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Abstract: In numerous real decision-making problems, decision-makers (DMs) encounter situations
involving hesitant and probabilistic information simultaneously, and DMs show behavior
characteristics of nonrational preferences when they encounter decision-making situations with
uncertain information. To address such multiple-criteria decision-making (MCDM) issues with
hesitant and probabilistic information and nonrational preferences, a novel method, called the
evidential prospect theory framework, is developed herein based on evidence theory and prospect
theory, where the associated coefficients in prospect theory are given on the basis of symmetry
principles (i.e., the associated coefficients are common knowledge to DMs). Within the proposed
method, belief structures derived from evidence theory apply to the experts’ uncertainty about the
subjective assessment of criteria for different alternatives. Then, by combining belief structures,
the weighted average method is applied to estimate the final aggregated weighting factors of different
alternatives. Furthermore, considering the nonrational preferences of DMs, the expected prospect
values of different alternatives are derived from the final aggregated weighting factors and prospect
theory, which is applied to the ranking order of all alternatives. Finally, a case involving a parabolic
trough concentrating solar power plant (PTCSPP) is shown to illustrate the application of the novel
method proposed in this paper. The evidential prospect theory framework proposed in this paper is
effective and practicable, and can be applied to (green) supplier evaluation.
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1. Introduction

In multiple-criteria decision-making (MCDM) problems, fuzzy set theory, proposed by Zadeh, is an
effective alternative to characterize uncertainty and complexity [1]. Fuzzy set theory can systematically
process linguistic information from decision-makers (DMs) or experts in decision-making problems [2,3].
In traditional MCDM, there exists a basic assumption that DMs are rational [4–7]. Nevertheless, DMs
are usually not rational decision-makers, and real decision-making behavior often deviates from the
prediction of expected utility. That is, DMs’ nonrational preferences have a critical impact on the
associated decision-making results. To characterize DMs’ nonrational preferences, some non-expected
utility functions have been proposed, such as prospect theory [7], rank-dependent utility [8], and
loss aversion utility [9]. The most striking of the non-expected utility functions is prospect theory.
Prospect theory is the most influential theory of decision-making with uncertain information. Different
from expected utility theory, prospect theory evaluates the outcomes with respect to some reference
outcome, where gains or losses are called prospects. The value function in prospect theory characterizes
the phenomenon that losses loom larger than gains. The probability weighting function describes
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the phenomenon that DMs overweight (or underweight) small (moderate to large) probabilities.
The empirical works on psychological behavior justify prospect theory [10]. That is, decisions made
based on prospect theory are in line with real decision-making [11–14].

In addition, in MCDM problems, fuzzy set theory provides an effective mathematical method to
process the uncertainty of DMs’ judgement. A DM’s mind can be highly modeled by the linguistic
variables that are characterized by fuzzy numbers. For instance, “the car is good”, “the stability is
high”, and so on. However, it fails to adequately describe a more complex situation involving hesitant
and probabilistic information simultaneously. For example, the mobile phone is good at a probability of
0.7, and the mobile phone is “medium good” at a probability of 0.3, etc. For such situations, Dempster
and Shafer proposed evidence theory [15,16]. As a reasoning method for uncertain information,
a belief structure derived from evidence theory can adequately represent the uncertainty involving
DMs’ judgement [17–19], which apples to numerous fields, including pattern recognition [20,21], risk
assessment [22,23], identification of influential nodes [24,25], etc. [26–28]. By making use of belief
structures, the various types of uncertainty in the decision-making process can be described adequately.
This paper adopts belief structures to describe the decision-making situations involving hesitant and
probabilistic information simultaneously.

By reviewing the above works on MCDM problems, it was found that there are some gaps in
the extant literature. (1) Although the psychological preferences of DMs are considered in the extant
MCDM works based on prospect theory, these works do not involve the various types of uncertainty,
such as hesitant and probabilistic information. That is, the method based on prospect theory cannot deal
with MCDM problems involving hesitant and probabilistic information simultaneously. (2) Evidence
theory addresses the problems of the various types of uncertainty in the existing MCDM works, but the
literature fails to consider the psychological preferences of DMs, except Nusrat and Yamada [29].
However, Nusrat and Yamada only showed a descriptive decision-making model and ignored the
various types of uncertainty in the decision-making process.

Consequently, a novel method is proposed in this paper. It takes into account the following
two situations: (1) DMs show nonrational preferences that are taken into account based on prospect
theory; (2) the experts’ subjective judgment of criteria involves hesitant and probabilistic information
simultaneously. In this paper, we consider an MCDM problem with hesitant and probabilistic
information, where DMs present behaviors of nonrational preferences. A novel method, called
the evidential prospect theory framework, is developed based on evidence theory and prospect
theory. Within the proposed framework, belief structures derived from evidence theory are applied to
characterize the experts’ uncertainty about the subjective assessment of criteria for different alternatives,
which involves hesitant and probabilistic information simultaneously. Prospect theory models DMs’
nonrational preferences. Then, by combining belief structures, the weighted average method is applied
to estimate the final aggregated weighting factors of different alternatives. Furthermore, the expected
prospect values of different alternatives are derived from the final aggregated weighting factors and
prospect theory, which is applied to the ranking order of all alternatives.

