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Abstract: We derive asymptotic results for the Gegenbauer functions Cα
λ(z) and Dα

λ(z) of the first
and second kind for complex z and the degree |λ|→ ∞, apply the results to the case z ∈ (−1, 1),
and establish the connection of these results to asymptotic Bessel-function approximations of the
functions for z→ ±1.
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1. Introduction

The Gegenbauer functions Cα
λ(z) and Dα

λ(z) of the first and second kinds,

Cα
λ(z) = Γ(λ+2α)

Γ(λ+1)Γ(2α) 2F1

(
−λ, λ + 2α; α + 1

2 ; 1−z
2

)
, (1)

Dα
λ(z) = eiπα (2(z− 1))−λ−2α Γ(λ+2α)

Γ(λ+α+1)Γ(α) 2F1

(
λ + 2α, λ + α + 1

2 ; 2λ + 2α + 1; 2
1−z

)
, (2)

appear frequently in physical problems that involve hyperspherical or hyperbolic geometry. A number
of results are known for the asymptotic behavior of these functions for the degree |λ| → ∞ with z
complex ([1], Section 2.3.2 (17)), ([2], Section 6), ([3], Appendix), ([4], Section 2.3 (1)), ([5], Section 14).
However, as usually stated, the simple results presented here in Theorems 1 and 2 exclude the
important cases with z real, −1 < z < 1 and 1 < z < ∞, and exclude the limits z → ±1. These
cases have been of interest in recent problems, for example, in [4] (Private communication from
Dr. Howard Cohl).

In the present work, we sketch the derivation of these results and show that they can be extended
to include the cases usually excluded. We show also that the results connect smoothly for |λ| large and
|1± z| small to asymptotic expansions for Cα

λ(z) and Dα
λ(z) in terms of Bessel functions, Theorems 3

and 4. Those expansions include the limits z → ±1. In particular, corresponding expressions in
Theorems 1 and 2 and Theorems 3 and 4 agree in their common ranges of validity where the quantities
|
√

z± 1| are much larger than 1/|λ| but much smaller than 1/|λ|1/3, 1/|λ| � |
√

z± 1| � 1/|λ|1/3.

2. Asymptotic Results for Cα
λ(z) and Dα

λ(z)

Theorem 1. Let z ∈ C and define z± = z ±
√

z2 − 1 with −π ≤ arg(z ± 1) ≤ π. Then for <λ ≥ 0 ,
<α > 0, −π/2 ≤ argλ ≤ π/2, and |λ| → ∞,

Dα
λ(z) = eiπα 2−α

Γ(α)λα−1(z2 − 1)−α/2z−λ−α
+ [1 +O(1/|λ|)] , (3)
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Cα
λ(z) = 2−α

Γ(α)λα−1(z2 − 1)−α/2
(

eiπαz−λ−α
+ + z−λ−α

−

)
[1 +O(1/|λ|)] . (4)

Theorem 2. For z = x real with x ∈ (−1, 1), define x = cos θ, 0 < θ < π. Then for |λ| → ∞ with <λ ≥ 0,
<α > 0, −π/2 ≤ argλ ≤ π/2, and

√
1− x2 = sin θ � 1/|λ|, the Gegenbauer functions Dα

λ(cos θ) and
Cα

λ(cos θ) = Cα
λ(cos θ) “on the cut” (−1, 1) ([6], 7, 8) have the limiting behavior

Dα
λ(cos θ) = − 2−α+1

Γ(α) λα−1(sin θ)−α sin ((λ + α)θ − πα/2) [1 +O(1/|λ|)] , (5)

Cα
λ(cos θ) = 2−α+1

Γ(α) λα−1(sin θ)−α cos ((λ + α)θ − πα/2) [1 +O(1/|λ|)] . (6)

These functions are proportional to the Ferrers functions of ([5], Section 14.23).

Theorem 3. For z complex with z ≈ 1, define Z =
√

2(λ + α)2(1− z) and Z′ =
√

2(λ + α)2(z− 1).
Then for <(λ + α) ≥ 0, <α ≥ − 1

2 , |
√

z− 1| � 1/|λ|1/3, and |λ| → ∞,

Dα
λ(z) = 1√

π
eiπα 1

Γ(α)2−α+ 1
2 (λ + α)α− 1

2 (z2 − 1)−
α
2 +

1
4 Kα− 1

2
(Z′)

[
1 +O

(
1/|λ|2/3

)]
, (7)

Cα
λ(z) =

√
π

Γ(α)2−2α+1(λ + α)2α−1
(

Z
2

)−α+ 1
2 Jα− 1

2
(Z)

[
1 +O

(
1/|λ|2/3

)]
. (8)

For x = cos θ ∈ (−1, 1), θ ≈ 0, X =
√

2(λ + α)2(1− x), and |λ| → ∞,

Dα
λ(x) = −

√
π

Γ(α)2−α+ 1
2 (λ + α)α− 1

2 (1− x2)−α/2+ 1
4 Yα− 1

2
(X)

[
1 +O

(
1/|λ|2/3

)]
, (9)

Cα
λ(x) =

√
π

Γ(α)2−α+ 1
2 (λ + α)α− 1

2 (1− x2)−α/2+ 1
4 Jα− 1

2
(X)

[
1 +O

(
1/|λ|2/3

)]
. (10)

The results in Theorems 2 and 3 match in their common range of validity, 1/|λ| � |
√

z− 1| � 1/|λ|1/3.

