinate system. Also, p ∈ J denotes as any degree of freedom over J;
fp ∈ fB(t) is expressed as a force exerted on the degree of p-freedom; and P

{
xP, yP, zP

}
∈ {B1, B2} denotes

the position of point P in the coordinate system.Symmetry 2019, 11, 1479 8 of 21 
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The transfer function of coordinate xl can be derived when fP is parallel to xc direction. The equation
of motion for the centre of mass B can be written as follows:

fP(t) = mB
..
xc = mB

..
x{1}l . (21)
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By applying Laplacian transformation on Equation (21) under zero initial condition, Equation (21)
can be reformulated as:

H{1}lp (s) =
X{1}l (s)

Fp(s)
=

1
mBs2 . (22)

where Fp(s), X{1}l (s) are the Laplace transformation of fp(t), x{1}l (t), respectively. H{1}lp (s) is generated

by displacement x{1}l of L point along xc direction under the action of fp.
The equation of motion of B centre of mass around zc can be expressed as follows:

M fP = fp(t)zp = Jz
..
θzl . (23)

Then, a series of deductive transformations is applied for Equation (23), and a formula can be
finally obtained by Laplace transformation. That is

H{2}lp (s) =
X{2}l (s)

Fp(s)
=

zpyL

Jzs2 . (24)

where, Fp(s), X{2}l (s) denote the Laplace transformation of fp(t), x{2}l (t), respectively. H{2}lp (s) is achieved
when L point rotates θzl angle along zc direction under the action of fp.

The equation of motion of B centre of mass around yc can be written as follows:

M fP = fp(t)yp = Jy
..
θyl . (25)

Similarly, based on the above, one can obtain a formula as follows:

H{3}lp (s) =
X{3}l (s)

Fp(s)
=

ypzL

Jys2 . (26)

where Fp(s), X{3}l (s) represent the Laplace transformation of x{3}l (t) and fp(t), respectively. H{3}lp (s) is
generated when L point rotates θyl angle along yc direction under the action of fp.

Thus, based on Equations (22), (24) and (26), one obtains:

Hlp(s) =
Xl(s)
Fp(s)

= {H{1}lp (s) + H{2}lp (s) + H{3}lp (s)} =
{

1
mBs2 +

zpyL

Jzs2 +
ypzL

Jys2

}
. (27)

This means the transfer function of the physical coordinate is xl ∈ xB(t) when the force of
fp(t) ∈ fB(t) is applied to the p-DOF, p ∈ J. Due to the multiple direction of the action of p, Equation (27)
can be rewritten to make it easy to distinguish as follows:

Hxlpx(s) =
{

1
mBs2 +

zpx yL

Jzs2 +
ypxzL

Jys2

}
. (28a)

In the Equation (28a), Hxlpx(s) denotes the transfer function of P’s force vector fpx applied along xc

in xl coordinate; zpx , ypx denote the vertical distance between fpx and zc, yc.
Similarly, the transfer functions of physical coordinates yl and zl can be obtained:

Hylpx(s) =
{

zpxxL

Jzs2

}
. (28b)

Hzlpx(s) =
{

ypxxL

Jys2

}
. (28c)

Meanwhile, on the basis of the deductions above, the transfer function of force fp in the same
direction as yc and direction zc can be obtained, where fp(t) ∈ fB(t).
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The fp is parallel to yc direction:

Hxlpy(s) =
{zpy yL

Jzs2

}
. (29a)

Hylpy(s) =
{

1
mBs2 +

zpyxL

Jzs2 +
xpyzL

Jxs2

}
. (29b)

The fp is parallel to zc direction:

Hxlpz(s) =
{

ypzzL

Jys2

}
. (30a)

Hylpz(s) =
{

xpzzL

Jxs2

}
. (30b)

Hzlpz(s) =
{

1
mBs2 +

xpz yL

Jxs2 +
ypz xL

Jys2

}
. (30c)

In order to derivate conveniently, the following assumptions are proposed: (i) Assuming
that B is discretized into NB elements or grid nodes, and defining nB = 3 × NB,
node L

{{
xL, yL, zL

}
,
{
xl, yl, zl

}
∈ xB(t)