Compared to the existing models that address MCDM problems, the evidential prospect theory
framework has two advantages: First, the proposed framework characterizes decision-making
situations involving hesitant and probabilistic information simultaneously. Second, the proposed
framework considers DMs’ nonrational preferences. Since the extant works still have not referred
to hesitant and probabilistic information and nonrational preferences simultaneously, the proposed
framework fills the research gap involving hesitant and probabilistic information and nonrational
preferences simultaneously in MCDM problems. In addition, the proposed framework in this paper
can apply to green supplier selection in the field of sustainability. Although MCDM is an effective
approach to green supplier evaluation, the existing MCDM models ignore either the various types of
uncertainty in the decision-making process or DMs’ nonrational preferences [30,31]. The proposed
framework considers not only the various types of uncertainty but also DMs’ nonrational preferences.
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Thus, the proposed framework in this paper is an effective method to select green suppliers, since the
results derived by this framework are more in line with DMs’ real decision-making.

The paper proceeds as follows. In Section 2, evidence theory, prospect theory, and hesitant fuzzy
sets are reviewed. In Section 3, a novel score function is introduced. In Section 4, the evidential prospect
theory framework is developed. In Section 5, a case involving a parabolic trough concentrating solar
power plant (PTCSPP) is shown to illustrate the application of the proposed method. Conclusions are
drawn in Section 6.

2. Preliminaries

2.1. Evidence Theory

As a tool of knowledge reasoning, evidence theory, proposed by Dempster [15] and Shafer [16],
can be used to represent and process uncertain information. Uncertainty can be expressed directly
by assigning a probability to a collection of objects. In evidence theory, the evidence described by a
probability distribution is derived from the information from each source. For two or more pieces of
evidence, Dempster provided a combination rule to fuse them [15].

Let a frame of discernment be denoted by Ω= {E1, E2 . . . , En}. The frame of discernment Ω consists
of mutually exclusive and jointly exhaustive events Ei (i = 1, 2, 3, . . . , n). The power set of Ω is
denoted by

2Ω = {∅, {E1}, . . . , {En}, {E1, E2}, . . . , {E1, . . . , En}}.

A mapping m : 2Ω
→ [0, 1] is called a belief structure of the frame of discernment Ω. A belief

structure is also called a mass function, where m(∅) = 0,
∑

E∈2Ω m(E) = 1. The mass function m(E)
exactly estimates the belief assigned to E and reflects the degree of support of evidence for E. Let m1

and m2 denote two pieces of evidence whose belief structures are independent of each other. Then,
the combination rule m = m1 ⊕m2 is [15]

m(E) =


∑

B∩C=∅ m1(B)m2(C)/(1−K)

0

E , ∅
E = ∅

(1)

where K =
∑

B∩C=∅ m1(B)m2(C) is the normalization constant. Similarly, at least three pieces of
evidence can be combined in pairs in any order.

The combination rule shown by Equation (1) cannot directly address the combination of evidence
with high conflict. Therefore, the weighted average method was introduced to address the combination
of evidence with high conflict [32]. Specifically, this method is as follows.

Firstly, the weighting factors are determined. Let mi and mj be two belief structures, where i, j = 1, 2,
3, . . . , n. Then, the Jousselme distance between mi and mj is as follows [33]:

dJ(mi, m j) =

√
(
∣∣∣∣∣∣∣∣mi

∣∣∣∣∣∣∣∣2+∣∣∣∣∣∣∣∣m j

∣∣∣∣∣∣∣∣2 − 2
〈
mi, m j

〉
)/2

where ||mi||
2 = 〈mi, mi〉, ||m j||

2 = 〈m j, m j〉, 〈mi, m j〉 =
∑

mi(B) ·m j(C) ·
|B∩C|
|B∪C| .

Let m1, m2, . . . , mn be n-many belief structures. Then, the support degree of mi is

Sup(mi) =
∑

n
j=1, j,i(1− dJ(mi, m j)).

The weighting factor wi (i.e., the credibility degree of each belief structure) is

wi = Sup(mi)/
∑

n
i=1Sup(mi), i = 1, 2, . . . , n.
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Let m1, m2, . . . , mn be n-many belief structures, and let wi denote the weighting factor of mi
(i = 1, 2, . . . , n), where

∑n
i=1 wi = 1. Then, the average belief structure m is

m(E) =
∑

n
i=1wimi(E), E ⊆ Ω.

The final belief structure mf formed by combining m1, m2, . . . , mn is

m f = [· · · [m1 ⊕m2] ⊕ · · · ⊕mn]

where ⊕ is the combination rule introduced by Dempster [15].

2.2. Prospect Theory

Kahneman and Tversky proposed prospect theory, which consists of editing and evaluation
phases, to challenge the expected utility paradigm. For the former phase, the prospects are divided
into gains and losses relative to some reference point. For the latter phase, the prospects are computed
by using the value function and the weighting function, and DMs select the prospect with the highest
value. Prospect theory describes some behavioral characteristics. (1) Reference dependence: Outcomes
below (above) the reference point are regarded as losses (gains). (2) Loss aversion: Losses loom larger
than gains. This means that when facing losses, the value function is steeper than when facing gains.
(3) Diminishing sensitivity: DMs are often risk seeking regarding losses and risk averse regarding
gains. Thus, the value function in the loss domain is convex, and it is concave in the gain domain.
The value function is

v(x) =

(x− x0)
α x− x0 ≥ 0

−λ(x0 − x)β x− x0 < 0.