Theorem 4. For z complex with z ≈ −1, define Z′′ =
√

2(λ + α)2(1 + z). Then for <(λ + α) ≥ 0,
<α ≥ − 1

2 , |
√

z + 1| � 1/|λ|1/3, and |λ| → ∞,

Dα
λ(z) = eiπα2−α(λ + α)α−1 (2(1 + z))−α 1

Γ(α)

√
π

sin π(α− 1
2 )

(
Z′′
2

) 1
2

×e∓iπ(λ+2α)
[
−Jα− 1

2
(Z′′) + e±iπ(α− 1

2 ) J−α+ 1
2
(Z′′)

] [
1 +O

(
1/|λ|2/3

)]
, (11)

where the + and − signs hold for z on the upper (lower) sides of the cut in (z− 1)α− 1
2 .

For x = cos θ ∈ (−1, 1) with π − θ � 1/|λ|1/3 and |λ| → ∞,

Dα
λ(x) ∼

√
π

Γ(α)

(
λ+α

2

)α−1
(2(1 + x))−α

(
X′′
2

) 1
2
[
− sin πλJα− 1

2
(X′′) + cos πλYα− 1

2
(X′′)

]
, (12)

Cα
λ(x) ∼

√
π

Γ(α)

(
λ+α

2

)α−1
(2(1 + x))−α

(
X′′
2

) 1
2
[
cos πλJα− 1

2
(X′′) + sin πλYα− 1

2
(X′′)

]
, (13)

where X′′ =
√

2(λ + α)2(1 + x), with uncertainties of relative order 1/|λ|2/3. The results in Theorems 2 and
4 match for 1/|λ| � |

√
1 + z| � 1/|λ|1/3.

Derivation of Theorem 1:

Start with the following integral representation for Dα
λ(z) for z ∈ C ([2], Section 1 (5)):

Dα
λ(x) =

1
2πi

e2πiα
∫
C+

dt t−λ−1(t− z+)−α(t− z−)−α, <λ ≥ 0, <(λ + 2α) > 0, (14)
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where the integration contour C+ in the t plane runs from +∞, around the point z+ in the positive
sense, and back to +∞, C+ = (∞, z++, ∞). The factors (t− z±)−α are taken as cut in the t plane from
z± to ∞ along the directions defined by the lines from t = 0 to t = z±. The phases of the factors t− z±
are defined as zero on the upper sides of the cuts for =z > 0, and elsewhere by continuation in z.

The function Cα
λ(z) has a similar integral representation ([2], Section 1 (3)):

Cα
λ(z) =

1
2πi

e2πiα
∫
C

dt t−λ−1(t− z+)−α(t− z−)−α, <λ ≥ 0, <(λ + 2α) > 0, (15)

where the contour C = (−∞− iε, 0+,−∞ + iε) runs around the negative t axis in the positive sense.
In this representation the phases of the factors (t− z±)−α are defined separately for =z ≷ 0, with,
in both cases, the factors cut in the t plane as above from t = z± to ∞, 0 < arg(t − z±) < 2π.
See ([2], Section 1 (3)) or ([1], Section 3.15.2 (2)).

In these expressions, z± = z ±
√

z2 − 1 with
√

z2 − 1 cut in the z plane from z = 1 to −∞,
−π < argz < π. For z in the upper (lower) half plane, z+ is in the upper (lower) half plane outside the
unit circle, while z− = 1/z+ is in the lower (upper) half plane inside the unit circle. For z ∈ (−1, 1),
z± lie on the unit circle. The singularities at z± pinch the contour C+ for z→ ±1, so Dα

λ(z) has branch
points at±1 and can be taken as cut from±1 to−∞. Similarly, the singularities at z± pinch the contour
C for z→ −1, so Cα

λ(z) has a branch point there and can be taken as cut from −1 to −∞.
In treating the asymptotic properties of Cα

λ(z) and Dα
λ(z) in λ, we will take <α > 0 and <λ ≥ 0.

The integrands in Equations (14) and (15) are then singular at t = 0, z+, and z− and smaller in
magnitude between, and vanish for |t| → ∞, so there will be saddle points in the region of the
singularities. If the contours C+ or C can be distorted to run through the saddle points in the directions
in which the integrands decrease most rapidly, the method of steepest descents provides an estimate
of the integrals. This is valid provided the integrands are small on the remainder of the contour and
decrease rapidly for |t| → ∞.