}
∈ NB, where l is related to L, {xl, yl, zl} is marked as {xLl, yLl,

zLl}, L = 1, 2, . . . , NB. (ii) P{{xP, yP, zP} ∈ J, P = 1, 2;
{
xpx , xpy , xpz

}
,
{
ypx , ypy , ypz

}
,
{
zpx , zpy , zpz

}
} ∈ NB, p = 1,

2, where p is related to P.
Actually, the partial transfer function matrix HBJ(s) from J to the whole B rigid body should be

a nB × 6 order matrix. According to the difference of excitation and measurement points, 6 items in
HBJ(s) can be obtained respectively. Then, the partial transfer function matrix HBJ(s) from J to the
whole B rigid body can be obtained:

HBJ(s)nB×6 = [HBJ(s)
∣∣∣
1, HBJ(s)

∣∣∣
2, HBJ(s)

∣∣∣
3, HBJ(s)

∣∣∣
4, HBJ(s)

∣∣∣
5, HBJ(s)

∣∣∣
6]. (31)

where matrix elements HBJ(s)
∣∣∣
i are represented as:

HBJ(s)
∣∣∣
1 =

{
Hx1l1x(s), Hy1l1x(s), Hz1l1x(s), · · · , HxNBl1x(s), HyNBl1x(s), HzNBl1x(s)

}T

HBJ(s)
∣∣∣
2 =

{
Hx1l1y(s), Hy1l1y(s), Hz1l1y(s), · · · , HxNBl1y(s), HyNBl1y(s), HzNBl1y(s)

}T

HBJ(s)
∣∣∣
3 =

{
Hx1l1z(s), Hy1l1z(s), Hz1l1z(s), · · · , HxNBl1z(s), HyNBl1z(s), HzNBl1z(s)

}T

HBJ(s)
∣∣∣
4 =

{
Hx1l2x(s), Hy1l2x(s), Hz1l2x(s), · · · , HxNBl2x(s), HyNBl2x(s), HzNBl2x(s)

}T

HBJ(s)
∣∣∣
5 =

{
Hx1l2y(s), Hy1l2y(s), Hz1l2y(s), · · · , HxNBl2y(s), HyNBl2y(s), HzNBl2y(s)

}T

HBJ(s)
∣∣∣
6 =

{
Hx1l2z(s), Hy1l2z(s), Hz1l2z(s), · · · , HxNBl2z(s), HyNBl2z(s), HzNBl2z(s)

}T

(32)

Based on Equations (31) and (32), the impulse response function matrix hBJ(t) can be obtained
from J to the whole rigid part of B, which can be expressed as:

hBJ(t)nB×6 = L−1[HBJ(s)] = L−1[HBJ(s)
∣∣∣
1, HBJ(s)

∣∣∣
2, · · · , HBJ(s)

∣∣∣
6]. (33)

By examining each column in Equation (33) separately, the impulse response function matrix
hBJ(t) from J to the whole rigid part of B can be reformulated after itemized expansion, collation
and reorganization.

hBJ(t)nB×6 =
6∑

r=1
Ar =

6∑
r=1

φrφ̃T
r

mr
t(t ≥ 0),(

r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz
)
.

(34)
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in which, modes with different order can be achieved depending on the level of r. Meanwhile, the
impulse response function matrix hJJ(t) of J→ J rigid part can be given as:

hJJ(t)6×6 =
6∑

r=1

φJrφ
T
Jr

mr
t(t ≥ 0),(

r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz
)
.

(35)

Then, integrating the h̃JJ(t) and hJJ(t) given by Equations (20) and (35), the impulse response
function matrix hJJ(t)6×6 of J→ J can be obtained as follows:

hJJ(t) = h̃JJ(t) + hJJ(t) =
nB∑

i=1

ϕJiϕ
T
Ji

aBi
eλBit +

ϕ∗Jiϕ
H
Ji

a∗Bi
eλ
∗

Bit +
6∑

r=1

φJrφ
T
Jr

mr
(t ≥ 0),(

r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz
)
.