The probability weighting function by Tversky and Kahneman is [34]

ϕ(F) := Fr/[Fr + (1− F)r]
1/r (2)

where x0 is the reference point, x −x0 ≥ 0 represents the gains, and x −x0 < 0 represents the losses.
The exponent parameters α and β (0 ≤α, β ≤ 1) are the coefficients of risk aversion. The parameter λ is
the coefficient of loss aversion, and λ > 1. For simplicity, let α = β = 0.88, λ = 2.25, r = 0.65, as derived
from the empirical evidence provided by Tversky and Kahneman [34].

2.3. The Concept of HFEs

Definition 1 [35]. Let a reference set be denoted by Y, and let a hesitant fuzzy set (HFS) on Y be denoted by B.
Then, the hesitant fuzzy set B is represented as

B =
{〈

y, hB(y)
〉∣∣∣y ∈ Y

}
where hB(y) is a set of some different values in [0, 1], indicating the possible memberships of y∈Y to B. hB(y) is
called a hesitant fuzzy element (HFE) [36]. If B = {〈 y, hB(y) = {0}〉| y∈Y}, then the hesitant fuzzy set B is called
the empty hesitant fuzzy set [35]. If B = {〈 y, hB(y) = {1}〉| y∈Y}, then the hesitant fuzzy set B is called the full
hesitant fuzzy set [35]. Similarly, if hB(y) = {0}, the hesitant fuzzy element hB(y) is called a hesitant empty
element [37]. If hB(y) = {1}, the hesitant fuzzy element hB(y) is called a hesitant full element [37].
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Let κ > 0, and let h1, h2, h3 be three HFEs. Then, the following operations of HFEs are defined [36]:

h1 ∪ h2 = ∪γ1∈h1,γ2∈h2max
{
γ1,γ2

}
; h1 ∩ h2 = ∪γ1∈h1,γ2∈h2min

{
γ1,γ2

}
; h1 ⊗ h2 = ∪γ1∈h1,γ2∈h2

{
γ1γ2

}
;

h1 ⊕ h2 = ∪γ1∈h1,γ2∈h2

{
γ1 + γ2 − γ1γ2

}
;κh = ∪γ∈h

{
1− (1− γ)κ

}
; hκ = ∪γ∈h

{
γκ

}
; hc = ∪γ∈h

{
1− γ

}
.

3. A Novel Score Function

Ranking fuzzy information plays a critical role in decision-making problems involving imprecise
information; existing ranking methods were introduced based on score functions, which map fuzzy
information into the real numbers. First, several existing score functions for HFEs are reviewed. Then,
a novel score function is proposed.

Definition 2 [36]. Let an HFE be denoted by h =
〈
γ1,γ2, . . . ,γl(h)

〉
, S(h) =

∑l(h)
τ=1 γτ/l(h) is called the score

function, where l(h) is the number of elements in the HFE. For two HFEs h1 and h2, if S(h1) > S(h2), then
h1 � h2, i.e., h1 is superior to h2. If S(h1) = S(h2), then h1 ∼ h2, i.e., h1 is indifferent to h2.

An interesting observation is that h1 ∼ h2 is not reasonable in some cases when S(h1) = S(h2), since
S(h) is the average value of all elements in h.

Definition 3 [38]. Let h =
〈
γ1,γ2, . . . ,γl(h)

〉
be an HFE, where l(h) is the number of elements in h. A score

function is
S′ (h) =

∑
l(h)
τ=1β(τ)γτ/

∑
l(h)
τ=1β(τ)

where β(τ) (τ = 1, 2, . . . , l(h)) is increasing with τ and β(τ) > 0. For two HFEs h1 and h2, if S
′

(h1) > S
′

(h2),
then h1 � h2, which means that h1 is superior to h2. If S

′

(h1) = S
′

(h2), then h1 ∼ h2, which means that h1 is
indifferent to h2.

From Definition 3, it follows that a higher element in h has a greater weight value β(τ). For instance,
β(τ) =τ/[10 l(h)], so DMs not only overweight small probabilities but also underweight moderate
to large probabilities. Thus, a novel score function is proposed by using the probability weighting
function shown in Equation (2).

Definition 4. Let h =
〈
γ1,γ2, . . . ,γl(h)

〉
be an HFE, where l(h) is the number of elements in h. A score function

is defined as follows:
S′′ (h) =

∑
l(h)
τ=1ϕ(β(τ))γτ/

∑
l(h)
τ=1ϕ(β(τ))

where ϕ(β(τ)) = βr(τ)/[βr(τ) + (1− β(τ))r]
1/r, β(τ) (τ = 1, 2, . . . , l(h)) is increasing with τ and β(τ) > 0.

From Definition 4, it follows that the comparison laws are as follows.

Definition 5. For two HFEs h1 and h2, if S”(h1) > S”(h2), then h1 � h2, i.e., h1 is superior to h2. If S”(h1) =

S”(h2), then h1 ∼ h2, i.e., h1 is indifferent to h2.