To determine the location of the saddle points, write the integrands in Equations (15) and (14) as
eΦ(t), with

Φ(t) = −(λ + 1) ln t− α ln (t− z+)− α ln (t− z−), (16)

and require that dΦ/dt vanish as required for a stationary point. This gives the condition

λ + 1
t

+
α

t− z+
+

α

t− z−
= 0. (17)

For |λ| large, the solutions must be close to z+ or z−. If those points are well separated,
the solutions to order 1/|λ| are

t+ = z+

(
1− α

λ + 1

)
+O

(
α2

(λ + 1)2

)
, and t− = z−

(
1− α

λ + 1

)
+O

(
α2

(λ + 1)2

)
. (18)

In general,

t± =
1 + α′

1 + 2α′

[
z±

√
z2 − 1 + (α′/(1 + α′))2

]
, α′ =

α

λ + 1
, (19)

so there are only the two saddle points t±.
Next, expand the exponent function Φ(t) in a Taylor series around the saddle points. To second

order, for |λ| large,

Φ(t) ≈ Φ(t±) +
λ2

αz2
±
(t− t±)2 (20)
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near t±. This gives the approximation

1
2πi

e2πiα
[

z+

(
1− α

λ + 1

)]−λ−1 (
eiπ α

λ + 1
z+

)−α

(z+ − z−)
−α
∫
C+

dt e
1
2

λ2

αz2
+
(t−t+)2+···

(21)

for the integral in the neighborhood of the saddle point at t+. The factors eiπα (α/(λ + 1)) z+ and
(z+− z−)−α in this expression arise from the factors (t+− z+)α and (t+− z−)−α in the limit of large |λ|.
A similar result holds near t− with a different phase, (t− − z+)−α = e−iπα(z+ − z−)−α[1 +O(1/|λ|].

The coefficient of (t− t+)2 in the exponential in the last factor in Equation (21) has phase e2iϑ+ ,
where

ϑ+ = arg λ− arg z+ −
1
2

arg α (22)

with −π/2 ≤ arg λ ≤ π/2, −π < arg z+ < π, and −π/2 < arg α < π/2. With these ranges, the
contour C+ can be distorted to run through the saddle point in the direction with arg(t− t+) = π

2 − ϑ+.
The exponent is then real and negative, and the integration proceeds in the direction of steepest descent
away from the saddle.

The convergence of the integral away from the saddle point is rapid for |λ2/αz2
+| � 1. Since the

exact integrand remains small on C+ away from the saddle point, we can extend the integration on t to
±∞ without changing the integral significantly. The result of the remaining Gaussian integral is just a

factor i
√

2παz2
+/λ2, where the factor e−iϑ+ from dt has been absorbed. Thus, taking |λ| large,

Dα
λ(z) = 2−α

(
eαα−α+1/2/

√
2π
)

λα−1(z2 − 1)−α/2eiπαz−λ−α
+ [1 +O(1/|λ|)] . (23)

The factor in parentheses is just Stirling’s approximation for 1/Γ(α), a known factor, in Dα
λ(z), so

Dα
λ(z) = 2−α

Γ(α)λα−1(z2 − 1)−α/2eiπαz−λ−α
+ [1 +O(1/|λ|)] , |λ| → ∞, (24)

<λ ≥ 0, <α > 0, −π/2 ≤ argλ ≤ π/2, 0 ≤ arg(z± 1) ≤ π,

in agreement with Equations (6.3) and (A5) in [2], but without the restriction on λ noted there.
This result holds in the complex z plane cut from z = 1 to −∞.

In the case of Cα
λ(z), we must distinguish the cases =z > 0 and =z < 0. For =z > 0, the integral

on the contour C+ reproduces the result for Dα
λ(z) in Equation (24). The integral on the C− contour

gives a similar result, with the replacement of z+ by z− and an extra factor e−iπα from the phase of the
factor (t− − z+)−α = e−iπα(z+ − z−)−α (1 +O(1/λ)) in the integrand.

For =z < 0, (t+ − z−)−α → e−2πiα(z+ − z−)−α for |λ| large, and the factor eiπα in Equation (24)
from the C+ contour is replaced by e−iπα. The contribution from C− is unchanged.

Combining the results for the C+ and C− integrations, we find that

Cα
λ(z) = 2−α

Γ(α)λα−1(z2 − 1)−α/2
(

e±iπαz−λ−α
+ + z−λ−α

−

)
[1 +O(1/|λ|)] (25)

= 2−α

Γ(α)λα−1(z2 − 1)−α/2
(

e±iπαz−λ−α
+ + zλ+α

+

)
[1 +O(1/|λ|)] , =z ≷ 0,

|λ| → ∞, <λ ≥ 0, <α > 0, −π/2 ≤ argλ ≤ π/2, 0 ≤ arg(z± 1) ≤ π.
(26)

This agrees with Equation (A8) in [2] and with Watson’s result for Cα
λ(z), ([1], Section 2.3.2 (17)).