(36)

3.3. Response Analysis of Arbitrary Points on A and B Caused by Connecting Force

Due to the consistency between the parameters of A and B, we are denoting ai → aAi , λi → λAi ,
a∗i → a∗Ai , λ∗i → λ∗Ai to distinguish them conveniently. Thus, Equation (8) can be written as:

xA(t) =
nA∑
i=1

ϕiϕ
T
i

aAi

∫ t

0
eλAi(t−τ) fA(τ)dτ+

ϕ∗iϕ
H
i

a∗Ai

∫ t

0
eλ
∗

Ai(t−τ) fA(τ)dτ

. (37)

For the complex conjugate pairs of
ϕiϕ

T
i

aAi

∫ t
0 eλAi(t−τ) fA(τ) and

ϕ∗iϕ
H
i

a∗Ai

∫ t
0 eλ

∗

Ai(t−τ) fA(τ), Equation (37)
can be reformulated as:

xA(t) = 2Re


nA∑
i=1

ϕiϕ
T
i

aAi

∫ t

0
eλAi(t−τ) fA(τ)dτ


. (38)

Expanding the sum term of Equation (38), the element fA(t) can be extracted and recombined and
further rewritten as follows:

xA(t) = 2Re


nA∑
i=1

 1
aAi

∫ t

0


6∑

j=1

ϕIi jϕi f̃Aj(τ)

eλAi(t−τ)dτ


. (39)

where f̃A(t) is composed of
{̃
niA, ñiA + 2

}
(i = 1, 2, 3, 4) and elements extracted from fA(t), f̃Aj(t)

represents the j-th elements in f̃A(t). Similarly, ϕIi is the composition of
{̃
niA, ñiA + 2

}
(i = 1, 2, 3, 4)

elements extracted from ϕi, ϕIi j(t), which means the j-th element in ϕIi.
Therefore, the physical coordinate response of any displacement response of a node caused by I

on the k ∈ {1, nA} of A can be calculated by the following:

xAk(t) = 2Re


nA∑
i=1

 1
aAi

∫ t

0


6∑

j=1

ϕIi jϕik f̃Aj(τ)

eλAi(t−τ)dτ


. (40)

where xAk(t) denotes the k-th element in xA(t), and ϕik means the k-th element in ϕi.
The following works are to analyse the response of arbitrary points on B caused by connecting

force. Due to the convenience of distinguishing, ai → aBi , λi → λBi , a∗i → a∗Bi and λ∗i → λ∗Bi are marked.
Then, rewriting Equation (19) and according to Equation (34), one can be obtained as follows:
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hBJ(t) = h̃BJ(t) + hBJ(t)

=
nB∑

i=1

ϕiϕ
H
Ji

aBi
eλBit +

ϕ∗iϕ
H
Ji

a∗Bi
eλ
∗

Bit +
6∑

i=1

φrφT
Jr

mr

= 2Re

{
nB∑

i=1

ϕiϕ
H
Ji

aBi
eλBit

}
+

6∑
i=1

φrφT
Jr

mr
t(t ≥ 0),

(r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz).

(41)

The response vector xB(t) on B caused by J can be obtained by convolution hBJ(t) ∗ f̃B(t) of matrix
and vector, where f̃B(t) and f̃A(t) are identical. Additionally, the convolution hBJ(t) ∗ f̃B(t) of matrix
and vector is given as:

xB(t) = hBJ(t) ∗ f̃B(t)

=

{
2Re

{
nB∑

i=1

ϕiϕ
T
Ji

aBi
eλBit

}
+

6∑
r=1

φrφT
Jr

mr
t
}
∗ f̃B(t)

=
∫ t

0 2Re

{
nB∑

i=1

ϕiϕ
T
Ji

aBi
eλBi(t−τ) f̃B(τ)dτ

}
+

∫ t
0

6∑
r=1

φrφT
Jr

mr
(t− τ) f̃B(τ)dτ

= 2Re

{
nB∑

i=1

1
aBi

∫ t
0 {ϕiϕ

T
Ji f̃B(τ)}eλBi(t−τ)dτ

}
+

6∑
r=1

1
mr

∫ t
0 {φrφT

Jr f̃B(τ)}(t− τ)dτ.

(42)

By simplifying Equation (42), a formula with a form convenient for calculation is obtained as:

xB(t) = 2Re

 nB∑
i=1

 1
aBi

∫ t
0

 6∑
j=1

ϕiϕ
T
Ji j f̃Bj(t)

eλBi(t−τ)dτ




+
6∑

r=1

1
mr

∫ t
0

 6∑
j=1

φrφT
Jr j f̃Bj(τ)

(t− τ)dτ(t ≥ 0),

(r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz).