Proposition 1. The score function S”(h) lies in [0, 1] for any HFE h.

Proof. Let h =
{
γ1,γ2, . . . ,γl(h)

}
, γ∗ = max

{
γτ

∣∣∣τ = 1, 2, . . . , l(h)
}

and γ̂ = min
{
γτ

∣∣∣τ = 1, 2, . . . , l(h)
}
;

since γτ ∈[0, 1] for τ = 1, 2, . . . , l(h),∑l(h)
τ=1 ϕ(β(τ))γτ∑l(h)
τ=1 ϕ(β(τ))

≤

∑l(h)
τ=1 ϕ(β(τ))γ

∗∑l(h)
τ=1 ϕ(β(τ))

= γ∗ ≤ 1;
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and ∑l(h)
τ=1 ϕ(β(τ))γτ∑l(h)
τ=1 ϕ(β(τ))

≥

∑l(h)
τ=1 ϕ(β(τ))γ̂∑l(h)
τ=1 ϕ(β(τ))

= γ̂ ≥ 0.

Obviously, 0 ≤ S”(h) ≤ 1, i.e., S”(h)∈[0, 1]. �

Example 1. Let h1 = {0.3, 0.5}, h2 = {0.4}, and h1 = {0.2, 0.4, 0.6} be three HFEs. It follows from Definition 2
that S(h1) = S(h2) = S(h3) = 0.4, which means h1 ∼ h2 ∼ h3. By applying Definition 3, we can obtain S

′

(h1) =

0.383, S
′

(h2) = 0.4, and S
′

(h3) = 0.467, which means h1 ≺ h2 ≺ h3. By applying the proposed score function, we
have S”(h1) = 0.1719, S”(h2) = 0.4, and S”(h3) = 0.1837, which means h1 ≺ h3 ≺ h2.

In Example 1, the ranking order of HFEs derived from Definition 4 is not consistent with those
obtained by Definitions 2 and 3, since Definition 2 only considers the average value of all elements
in the HFEs, while Definition 3 ignores the nonrational behavior of DMs. The novel score function
proposed in this paper considers the nonrational behavior of DMs, where DMs not only overweight
small probabilities but also underweight moderate to large probabilities. This implies that the ranking
order derived from Definition 4 is more consistent with human behavior.

4. The Evidential Prospect Theory Framework

4.1. Evidential Decision-Making Problems

Let A denote a decision matrix, the factors of which consist of finite alternatives Ai and finite
criteria Cj, where i = 1, 2, 3, . . . , t and j = 1, 2, 3, . . . , n.

C1 · · · Cn

A =

A1
...

At


x11 · · · x1n

...
. . .

...
xt1 · · · xtn


xij is used to measure the rating of the alternative Ai based on the criterion Cj. w = (w1, w2, . . . , wn)

is a weight vector on the criteria satisfying
∑n

j=1 w j = 1 and 0 ≤ w j ≤ 1.
To compare these alternatives, a group of linguistic terms is defined, including seven assessment

grades ranging from “very poor” to “very good”. These are shown in Table 1.

Table 1. Linguistic terms.

Assessment Grade VP P MP M MG G VG

Numerical rating 1 2 3 4 5 6 7
Description Very poor Poor Medium poor Medium Medium good Good Very good

Multiple domain experts produce estimates of each criterion for each alternative, which are
characterized by belief structures. Let a belief structure mk

i j(B
k
i j) proposed by expert k be the evaluation

value with respect to criterion Cj for alternative Ai, where the focal element Bk
i j given by expert k is a

set of linguistic terms with respect to Cj for Ai. Evaluation values of the criteria for all alternatives
given by all experts are shown in Table 2.

Now, the utility function for each linguistic term is defined; this is characterized by an HFS, as
shown in Table 3.
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Table 2. Evaluation values of criteria for alternatives.

Alternative Criterion Expert 1 . . . Expert k . . . Expert l

A1 C1 m1
11(B

1
11) . . . mk

11(B
k
11) . . . ml

11(B
l
11)

. . . . . . . . . . . . . . . . . .
Cj m1

1 j(B
1
1 j) . . . mk

1 j(B
k
1 j) . . . ml

1 j(B
l
1 j)

. . . . . . . . . . . . . . . . . .
Cn m1

1n(B
1
1n) . . . mk

1n(B
k
1n) . . . ml

1n(B
l
1n)

: : : : : : :
Ai C1 m1

i1(B
1
i1) . . . mk

i1(B
k
i1) . . . ml

i1(B
l
i1)

. . . . . . . . . . . . . . . . . .
Cj m1

i j(B
1
i j) . . . mk

i j(B
k
i j) . . . ml

i j(B
l
i j)

. . . . . . . . . . . . . . . . . .
Cn m1

in(B
1
in) . . . mk

in(B
k
in) . . . ml

in(B
l
in)

: : : : : : :
At C1 m1

t1(B
1
t1) . . . mk

t1(B
k
t1) . . . ml

t1(B
l
t1)

. . . . . . . . . . . . . . . . . .
Cj m1

t j(B
1
t j) . . . mk

t j(B
k
t j) . . . ml

t j(B
l
t j)

. . . . . . . . . . . . . . . . . .
Cn m1

tn(B
1
tn) . . . mk

tn(B
k
tn) . . . ml

tn(B
l
tn)

Table 3. Utility functions on linguistic terms.