The earlier results for Cα
λ(x) and Dα

λ(x) were derived for |λ| → ∞ along rays in the right-half t
plane with |=λ| → ∞, 0 < |argλ| < π/2. The restrictions are not necessary, and the results continue
to hold for argλ = 0 and |argλ| = π/2.

The result for Cα
λ(z) must be interpreted with care. Since |z+| > 1 and |z−| = 1/|z+| < 1 for

z 6∈ (−1, 1), one of the two terms in Equation (26) usually becomes exponentially small relative to the
other for |λ| → ∞ and should be dropped relative to the uncertainties of O(1/|λ|) in the dominant
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term. Thus, for <λ → ∞ with =λ fixed, <z > 1, and =z → 0 from either above or below, the first,
discontinuous, term in Equation (26) becomes exponentially small and should be dropped relative
to the second. In fact, for |=z| → 0, the saddle point at z+ lies inside the contour for the z− integral,
is inaccessible and does not contribute to the final result. The asymptotic estimate for Cα

λ(z) is therefore
continuous across the real axis as it should be.

This completes the derivation of the results in Theorem 3.

Derivation of Theorem 2:

The functions Dα
λ(x) and Cα

λ(x) “on the cut”, x ∈ (−1, 1), can be defined in terms of Dα
λ(z) for the

z complex by [6]

Dα
λ(x) = −ie−iπα

(
eiπαDα

λ(x + i0)− e−iπαDα
λ(x− i0)

)
, (27)

Cα
λ(x) = e−iπα

(
eiπαDα

λ(x + i0) + e−πiαDα
λ(x− i0)

)
(28)

= Cα
λ(x± i0). (29)

For z ∈ (−1, 1), take z = cos θ, 0 < θ < π. Then z± = e±iθ and
√

z2 − 1 = e±iπ/2 sin θ for =z ≷ 0,
and Equations (24) and (26) give

Dα
λ(cos θ) = i 2−α

Γ(α)λα−1(sin θ)−α
(
−e−i(λ+α)θ+iπα/2 + ei(λ+α)θ−iπα/2

)
[1 +O(1/|λ|)]

= − 2−α+1

Γ(α) λα−1(sin θ)−α sin ((λ + α)θ − πα/2) [1 +O(1/|λ|)]
(30)

Cα
λ(cos θ) = 2−α

Γ(α)λα−1(sin θ)−α
(

eiπα/2e−i(λ+α)θ + e−iπα/2ei(λ+α)θ
)
[1 +O(1/|λ|)]

= 2−α+1

Γ(α) λα−1(sin θ)−α cos ((λ + α)θ − πα/2) [1 +O(1/|λ|)] .
(31)

A question now is how large |λ|must actually be for this behavior to hold. It follows from the
expressions for t± in Equation (19) that the asymptotic limit for the saddle points that used in the
calculations requires that

√
z2 − 1� α′ ≈ α/λ. Furthermore, the points t± or z± must be separated

widely enough that the integration over one saddle is not influenced by the presence of the second.
The convergence of the saddle point integrals is determined by the coefficient in the exponential

in the integral in Equation (21). Convergence on the right scale requires that the distance between the
points be much larger than the sum of the distances over which the saddle point integrations converge,

given by the scale factors
√
|2αz2

±/λ2| in the Gaussian integrands. This gives the condition

|z+ − z−| = 2 sin θ �
√
|2αz2

+/λ2|+
√
|2αz2

−/λ2| = 2
√
|2α/λ2| (32)

for z ∈ (−1, 1), so requires that
|λ| �

∣∣∣√α
/√

z2 − 1
∣∣∣ . (33)

This is the same as the condition used in the derivation of t± given above up to a factor
√

α.
For fixed large |λ|, Equation (33) bounds |z2 − 1| away from 1. The saddle points t± merge for

θ → 0 (z→ 1) and cannot be treated as independent in the steepest-descent calculations which lead
to the results above. For z → 1, the saddle points coalesce into a single saddle between t = 0 and
t = 1, and an integration as in Equation (21) with α → 2α reproduces the correct asymptotic limit
Cα

λ(1) ∼ λ2α−1/Γ(2α). For z → −1, the points z± pinch the contour C, and the result is singular,
Cα

λ(z) ∝ ((z + 1)/2)−α+1/2.
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Derivation of Theorem 3:

To treat the limit z → 1, we use a different technique developed in ([7], Sections IIA and IIB).
We start with the standard hypergeometric expression for Cα

λ(z) in Equation (1) written in a more
useful form,

Cα
λ(z) = Γ(λ+2α)

Γ(λ+1)Γ(2α)

(
1+z

2

)−α+ 1
2

2F1

(
λ + α + 1

2 ,−λ− α + 1
2 ; α + 1

2 ; 1−z
2

)
. (34)

We next introduce the Barnes-type representation ([1], Section 2.3.3 (15)) for the type of
hypergeometric function that appears in Equation (34) and will be encountered again in Equation (56),

2F1

(
b + 1

2 ,−b + 1
2 ; ν + 1; u

2

)
= Γ(ν + 1) 1

2πi
∫
CB

ds Γ(b+ 1
2+s)Γ(−b+ 1

2+s)
Γ(b+ 1

2 )Γ(−b+ 1
2 )

× Γ(−s)
Γ(ν+1+s)

(
− u

2
)s .