(43)

where ϕT
Ji j denotes the j-th element in ϕT

Ji, ϕ
T
Jr j represents the j-th element in ϕT

Jr, and f̃Bj represents the

j-th element in f̃B.
Based on Equation (43), the k-th physical coordinate response on any B caused by J can be

calculated as:

xBk(t) = 2Re

 nB∑
i=1

 1
aBi

∫ t
0

 6∑
j=1

ϕikϕ
T
Ji j f̃Bj(t)

eλBi(t−τ)dτ




+
6∑

r=1

1
mr

∫ t
0

 6∑
j=1

φrkφ
T
Jr j f̃Bj(τ)

(t− τ)dτ(t ≥ 0),

(r = 1 ∼ 3, mr = mB; r = 4, mr = Jx; r = 5, mr = Jy; r = 6, mr = Jz).

(44)

where xBk(t) is the k-th element in xB(t), ϕik is the k-th element in ϕi, and φrk denotes the k-th element
in φr.

3.4. Dynamics Model

Displacement response vectors of linear structures A and B subjected to external excitation are
recorded as x′A(t) ∈ RnA×1, x′B(t) ∈ RnB×1, in this case, where A, B and other structures are mutually
coupled. Due to A and B being connected by G, the connecting forces fI(t) and fJ(t) act on the degrees
of freedom I and J, which makes the displacement response become xA(t) ∈ RnA×1,xB(t) ∈ RnB×1.

xA(t) = x′A(t) −
∫ t

0
hAI(t− ζ) fI(ζ)dζ, I = A∩G. (45a)
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xB(t) = x′B(t) −
∫ t

0
hBJ(t− ζ) fJ(ζ)dζ, I = B∩G. (45b)

where
fI(t) = f̃A(t) ∈ R6×1 =

{
f xA1 , f yA1 , f zA1 , f xA2 , f yA2 , f zA2

}
. (46)

in which, fJ(t) and fI(t) are equal in size and opposite in direction. Unit impulse response matrix
hAI(t) and hBJ(t) are determined by Equations (13) and (41), respectively, or measured by experiments.

The equation of motion of damped structure G can be described as:

gN(y(t),
.
y(t), t) + fI(t) = 0 (47)

where gN(y(t),
.
y(t), t) ∈ R6×1 means the constitutive relation vector of G, y(t) and

.
y(t) has the

following forms:

y(t) ∈ R6×1 = xJ(t) − xI(t)
=

{
xB1 , yB1 , zB1 , xB2 , yB2 , zB2

}
−

{
xA1 , yA1 , zA1 , xA2 , yA2 , zA2

}
.

(48a)

.
y(t) ∈ R6×1 =

.
xJ(t) −

.
xI(t)

=
{ .
xB1 ,

.
yB1

,
.
zB1 ,

.
xB2 ,

.
yB2

,
.
zB2

}
−

{ .
xA1 ,

.
yA1

,
.
zA1 ,

.
xA2 ,

.
yA2

,
.
zA2

}
.

(48b)

gN(y(t),
.
y(t), t) ∈ R6×1 = g0

{
y(t),

.
y(t)

}
+ z(t).

g0{y(t),
.
y(t)} = a0sgn{y(t)}+

n1∑
n=1

an
∣∣∣y(t)∣∣∣n−1

y(t) + b0sgn{
.
y(t)}+

n2∑
n=1

bn
∣∣∣ .
y(t)

∣∣∣n−1 .
y(t).

dz(t) = ks
2 [1 + sgn{zs −

∣∣∣z(t)∣∣∣}]dy(t), ks =
zs
ys

.

(49)

where
{
g0, z(t), a0, an, n1, b0, bn, n2, ks, zs, ys

}
∈ R6×1.

Equation (45a) to (49) show that when the characteristics of each part of the pipeline structure are
determined and can be measured and solved, the independent unknown quantity with the smallest
dimension in the pipeline structure is the physical quantity at both ends of the non-linear element,
namely the relative displacement or the connecting force. Therefore, the response of the pipeline
structure can be obtained by solving the independent unknown variables and the equation.