VP P MP M MG G VG

u
{
γ1, . . . ,γe

} {
γe+1, . . . ,γ f

} {
γ f+1, . . . ,γg

} {
γg+1, . . . ,γh

} {
γh+1, . . . ,γw

} {
γw+1, . . . ,γy

} {
γy+1, . . . ,γz

}
4.2. Combining Belief structures

A weighted average method, introduced in Section 2, was adopted to calculate the final belief
structure. Specifically, the Jousselme distance between two belief structures mk

i j(B
k
i j) and mk

io(B
k
io) is

dJ(mk
i j(B

k
i j), mo

is(B
o
is)) =

√[∣∣∣∣∣∣∣∣∣∣mk
i j(B

k
i j)

∣∣∣∣∣∣∣∣∣∣2+∣∣∣∣∣∣∣∣∣∣mo
is(B

o
is)

∣∣∣∣∣∣∣∣∣∣2 − 2
〈
mk

i j(B
k
i j), mo

is(B
o
is)

〉]
/2 (3)

where ∣∣∣∣∣∣∣∣mk
i j(B

k
i j)

∣∣∣∣∣∣∣∣2 = 〈mk
i j(B

k
i j), mk

i j(B
k
i j)〉;

∣∣∣∣∣∣∣∣mo
is(B

o
is)

∣∣∣∣∣∣∣∣2 = 〈mo
is(B

o
is), mo

is(B
o
is)〉;

〈mk
i j(B

k
i j), mo

is(B
o
is)〉 =

∑27

j=1
∑27

s=1 mk
i j(B

k
i j)m

o
is(B

o
is)

∣∣∣∣Bk
i j∩Bo

is

∣∣∣∣∣∣∣∣Bk
i j∩Bo

is

∣∣∣∣
.

The similarity degree between mk
i j(B

k
i j) and mo

is(B
o
is) is given by

Sim(mk
i j(B

k
i j), mo

is(B
o
is)) = 1− dJ(mk

i j(B
k
i j), mo

is(B
o
is)). (4)

A larger similarity degree between mk
i j(B

k
i j) and mo

is(B
o
is) leads to a larger support degree. Note

that the support degree is a degree supported by other evidence, and the support degree is

Sup(mk
i j(B

k
i j)) =

l∑
o=1,o,k

Sim(mk
i j(B

k
i j), mo

is(B
o
is)). (5)

For a piece of evidence, the higher the support degree, the higher the credibility degree with
respect to it would be. The credibility degree for belief structure wk

i j(B
k
i j), also called the weighting

factor, is
wk

i j(B
k
i j) = Sup(mk

i j(B
k
i j))/

∑
l
k=1Sup(mk

i j(B
k
i j)). (6)
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Thus, the average belief structure can be obtained by

mi j(Bi j) =
∑

l
k=1wk

i j(Bi j)mk
i j(Bi j) (7)

where Bi j ⊆ Bk
i j.

The final belief structure combining m1
i j, m2

i j, . . . , ml
i j is

mi j = [· · · [m1
i j ⊕m2

i j] ⊕ · · · ⊕ml
i j] (8)

where mi j = m1
i j = m2

i j = · · · = ml
i j.

Since the weight vector of the criteria is w = (w1, w2, . . . , wn), the average belief structure for
alternative Ai is

mi(Bi j) =
∑

n
j=1w jmi j(Bi j). (9)

The final aggregated belief structure for each alternative can be calculated by

ma = [· · · [m1 ⊕m2] ⊕ · · · ⊕mn] (10)

where mi = m1 = m2 = · · · = mn.

4.3. Applying Prospect Theory

Before using prospect theory, according to Definition 4, the utility values with respect to the
assessment grades are defuzzified by applying the novel score function. Defuzzifying the utility value
on different linguistic terms is denoted by S(*), where * = {VP, P, MP, M, MG, G, VG}.

After combining belief structures and defuzzifying the utility values of the assessment grades,
we introduce prospect theory into the model. First, the associated parameters in prospect theory
are determined. As described in Section 2.2, the risk aversion coefficients are α = β = 0.88, the loss
aversion coefficient is λ = 2.25 and r = 0.65. The final aggregated belief structure is regarded as the
probability function. The next step is the selection of a reference point, which is very important in
MCDM based on prospect theory. Outcomes below (above) a reference point are regarded as losses
(gains). The linguistic term “M” is regarded as the reference point, since such an assessment grade
means that with probability 0.5 a criterion is good or bad.