(35)

The contour CB in the Barnes’ representation initially runs from−i∞ to +i∞ in the s plane, staying
to the right of the poles of the factors Γ(b + 1

2 + s) and Γ(−b + 1
2 + s) in the integrand, and to the left

of the poles of Γ(−s), but it can be deformed to run around the positive real axis, CB = (∞, 0−, ∞)

with the same restrictions.
Expanding the ratios of b-dependent gamma functions in the first line of Equation (35) in inverse

powers of b, assumed large, using Stirling’s approximation for the gamma function, and writing the
powers of s that appear in terms of combinations of the form 1 · s(s− 1) · · · (s− k) gives a series

2F1

(
b + 1

2 ,−b + 1
2 ; ν + 1; u

2

)
= Γ(ν + 1) 1

2πi
∫
CB

ds Γ(−s)
Γ(ν+1+s)

(
U2

4

)s

×
{

1− 1
b2

(
s
4 + s(s− 1) + 1

3 s(s− 1)(s− 2)
)

+O
(

1
b4

)} (36)

where U =
√

2b2u.
With the choice of the deformed contour CB above, the integrals that remain in Equation (36), are

expressible in terms of Bessel functions through a Barnes’ representation for the latter which uses the
same contour CB, (

U
2

)−ν

Jν(U) =
1

2πi

∫
CB

ds
Γ(−s)

Γ(ν + s + 1)

(
U2

4

)s

. (37)

The first term in the series in Equation (36) gives (U/2)−ν Jν(U). After combining the factors
s(s− 1) · · · (s− k), k = 0, 1, · · · , with Γ(−s) to get (−1)k+1Γ(−s + k + 1), we can shift the contour
of integration to the right to run just to the left of the pole at s = k + 1. The replacement of s by
s′ = s− k− 1 then gives

1
2πi
∫
CB

ds s(s− 1) · · · (s− k) Γ(−s)
Γ(s+ν+1)

(
U
2

)s

= (−1)k+1

2πi
∫
C ′B

ds′ Γ(−s′)
Γ(s′+ν+k+2)

(
U2

4

)s′+k+1
= (−1)k+1

(
U
2

)−ν+k+1
Jν+k+1(U)

(38)

for the following terms, with k = 0, 1, · · · .
The use of Stirling’s approximation, itself only an asymptotic expansion, is not justified on the

entire integration contour, and the result from Equation (36) gives only an asymptotic series for the
hypergeometric function,

2F1

(
b + 1

2 ,−b + 1
2 ; ν + 1; u

2

)
= Γ(ν + 1)

(
U
2

)−ν {
Jν(U) + 1

b2

[
1
4

U
2 Jν+1(U)

−
(

U
2

)2
Jν+2(U) + 1

3

(
U
2

)3
Jν+3(U)

]
+O

(
1
b4

)}
.

(39)
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The use of this expression in Equation (36) with b = λ + α and ν = α− 1
2 gives an asymptotic

series for Cα
λ(z) in powers of 1/(λ + α)2. With Z =

√
2(λ + α)2(1− z),

Cα
λ(z) =

Γ(λ+2α)Γ(α+ 1
2 )

Γ(λ+1)Γ(2α)

(
1+z

2

)−α+ 1
2
(

Z
2

)−α+ 1
2

{
Jα− 1

2
(Z)

+ 1
(λ+α)2

[
1
4

Z
2 Jα+ 1

2
(Z)−

(
Z
2

)2
Jα+ 3

2
(Z) + 1

3

(
Z
2

)3
Jα+ 5

2
(Z)
]
+O

(
1

(λ+α)4

)} (40)

for λ + α large and Z fixed. This series is useful more generally for |λ + α| � 1 and |1− z| � 1.
We can obtain a closely-related series using the same technique starting with Equation (34)

and expanding in terms of the parameter λ(λ + 2α) = (λ + α)2 − 1
4 . This approach was used in

([7], Section IIA) in our treatment of Bessel-function expansions for the associated Legendre functions
P−µ

j (z). The result is

Cα
λ(z) =

Γ(λ+2α)Γ(α+ 1
2 )

Γ(λ+1)Γ(2α)

(
Y
2

)−α+ 1
2
{

Jα− 1
2
(Y)

+ 1
λ(λ+2α)

[
− 2α+1

2

(
Y
2

)2
Jα+ 3

2
(Y) + 1

3

(
Y
2

)3
Jα+ 5

2
(Y)
]

+O
(

1
(λ(λ+2α)2

)} (41)

where Y =
√

2λ(λ + 2α)(1− z).
The series in Equation (40), here obtained directly, is equivalent to that obtained by expanding

the powers of λ(λ + 2α) in the coefficients and the argument of the Bessel functions in Equation (41)

in terms of the simpler variable (λ + α)2, and the prefactor ((1 + z)/2)−α+ 1
2 in powers of (1− z).