Utilizing the Fourier transform of Equations (45a), (45b) and (48a), the corresponding Fourier
spectrum of the original time domain function can be calculated as:

XA(ω) = X′A(ω) −HAI(ω)FI(ω). (50a)

XB(ω) = X′B(ω) + HBJ(ω)FJ(ω). (50b)

Y(ω) = XJ(ω) −XI(ω). (51)

If only the set of connection degrees of freedom for Equations (50a) and (50b) are considered, the
two formulas can be rewritten:

XI(ω) = X′I(ω) −HII(ω)FI(ω). (52a)

XJ(ω) = X′J(ω) + HJJ(ω)FJ(ω). (52b)

where HII(ω) and HJJ(ω) are determined analytically by Equations (15b) and (36) or measured
experimentally. Considering the Equation (51), and FI(ω) = FJ(ω), an expression is shown as follows:

Y(ω) = XJ(ω) −XI(ω)
= X′J(ω) −X′I(ω) + HJJ(ω)FJ(ω) + HII(ω)FI(ω)

= X′J(ω) −X′I(ω) +
{
HII(ω) + HJJ(ω)

}
FI(ω)

(53)
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Equation (53) can be further transformed into:{
HII(ω) + HJJ(ω)

}
FI(ω) = Y(ω) + X′I(ω) −X′J(ω). (54)

By further simplifying and multiplying the compound matrix
{
HII(ω) + HJJ(ω)

}−1
on both sides

of Equation (54):

FI(ω) =
{
HII(ω) + HJJ(ω)

}−1
{Y(ω) + X′I(ω) −X′J(ω)}. (55)

introducing the time domain vector p(t) and defining that p(t) ∈ R6×6 = F−1 =
{{

HII(ω) + HJJ(ω)
}−1

}
.

Meanwhile, defining y′(t) as the relative displacement response vector on the connecting surface
caused by external excitation while linear structure A and B are not coupled with each other, so that
y′(t) ∈ R6×1 = x′J(t) − x′I(t). Thus, the time-domain form of Equation (55) can be written as:

fI(t) =
∫ +∞

−∞

p(t− ζ)
{
y(ζ) − y′(ζ)

}
dζ. (56)

By substituting Equation (56) into Equation (47), the dynamic equations regarding the displacement
response as unknown variables are obtained:∫ +∞

0
p(t− ζ){y(ζ) − y′(ζ)}dζ+ gN(y(t),

.
y(t), t) = 0. (57)

From Equation (54):

Y(ω) =
{
HII(ω) + HJJ(ω)

}
FI(ω) −X′I(ω) + X′J(ω). (58)

The inverse Fourier transform is performed on both sides of Equation (59). Then,

y(t) =
∫ t

0

{
hII(t− ζ) + hJJ(t− ζ)

}
fI(ζ)dζ− x′I(t) + x′J(t)

=
∫ t

0 q(t− ζ) fI(ζ)dζ+ y′(t).
(59)

where
q(t) = hII(t) + hJJ(t). (60)

The following equation can be obtained by using integral derivative method with parametric
variables on both sides of Equation (59).

.
y(t) =

∫ t

0

.
q(t− ζ) fI(ζ)dζ+

.
y′(t) (61)

Then, substituting Equations (59) and (61) into Equation (47), the dynamic equations regarding
connection force as an unknown variable can be obtained:

gN

{∫ t

0
q(t− ζ) fI(ζ)dζ+ y′(t),

∫ t

0

.
q(t− ζ) fI(ζ)dζ+

.
y′(t), t

}
+ fI(t) = 0. (62)

By substituting Equation (47) into Equation (61) and utilizing the calculus relation, one can obtain
as follows:

y(t) =
∫ t

0

.
y(ζ)dζ. (63)

.
y(t) = −

∫ t

0

.
q(t− ζ)gN(y(ζ),

.
y(ζ), ζ)dζ+

.
y′(t). (64)
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As a consequence of the above, the dynamic equations on the connecting surface have been
established completely. To verify the reliability of the dynamic equation, the necessity of experimental
verification should be considered.

4. Experimental Verification

In this section, the reliability of the dynamic model presented in Section 3 is considered to
be verified by the physical experiment. The main section context includes the introduction of
the experiment equipment, dynamic testing methods and result analysis for the two-point and
symmetrically pipeline system.