The value function is calculated by

v(S(∗)) =

(S(∗) − S(M))0.88 S(∗) ≥ S(M)

−2.25(S(M) − S(∗))0.88 S(∗) < S(M)
. (11)

Then, the probability weighting function is

ϕ(ma
i (∗)) :=

[ma
i (∗)]

0.65

([ma
i (∗)]

0.65 + [1−ma
i (∗)]

0.65)
1/0.65

(12)

where ma
i (∗) is the final aggregated belief structure with respect to the assessment grade for alternative Ai

The expected prospect value of each alternative is

uEP
i =

∑
S(h(∗))ϕ(m

a
i (∗))vi(S(∗)). (13)

Obviously, a larger uEP
i leads to a better Ai. Thus, from the increasing order of uEP

i with respect to
the alternative Ai, the ranking order of all alternatives is shown. Suitable alternatives can be chosen
according to the ranking order.
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Here, a flow diagram with respect to the evidential prospect theory framework is shown in
Figure 1. Specifically, the flow of the evidential prospect theory framework consists of five steps,
i.e., decision-making analysis, evaluation of alternatives, fusion of evaluations, determination of
reference points, and making the decision based on prospect theory, respectively.Symmetry 2019, 11, x FOR PEER REVIEW 9 of 16 
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Step 1: The task of evaluating alternatives is translated to an MCDM. Firstly, the weights of the
criteria are defined. Then, for each criterion, the linguistic terms are presented.

Step 2: Evaluations of criteria for the alternatives are given by multiple domain experts.
The evaluation results with respect to each criterion are characterized as a belief structure.

Step 3: In the fusion of the multiple expert evaluations, the evaluations with respect to each
criterion for each alternative are combined according to the weighted average method, where the
weighting factor for each evaluation is given by Equation (6). The final aggregated evaluation values
for the alternatives are calculated by Equations (9) and (10).

Step 4: The HFEs are defuzzified and the reference points are determined.
Step 5: It follows from Equation (12) that the expected prospect value of each alternative will be

obtained. The ranking order is presented according to the expected prospect values. That is, the most
suitable alternative is chosen.

5. A Case Study

5.1. A Description of a Multiple-Criteria Decision-Making Problem

Owing to the extreme scarcity of regular fossil fuels in western China, there is a great demand for
renewable energy. Renewable energy has become an indispensable part of the accelerated development
of western China. A PTCSPP generates extensive power that makes it an exceptional choice for
western China [39]. A renewable energy company in Beijing made plans to invest in a project
involving a 50 MW PTCSPP in western China. Following the suggestions of the expert decision-making
committee, there are five potential alternatives—Xinjiang Hami, Qinghai Golmud, Tibet Shigatse,
Gansu Jiuquan, and Inner Mongolia Bayannur—which can be considered for the location of the
PTCSPP [39]. For simplicity, Xinjiang Hami, Qinghai Golmud, Tibet Shigatse, Gansu Jiuquan, and Inner
Mongolia Bayannur are labeled A1, A2, A3, A4, and A5, respectively. Since different choices might have
different benefits and different development prospects, a suitable choice must be made among the five
alternatives. To make the choice, we consider the performance of each city based on three different
criteria, i.e., status quo (C1), future development (C2), and benefits (C3). Because this company pays
more attention to potential development prospects, next to benefits, future development is the most
important factor for the company. To reflect the importance of these criteria, a weight vector w = (0.25,
0.40, 0.35) was given by the renewable energy company. To choose the most desirable alternative,
we introduced a group of linguistic terms, as shown in Table 1. The utilities of each linguistic term
were characterized as an HFS, as shown in Table 4.

Table 4. Utility functions on linguistic terms.

VP P MP M MG G VG

u {0.0,0.1} {0.2,0.3} {0.3,0.4} {0.5,0.6} {0.7,0.8} {0.8,0.9} {0.9,1.0}

5.2. Evaluations of Each Criterion for Each City

Experts gave their evaluations of each criterion for each city. The evaluation value for each
criterion for each city was characterized as a belief structure, as shown in Table 5. For example,
the belief structure ({MG}, 0.7; {G}, 0.3) reflects the evaluation of A1 given by Expert 1, wherein criterion
C3 for A1 is medium good at a probability of 0.7 and good at a probability of 0.3.
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Table 5. Evaluation values of criteria for alternatives.

City Criterion Expert 1 Expert 2 Expert 3 Expert 4 Expert 5

A1 C1 ({MG},1.0) ({MG},1.0) ({M},0.7;{MG},0.3) ({MG},0.2;{G},0.8) ({G},1.0)
C2 ({MG},0.8;{G},0.2) ({M},1.0) ({MG},0.5;{G},0.5) ({MG},1.0) ({MP},1.0)

C3 ({M},0.7;{MG},0.3) ({MG},1.0) ({MP},0.6;{
M,MG},0.4) ({P},1.0) ({M},0.9;{MG},0.1)

A2 C1 ({P},1.0) ({MP},1.0) ({M},1.0) ({MP},1.0) ({P},1.0)
C2 ({M},0.6;{ MG},0.4) ({M,MG},1.0) ({VG},1.0) ({M},1.0) ({M},1.0)
C3 ({VG},1.0) ({G},1.0) ({G},1.0) ({M},1.0) ({M},1.0)

A3 C1 ({M},0.3;{G},0.7) ({M},1.0) ({M},0.8;{MG},0.2) ({M},1.0) ({M},1.0)
C2 ({M,VG},1.0) ({M},1.0) ({M},0.2;{VG},0.8) ({M},1.0) ({MG, G },1.0)
C3 ({MG},0.2;{G},0.8) ({MG},1.0) ({MG},1.0) ({G},1.0) ({MG},1.0)