The difference in the leading terms is unimportant for |λ| � 1 and |1− z| � 1.
To connect this result to the asymptotic expression for Cα

λ(z) in Equation (31) for |λ| � 1,
we consider the case in which only the leading term in the asymptotic series in Equation (40) is
important. The result in Equation (31) is valid for

√
|1− z| � 1/|λ|, which requires that Z � 1.

Despite the appearance of powers of Z in the correction terms, this is allowed provided that the
corrections to the leading term are small. The Bessel functions are all of the same general magnitude
for Z large, so the term in Z3 in the second term in the series is dominant for Z � 1, and the condition
for the |1/(λ + α)2| correction to the leading term to be small is∣∣∣∣∣ 1

(λ + α)2

(
Z
2

)3
∣∣∣∣∣ = |λ + α|

∣∣∣∣1− z
2

∣∣∣∣3/2
� 1. (42)

Under this condition, the following terms in the series in Equation (40) are also initially small.
For z = cos θ on −1 < z < 1, this requires that θ be small, with θ � 2/(λ + α)

1
3 . In the limit of

large Z, Hankel’s expansion for the Bessel functions ([5], Section 10.17(i)) gives

Jν(Z) =
√

2
πZ

{
cos

(
Z−

(
ν + 1

2

)
π
2

) [
1 +O

(
1

Z2

)]
− sin

(
Z−

(
ν + 1

2

)
π
2

) [
4ν2−1

8Z +O
(

1
Z3

)]}
.

(43)

The leading term in Equation (40) therefore has the asymptotic limit

Cα
λ(z) ∼

Γ(λ + 2α)Γ(α + 1
2 )

Γ(λ + 1)Γ(2α)

(
1 + z

2

)−α+ 1
2
(

Z
2

)−α+ 1
2
√

2
πZ

cos
(

Z− πα

2

)
. (44)

The corrections are of relative order 1/Z ∝ |λ|− 2
3 .
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Expanding the leading ratio of gamma functions in terms of λ + α, assumed large, and expressing
the result in terms of θ � 1/|λ|1/3, we obtain

Cα
λ(cos θ) =

(
λ + α

2

)α−1 1
Γ(α)

(sin θ)−α cos
(
(λ + α)θ − πα

2

) [
1 +O

(
1/|λ|2/3

)]
. (45)

This is equivalent to the expression in Equation (31) for |λ| � 1 as required for the correction
terms in Equation (40) to be negligible, so the two expressions connect smoothly in their overlapping
region of validity, 1/|λ| � θ � 1/|λ|1/3.

To obtain an asymptotic Bessel-function series for Dα
λ(z) for z ≈ 1, we use the relation

([2], Section 3 (5))

Dα
λ(z) =

1
2

eiπα 1
cos πα

{
Cα

λ(z)− 2−2α+1(z2 − 1)α+ 1
2

Γ(−α + 1)Γ(λ + 2α)

Γ(α)Γ(λ + 1)
C−α+1

λ+2α−1(z)
}

(46)

to express Dα
λ(z) in terms of Gegenbauer functions of the first kind. The function Cα

λ(z) can be
approximated using the series in Equation (40). The modified indices λ′ = +2α− 1 and α′ = −α + 1
in the second Gegebauer function give λ′ + α′ = λ + α so we may use the same series for this function,
but with the index α− 1

2 on the Bessel functions and their coefficients replaced by α′ − 1
2 = −α + 1

2 .
We begin with z ∈ (1, ∞), where Z → iZ′, Z′ =

√
2(λ + α)2(z− 1) and Z∓ν J±ν+n(Z) →

(−1)n(Z′)∓ν I±ν+n(Z′), with Iµ(z) the modified or hyperbolic Bessel function of the first kind.
This gives as the leading term

Dα
λ(z) =

√
π

2 eiπα 1
Γ(α)

1
cos πα

{
Γ(λ+2α)
Γ(λ+1) 2−2α+1

(
z+1

2

)−α+ 1
2
(

Z′
2

)−α+ 1
2 Iα− 1

2
(Z′)

−(z2 − 1)−α+ 1
2

(
z+1

2

)α− 1
2
(

Z′
2

)α− 1
2 I−α+ 1

2
(Z′) +O

(
1

(λ+α)2

)}
.

(47)

The higher-order terms in the series are negligible for |z− 1| � |λ|− 2
3 for |λ| → ∞.