4.1. Case Description

To further explore the nonlinear dynamic model proposed in this paper, according to the installation
method of engineering application, the experimental bench of the coated pipeline system as shown
in Figure 3 was established. The experimental system mainly contained the following five parts:
The excitation system, data acquisition system and measurement system; the pipeline with two-point
and symmetrically supported brackets; the coated damping structure; the installation base; and the
rigid connection. The excitation system consists of JZK-50 vibration exciter (maximum excitation force
500 N, amplitude ±10 mm) and E5874A power amplifier. The data acquisition system consists of
VT-900X vibration controller with data acquisition and analysis software. The measurement system
consists of YD-303 piezoelectric quartz force sensor and KD9004 eddy current displacement senor.
The coated damping structure was composed of elastic-porous metal rubber, coated rings, and the
specific coated form. The related experiment equipment and effective test method can be found in the
previous works [27]. It should be pointed out that the coated damping structure with elastic-porous
metal rubber has a sound effect on vibration reduction of the pipeline system [28]. In this work,
the application of elastic-porous metal rubber for the damping element enwrapped on the outer wall
of the pipeline was due to its excellent vibration absorption performance [29,30].
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4.2. Nonlinearity and Energy Consumption

During the experimental test, the sinusoidal excitation force with various frequencies was applied
to the coated pipeline system and its displacement response was measured. For the unification of
excitation magnitude, an excitation condition of 40 mvpp for the pipeline system with the voltage
loading amplitude was adopted. The curve of response force F and response displacement y can be
plotted as Figure 4 when the excitation frequencies of 15 Hz and 20 Hz were used respectively.
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It can be observed from Figure 4 that the coated pipeline system has an obvious nonlinearity. This
can mainly be caused by the used elastic-porous metal rubber in the system as a nonlinear damping
structure with energy dissipation characteristics. It should be mentioned that the total restoring force
of elastic-porous metal rubber coated damped structure is composed of nonlinear elastic restoring force
and nonlinear damping force. Nonlinear elastic restoring force denoted by an inclined curve in Figure 4
plays a restoring role in the working process of elastic-porous metal rubber, and nonlinear damping
force mainly dissipates the damping energy. The measured dynamic results show a good accordance
with the analytical expression of Equation (49). In Equation (49), z(t) as a nonlinear component of
elastic-porous metal rubber has a hysteresis characteristic. In the view of physical mechanism based
on material microstructure, z(t) is associated with the slip force and slip displacement produced by the
dynamic movement between the coiled wires, which possesses both stiffness and damping.

According to the dynamic parameter identification of loss factor η, energy dissipation ∆W
and maximum elastic potential energy W in [30,31], the energy dissipation characteristics of the
corresponding coated pipeline system under 15 Hz and 20 Hz experimental conditions are obtained,
as listed in Table 1.

Table 1. The energy dissipation characteristics of the coated pipeline system.

Frequency (Hz) Energy Dissipation ∆W
(N·mm)

Maximum Elastic Potential Energy W
(N·mm) Loss Factor η

15 1.016 1.136 0.142
20 0.822 0.752 0.174

Table 1 indicates that a reduction existing in the energy dissipation ∆W with the increase of
frequency. This phenomenon can be explained by the displacement of the coated damping structure
decreases with the excitation frequency increases under a constant excitation force. From the microscopic
level, with the decrease of displacement, the slip distance between metal wires in metal rubber is
reduced, and the capacity for energy dissipation of elastic-porous metal rubber becomes weaker.
Meanwhile, it is known that the maximum elastic potential energy is proportional to displacement,
and the maximum elastic potential energy of elastic-porous metal rubber may degrade with the
reduction of displacement. The loss factor in Table 1 represents the ratio of the energy dissipation to
the maximum elastic potential energy. The maximum elastic potential energy shows a faster speed of
degradation than the energy dissipation, which leads to an augmentation of loss factor.
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The experimental dynamic results associated with the energy dissipation characteristics would
be nonlinear in terms of the change of frequency. This is attributed to the resonance frequency of
the coated pipeline system. Thus, the dynamic test with the sinusoidal sweep frequency should be
considered in the following work. It should be noted that one limitation of the conducted research is
that it is difficult to accurately identify dynamic properties of the used coating damping structure. This
is due to the damping element, namely elastic-porous metal rubber, which exhibits obvious nonlinear
characteristics and has not been determined very well so far.