A4 C1 ({G},1.0) ({MG},1.0) ({MG},1.0) ({MG},1.0) ({MG},1.0)
C2 ({MP},0.2;{M,MG},0.8) ({G},1.0) ({MG},0.2;{G},0.8) ({MG,G},1.0) ({M.MG},1.0)
C3 ({G},1.0) ({MG},1.0) ({M},0.6;{ G},0.4) ({G},1.0) ({G},1.0)

A5 C1 ({M},1.0) ({MG},1.0) ({MG},0.5;{G},0.5) ({G},1.0) ({G},1.0)
C2 ({M},1.0) ({M},0.3;{MG},0.7) ({MG, G},1.0) ({M},1.0) ({M,MG},1.0)
C3 ({G},1.0) ({VG},1.0) ({MG},0.8;{G},0.2) ({G},1.0) ({G},1.0)

5.3. Fusion of Evaluations

First, we focused on the fusion of the multiple expert evaluations of each city. By using the
weighted average method, the evaluations were fused for each criterion, as shown in Table 6.

Table 6. Aggregation of the multiple experts’ evaluations of each criterion for each city.

City Criterion Final Belief Structure

A1 C1 ({MG}, 1.0000)
C2 ({MG}, 0.9968;{G},0.0032)
C3 ({MP}, 0.0008;{M}, 0.9095;{MG},0.0896;{G,MG}0.0001)

A2 C1 ({P}, 0.5000;{MP}, 0.5000)
C2 ({M},0.9975;{MG},0.0023;{M,MG}0.0002)
C3 ({M}, 0.5000;{G}, 0.5000)

A3 C1 ({M}, 1.0000)
C2 ({M}, 0.9958;{ VG}, 0.0038; {M, MG}, 0.0001;{M,VG}0.0003)
C3 ({MG}, 1.0000)

A4 C1 ({MG}, 1.0000)
C2 ({M,MG},0.0420;{MG},0.4845;{G},0.4791;{MG.G}0.0016)
C3 ({G}, 1.0000)

A5 C1 ({MG}, 0.0049; {G},0.9951)
C2 ({M}, 0.9458;{MG}, 0.0532,{M,MG},0.0010)
C3 ({G},1.0000)

For instance, evaluating city A2 with respect to criterion C2, the belief structures were

m1
22({M}) = 0.6, m1

22({MG}) = 0.4; m2
22({M, MG}) = 1.0;

m3
23({VG}) = 1.0; m4

22({M}) = 1.0; m5
22({M}) = 1.0

By Equations (3)–(8), the final belief structure was

m22({M}) = 0.9975, m22({MG}) = 0.0023, m22({M, MG}) = 0.0002.

Here, we note that others below 0.0001 were ignored since this is too small to impact on the final
result. The aggregation with respect to each criterion for each city is shown in Table 6.
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Then, we restricted ourselves to the fusion of multiple criteria. Evaluations of criteria for each city
were fused according to the weighted average method. For example, the different belief structures
with respect to each criterion for city A2 were

m21({P}) = 0.5000, m21({MP}) = 0.5000;
m22({M}) = 0.9975, m22({MG}) = 0.0023, m22({M, MG}) = 0.0002;
m23({M}) = 0.5000, m23({G}) = 0.5000.

The weighting factors of the different belief structures for city A2 were

w21 = 0.25, w22 = 0.40, w23 = 0.35.

By combining Equations (9) and (10), the final aggregated weighting factor of city A2 was
as follows:

m2({P}) = 0.0089; m2({MP}) = 0.1238; m2({M}) = 0.8673.

Similarly, the final aggregated weighting factors for other cities are given in Table 7.

Table 7. The final aggregated weighting factor for each city.

City Final Aggregated Evaluation

A1 ({M}, 0.2730; {MG}, 0.1909; {G}, 0.5361)
A2 ({P}, 0.0089; {MP}, 0.1238; {M}, 0.8673)
A3 ({M}, 0.9641; {MG}, 0.0359)
A4 ({M}, 0.0938; {MG}, 0.8727; {G}, 0.0335)
A5 ({M}, 0.4625; {MG}, 0.1685; {G}, 0.3690)

5.4. Decision-Making Based on Prospect Theory

First, we considered the decision matrix of the five cities and the defuzzified values based on the
novel score function, as shown in Table 8.

Table 8. Decision matrix of the different cities.

City Assessment Grade Weighting Factor Utility Value Defuzzified Value

A1

{M} 0.2730 {0.5, 0.6} 0.5595
{MG} 0.1909 {0.7, 0.8} 0.7595
{G} 0.5361 {0.8, 0.9} 0.8595

A2

{P} 0.0089 {0.2, 0.3} 0.2595
{MP} 0.1238 {0.3, 0.4} 0.3595
{M} 0.8673 {0.5, 0.6} 0.5595

A3
{M} 0.9641 {0.5, 0.6} 0.5595

{MG} 0.0359 {0.7, 0.8} 0.7595

A4

{M} 0.0938 {0.5, 0.6} 0.5595
{MG} 0.8727 {0.7, 0.8} 0.7595
{G} 0.0335 {0.8, 0.9} 0.8595

A5

{M} 0.4625 {0.5, 0.6} 0.5595
{MG} 0.1685 {0.7, 0.8} 0.7595
{G} 0.3690 {0.8, 0.9} 0.8595

Since the reference point has an important impact on decision-making, an appropriate reference
point has to be selected. The outcomes which are higher than that of the reference point are regarded
as gains; the outcomes below the reference point are regarded as losses. The linguistic term “M” was
regarded as the reference point, since the assessment grade “M” means that implementing the PTCSPP
project in a city has bright future prospects for development at a probability of 0.5 and bad prospects at
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a probability of 0.5. Then, using Equation (10) the utility of each assessment grade for each city was
calculated, as shown in Table 9.