The function I−α+ 1
2
(Z′) can be eliminated in terms of the Macdonald function Kα− 1

2
(Z′) through

the relation ([5], Section 10.27.4)

Kν(z) =
π

2
1

sin πν

[
I−ν(z)− Iν(z)

]
(48)

with ν = α − 1
2 . After making this substitution, extracting the coefficient of Kν(z), and using the

definition of Z′, Equation (47) reduces to

Dα
λ(z) ∼

1√
π

eiπα 1
Γ(α)2−ν(λ + α)ν(z2 − 1)−ν/2

(
z+1

2

)ν/2

×
{

Kν(Z′) + π
2

1
sin πν

[
1− Γ(λ+2α)

Γ(λ+1) (λ + α)−2α+1
(

z+1
2

)−ν
]

Iν(Z′) + · · ·
}

.
(49)

As Γ(λ + 2α)/Γ(λ + 1) = (λ + α)2α−1[1 +O(1/(λ + α)2] while
(
z + 1)/2

)−ν ∼ 1− ν(z− 1)/2 +
· · · , the coefficient of Iν(Z′) in this expression vanishes up to terms of order 1/(λ + α)2 and (z −
1)/2� (λ + α)−

2
3 over its range of validity. The overall factor

(
(z + 1)/2

)−ν/2 can also be dropped to
leading order, and

Dα
λ(z) ∼

1√
π

eiπα 1
Γ(α)

2−ν(λ + α)ν(z2 − 1)−ν/2Kν(Z′), ν = α− 1
2

. (50)



Symmetry 2019, 11, 1465 9 of 11

We obtain the asymptotic forms of the Gegenbauer functions on the cut for x = cos θ ≈ 1 using
Equations (27) and (28) and the relations

Kν(e±iπ/2z) = ∓ iπ
2

e∓iπν/2 [Jν(z)∓ iYν(z)] . (51)

This gives

Dα
λ(x) ∼ −

√
π 1

Γ(α)2−ν(λ + α)ν(1− x2)−ν/2Yν(Z) + · · · , (52)

Cα
λ(x) ∼

√
π 1

Γ(α)2−ν(λ + α)ν(1− x2)−ν/2 Jν(Z) + · · · , (53)

ν = α− 1
2 , where the uncertainties in these expressions in their range of validity are order 1/λ2/3 for

|λ| → ∞.
Using Hankel’s expansions of Jν(Z) and Yν(Z) for Z large ([5], Section 10.17(i)) and expressing

the results in terms of θ, with x = cos θ, Z = (λ + α)
√

2(1− cos θ) = (λ + α)θ[1− θ2/24 + · · · ],
and θ � |λ|− 1

3 , these relations give

Dα
λ(cos θ) ∼ − 1

Γ(α)2−α+1(λ + α)α−1(sin θ)−α sin
(
(λ + α)θ − απ

2
)
+ · · · , (54)

Cα
λ(cos θ) ∼ 1

Γ(α)2−α+1(λ + α)α−1(sin θ)−α cos
(
(λ + α)θ − απ

2
)
+ · · · , (55)

to leading order in |λ|, in agreement with the results in Equations (30) and (31) for 1/|λ| � θ �
1/|λ|1/3.

Derivation of Theorem 4:

The standard hypergeometric representation of Dα
λ(z) in Equation (2) for |z| large [2,6] can be

converted using standard linear transformations ([5], Section 15.8) to a form useful for complex z
near −1,

Dα
λ(z) = 1√

π
eiπα2−2α 1

Γ(α) e∓iπ(λ+2α)

×
[

Γ(λ+2α)Γ(−α+ 1
2 )

Γ(λ+1)

(
1−z

2

)−α+ 1
2

2F1

(
−λ− α + 1

2 , λ + α + 1
2 ; α + 1

2 ; 1+z
2

)
+ e±iπ(α− 1

2 )Γ
(

α− 1
2

) (
1+z

2

)−α+ 1
2

2F1

(
−λ− α + 1

2 , λ + α + 1
2 ;−α + 3

2 ; 1+z
2

)]
,

(56)

where the + and − signs hold for z on the upper (lower) sides of the cut in (z− 1)α− 1
2 .

Upon using the asymptotic Bessel-function approximation in Equation (39) for the hypergeometric
functions in leading order and expanding the ratio of gamma functions in the first term for |λ + α| � 1,
this reduces in leading order to

Dα
λ(z) ∼ eiπα2−α(λ + α)α−1

√
π

sin π(α− 1
2 )

1
Γ(α) (2(1 + z))−α/2

(
Z′′
2

) 1
2

×e∓iπ(λ+2α)

{
−
(

1−z
2

)−α+ 1
2 Jα− 1

2
(Z′′) + e±iπ(α− 1

2 ) J−α+ 1
2
(Z′′)

}
,

(57)

where Z′′ =
√

2(λ + α)2(1 + z). The factor ((1− z)/2)−α+ 1
2 differs from 1 only by corrections of order

1/|λ| 23 in the region in which the leading-order approximation is valid, so it can be replaced by 1 for
|λ| � 1.