4.3. Dynamic Test and Its Result

The dynamic test with a broadband sweep frequency range (5–200 Hz) for the coated pipeline
system was performed to improve the reliability of the experiment. Two layers of elastic-porous metal
rubber were used, and the magnitude of excitation applied is set as 20 N. The experimentally measured
force transfer rate-frequency curve can be plotted as Figure 5. It can be seen that the system exists three
modes in the frequency range of 5–200 Hz. They are 14.610 Hz, 93.657 Hz, 186.76 Hz, respectively.
The corresponding response force F and the response displacement y are not consistent under the
conditions of 15 Hz and 20 Hz as mentioned in the Section 4.2. Due to the condition of 15 Hz as the
resonance frequency band, the response force of the whole system is far greater than the basic force.
This is reasonable for the dynamic analysis. Due to the increase of the response displacement caused
by the resonance, the displacement under 15 Hz is larger than other frequencies. However, when the
excitation frequency is up to 20 Hz, the non-resonant station of the coated pipeline system occurs,
resulting in the degradation of the response force and the corresponding response displacement.
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Figure 5. The experimental measured force transfer rate-frequency curves of coated pipeline
damping system.

Figure 6 shows that the peak of the force transfer rate TAm decreases gradually and the structural
loss factor η linearly increases with the increase of the magnitude of the excitation. This is due to
that the vibration damping amplitude of the elastic-porous metal rubber increases with the increase
of excitation magnitude. The slip amplitude between the inner metal wires increases, leading to the
increase of energy dissipation. The energy dissipation of elastic-porous metal rubber is generated by
the sliding dry friction between the inner hooked wires. When the excitation magnitude increases from
10 N to 80 N, the force transfer rate obviously decreases and the loss factor shows an obvious increase
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trend. The excitation magnitude plays a considerable role on the energy dissipation of elastic-porous
metal rubber and its vibration damping system.
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Figure 6. The evolution of force transfer rate and loss factor with excitation level.

Integrated with the excitation magnitude of 80 N, different pre-tightening conditions (0.5 mm,
2 mm, 3 mm) were applied to the coated pipeline system. Figure 7 shows the corresponding force
transfer rate curves. The peak of the force transfer rate TAm can be obtained and then the structural
loss factor η is calculated based on the half-power method, as listed in Table 2.
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Table 2. Energy dissipation characteristics at different pre-tightening conditions.

Energy Dissipation Characteristics Pre-Tightening Conditions (mm)

0.5 2 3

Natural Frequencyωn (Hz) 13.996 14.420 14.538
Peak of the Force Transfer Rate TAm 17.682 19.025 20.182
Structural Loss Factor η 0.0533 0.0454 0.0435

As can be seen from Figure 7 and Table 2, the variation of pre-tightening conditions not only
affects the natural frequency of the system, but also affects the energy dissipation characteristics
of the coated pipeline system. The natural frequency increases with the increase of pre-tightening.
The peak TAm of the force transfer rate increases, the structural loss factor η decreases, and the energy
dissipation characteristics degrades. The source of this phenomenon may be that with the increase of
pre-tightening, the contact pairs between metal wires are obviously dense and the slipping movements
between wires become relatively difficult. When the excitation condition is always 80 N, the slip
amplitude is relatively slight under the condition of large pre-tightening with the same exciting
magnitude. Additionally, the slip amplitude decreases with the increase of pre-tightening.

5. Conclusions

In this paper, a dynamic analysis based on impulse response matrix to describe two-point
and symmetrically supported pipeline bracket system was performed by means of mathematically
modelling. The dynamic model involved of rigid pipeline, nonlinear elastic connection structure
and coated damping structure is simplified and established. As for the experimental verification,
the sinusoidal sweep dynamic tests were carried out to obtain the first three modes of the coated
pipeline damping system and compared with the analytical results. The experimental response
force-displacement curves and the energy dissipation characteristics under different excitation
conditions were obtained to analyse the nonlinear characteristics of the coated pipeline system.
The dynamic experimental results show a good agreement with the developed dynamic model.
This work should be of great significance for the dynamic analysis of pipeline system with a damping
structure. The obtained dynamic model should be further explored and validated by means of more
application cases with different boundary configurations. For example, two-point and symmetrically
supported pipeline bracket systems with different damping elements or different service environments.
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