Table 9. Prospect value of each assessment grade for cities.

City Assessment Grade Weighting Factor Gains or Losses Prospect Value

A1 {M} 0.2730 −0.2 −0.5459
{MG} 0.1909 0 0
{G} 0.5361 0.1 0.1318

A2 {P} 0.0089 −0.5 −1.2226
{MP} 0.1238 −0.4 −1.0046
{M} 0.8673 −0.2 −0.5459

A3 {M} 0.9641 −0.2 −0.5459
{MG} 0.0359 0 0

A4 {M} 0.0938 −0.2 −0.5459
{MG} 0.8727 0 0
{G} 0.0335 0.1 0.1318

A5 {M} 0.4625 −0.2 −0.5459
{MG} 0.1685 0 0
{G} 0.3690 0.1 0.1318

From Equations (12) and (13), it follows that

uEP
1 = −0.1075, uEP

2 = −0.6701, uEP
3 = −0.4659, uEP

4 = −0.0884, uEP
5 = −0.1823.

Thus, the ranking order of the five cities is uEP
4 � uEP

1 � uEP
5 � uEP

3 � uEP
2 , which means that city

A4 (i.e., Gansu Jiuquan) is the most desirable one.

5.5. Comparative Analysis and Discussion

Expected utility theory, as a normative theory, dominates the domain of decision-making. Thus,
based on expected utility theory, the expected value of each city is

uE
1 = 0.2730× 0.5595 + 0.1909× 0.7595 + 0.5361× 0.8595 = 0.7585,

uE
2 = 0.0089× 0.2595 + 0.1238× 0.3595 + 0.8673× 0.5595 = 0.5321,

uE
3 = 0.9641× 0.5595 + 0.0359× 0.7595 = 0.5667,

uE
4 = 0.0938× 0.5595 + 0.8727× 0.7595 + 0.0335× 0.8595 = 0.7441,

uE
5 = 0.4625× 0.5595 + 0.1685× 0.7595 + 0.3690× 0.8595 = 0.7039.

It is easy to see that the ranking order of these cities is uE
1 � uE

4 � uE
5 � uE

3 � uE
2 . Obviously, A1

(i.e., Xinjiang Hami) is the most desirable city here which would be chosen to build a new manufactory.
To provide a better view of the comparison results, the ranking orders of these cities are shown in

Figure 2.
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From Figure 2, it is clear that the ranking orders of these cities obtained by these two approaches
are remarkably different. The most desirable recommended city is A4 (i.e., Gansu Jiuquan) based on
the evidential prospect theory framework, while city A1 (i.e., Xinjiang Hami) is the most desirable one
based on expected utility theory. The main reason for this is that the result based on the evidential
prospect theory framework is more in line with the actual experience of decision-makers, while
the result based on expected utility theory fails to take into account DMs’ nonrational behavior. In
summary, compared with these two approaches, the evidential prospect theory framework can obtain
a better final decision result because it effectively captures DMs’ nonrational behavior.

6. Conclusions

Uncertain information and DMs’ nonrational behavior have received extensive attention in MCDM
problems. In this paper, the evidential prospect theory framework was proposed to address MCDM
problems involving hesitant and probabilistic information and nonrational behavior simultaneously.
Within the proposed framework, belief structures are applied to characterize the subjective evaluations
by experts of criteria for alternatives. Belief structures are fused by using a weighted average method
such that the final aggregated weighting factor is determined. By combining prospect theory with
belief structures, the ranking order of alternatives is determined, which can identify the most desirable
alternative. The evidential prospect theory framework provides a simple and general method for MCDM
problems involving hesitant and probabilistic information and nonrational behavior simultaneously.
The evidential prospect theory framework proposed in this paper has two advantages: First, it makes
use of evidence theory to model the various types of uncertainty in the decision-making process. Here,
belief structures are applied to characterize experts’ subjective assessments of criteria for alternatives,
which involve hesitant and probabilistic information simultaneously. Second, the application of
prospect theory takes into account DMs’ nonrational behavior in the MCDM problems, so the
decision-making results are more reasonable.

Although the evidential prospect theory framework proposed in this paper can address MCDM
problems involving hesitant and probabilistic information and nonrational behavior simultaneously,
the proposed framework still has its limitations. In particular, the evidential prospect theory framework
was proposed under the assumption that the behaviors of DMs are not influenced by others. It is very
likely that this assumption is violated, since it is inevitable that each person may be influenced by
others’ behaviors in the real world. Thus, solving the interaction between decision-makers in MCDM
problems will be a valuable future research topic.
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