For z = x ∈ (−1, 1) real and close to −1, with x = cos θ, θ ≈ π, the relations in Equations (27),
(28), and (57), give the asymptotic forms of the Gegenbauer functions Dα

λ and Cα
λ(x) “on the cut” for
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|λ| � 1. Calculating the discontinuities specified in the first two equations and replacing J−α+ 1
2
(x) by

the Bessel function of the second kind,

Yα+ 1
2
(x) =

1
sin π(α− 1

2 )

(
Jα− 1

2
(x) cos

(
π(α− 1

2

)
− J−α+ 1

2
(x)
)

(58)

gives the relations in Theorem 4,

Dα
λ(x) ∼

√
π

Γ(α)

(
λ+α

2

)α−1
(2(1 + x))−α/2

(
X′′
2

) 1
2
[
− sin πλJα− 1

2
(X′′) + cos πλYα− 1

2
(X′′)

]
, (59)

Cα
λ(x) ∼

√
π

Γ(α)

(
λ+α

2

)α−1
(2(1 + x))−α/2

(
X′′
2

) 1
2
[
cos πλJα− 1

2
(X′′) + sin πλYα− 1

2
(X′′)

]
, (60)

with X′′ =
√

2(λ + α)2(1 + x) ≈ (λ + α)(π − θ).
For 1/|λ| � π − θ � 1/|λ|, the results in Equations (59) and (5) and in (60) and (6) are in their

common ranges of validity and should agree. X′′ is large in this region, and the agreement is easily
shown using Hankel’s asymptotic expressions for the Bessel functions ([5], Section 10.17(i)) and noting
that sin θ = sin (π − θ) ≈ π − θ in this region.

Remarks:

In their discussion of the asymptotics of the associated Legendre functions

P−µ
ν (z) =

2µ

√
π

Γ(µ + 1
2 )Γ(ν− µ + 1)

Γ(ν + µ + 1)

(
z2 − 1

)µ/2
Cµ+ 1

2
ν−µ (z) (61)

and

Q−µ
ν (z) = 2µ

√
πe−2πi(µ+ 1

4 )
Γ(µ + 1

2 )Γ(ν− µ + 1)
Γ(ν + µ + 1)

(
z2 − 1

) µ
2 Dµ+ 1

2
ν−µ (z) (62)

for |ν| → ∞, Cohl, Dang, and Dunster ([4], Sections 2.3.1 and 2.4.1) use uniform asymptotic expressions
in terms of Bessel functions which hold quite generally ([5], Section14.15 (11–14)). These involve
arguments (µ + 1

2 )θ in the Bessel functions and pre-factors proportional to
√

θ/ sin θ for z = cos θ

or
√

θ/ sinh θ for z = cosh θ. For example, the Ferrers functions P−µ
ν (cos θ) and Q

−µ
ν (cos θ) have the

asymptotic forms

P
−µ
ν (cos θ) = 1

νµ

(
θ

sin θ

) 1
2
[

Jµ

((
ν + 1

2

)
θ
)
+O

(
1
ν

)
envJµ

((
ν + 1

2

)
θ
)]

, (63)

Q
−µ
ν (cos θ) = − π

2νµ

(
θ

sin θ

) 1
2
[
Yµ

((
ν + 1

2

)
θ
)
+O

(
1
ν

)
envYµ

((
ν + 1

2

)
θ
)]

, (64)

for 0 < θ < π − δ with δ fixed and ν→ ∞. The envelope functions are treated in ([4], Section 2.3.1).
As may be seen through a comparison with Equations (52) and (53), the results of the two

approaches agree for ν � 1, with the simple approximations given here in Theorems 2–4 applying
in sectors in z = cos θ for 0 ≤ θ ≤ π, and the uniform results holding for for θ bounded away from
π. The Bessel function expansions derived here also reproduce the first n powers of (1− z) in the
Legendre functions properly for z→ 1 when the Bessel functions through order µ + n are included.

The pre-factors and the variable in the uniform approximations are, unfortunately, awkward for
physical applications to scattering theory, where, e.g.,

√
2j(j + 1)(1− cos θ) =

√
j(j + 1)q2/p2 = qb

rather than (j + 1
2 )θ is the natural variable. Here j = ν is conserved angular momentum in

the scattering, q is the invariant momentum transfer, p is the momentum of the particles in the
center-of-mass system, and b the impact parameter or point of closest approach in the free Schrödinger
equation. The pre-factors also disrupt the useful connection between partial-wave series in Legendre
functions and Fourier–Bessel transforms in the theory of particle scattering; see, for example,
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([8], Appendix B). These problems not encountered with the expansions derived here, Equations
(40) and (49) for θ ≈ 0, and Equations 59) and (60) for θ ≈ π.

Cohl, Dang, and Dunster ([4], Sections 2.3.1 and 2.4.1) also treat the limits ν→ ∞ and ν→ ±i∞
for z = cosh θ ∈ (1, ∞) using uniform expansions. Their results in terms of Bessel functions agree
in form and error estimate with the simple asymptotic expressions in Theorems 1 and 2 for νθ � 1,
but also extend smoothly to θ = 0, z = 1, the region treated separately in the Bessel function expansions
derived here. They do not treat the more complicated cases of complex z and ν, to which the results of
Theorems 1 and 2 results apply directly, again away from z = ±1.
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