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Abstract: In this paper, we investigate an iterative incomplete lower and upper (ILU) factorization
preconditioner for partial-differential equation systems. We discretize the partial-differential equations
into linear equation systems. An iterative scheme of linear systems is used. The ILU preconditioners
of linear systems are performed on the different computation nodes of multi-central processing
unit (CPU) cores. Firstly, the preconditioner of general tridiagonal matrix equations is tested on
supercomputers. Then, the effects of partial-differential equation systems on the speedup of parallel
multiprocessors are examined. The numerical results estimate that the parallel efficiency is higher
than in other algorithms.

Keywords: iterative ILU; preconditioner; partial-differential equations; parallel computation

1. Introduction

In applied sciences, such as computational electromagnetics, the solving of partial-differential
equation systems is usually touched upon. Many variables need to be sought for solving engineering
problems. These often need to be transformed into a solution of partial differential equations. When
solving partial differential equations, the equations need to be discretized. When discretizing partial
differential equations, symmetric systems of equations are usually gotten. Hence, it is necessary to
use the idea of symmetry to solve partial differential equations. Several studies on multi-computers
have appeared. For instance, Eric Polizzi and Ahmed H. Sameh [1] contributed a spike algorithm as a
parallel solution to hybrid banded equations. The algorithm firstly decomposes banded equations
into block-tridiagonal form and then makes full use of the divide and conquer technique. However,
by increasing the bandwidth, the parallel computation becomes much more complex, leading to a
decrease in the parallel efficiency. Obviously, the highly efficient parallelism of banded systems is of
great importance. Methods for block-tridiagonal linear equations contain iterative algorithms such
as the multi-splitting algorithm [2,3]. The multi-splitting algorithm (MPA) [2] can be used to solve
large band linear systems of equations; however, it sometimes has lower parallel efficiency. In [4], a
method for working out block-tridiagonal equations is provided by the authors. Any incomplete type
preconditioner will be appropriate for the algorithm. Based on the Galerkin principle, the parallelism
solution for large-scale banded equations is investigated in [5]. In [6], a parallel direct algorithm is
used on multi-computers. In [7], a parallel direct method for large banded equations is presented.
A preconditioner of large-scale banded equations is discovered in [8–14]. The block successive
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over-relaxation method (BSOR) [10] can be adopted to solve large-scale systems of equations, but
different parallel efficiencies will be presented because of the different optimal relaxation factors. These
algorithms use parallelism to solve banded equations but they cannot contain solving partial differential
equations. From better provision of a computing environment, a highly efficient preconditioner can
be carried out on multi-computers [15–23]. Simultaneously, Krylov subspace solvers [24–30] and
preconditioners [31–38] for large-scale banded equations are commonly used, including the generalized
minimal residual (GMRES) [39]. The pseudo-elimination method with parameter k (PEk) [40] can be
applied on multi-processors; however, the setting of parameter k will influent the speedup and parallel
efficiency. These are mostly preconditioners for sparse linear systems or partial differential equation
problems in Graphics Processing Unit (GPU) computation. However, these methods consume great
computational effort. The development of a new algorithm which needs less calculation among every
iteration and has more speedup and higher parallel efficiency is required. This paper is based on the
symmetry subject of solving partial differential equation systems. The systems of equations are usually
symmetric. In the process of solving them, the systems of equations need to be divided into blocks. The
block equations may be symmetric or asymmetric, so this paper considers the general form of block
equations. Of course, for symmetric block equations, the incomplete lower and upper factorization
preconditioner (ILUP) algorithm is suitable. This paper is concerned with partial-differential equation
systems of the form Ax = b. The associated iterative form Mx(k+1) = Nx(k) + b is used. The linear
tridiagonal special form is tested on multi-processors. Then, the iterative ILUP for partial differential
equation systems is used to examine multi central processing unit (CPU) cores.

The outline is as mentioned hereunder. Section 2 describes a decomposition strategy of a parallel
algorithm. Section 3 documents the analysis of convergence. Section 4 introduces the parallel
implementation of this algorithm. The analysis of results computations with numerical examples
including a large-scale system of equations and partial-differential equations are presented in Section 5.
Finally, we conclude the paper in Section 6.

2. Decomposition Strategy

Consider large-scale band equations
Ax = b (1)

that is 

A1 B1

C2 A2 B2
. . . . . . . . .

Cn−1 An−1 Bn−1

Cn An





x1

x2
...

xn−1

xn


=



b1

b2
...

bn−1

bn


where Ai, Bi, and Ci are di × di, di × di+1, and di × di−1, and xi, bi are the di− vectors of the unknowns
and the right–hand side,

The coefficient matrix A can be approximately decomposed as

A ≈ GH (2)

Generally, supposing n = pm(m ≥ 2, m ∈ Z), where p represents the processors, let

M = GH
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where

G =



I1

L2 I2
. . . . . .

Lm Im Sm

Im+1

Lm+2 Im+2
. . . . . .

L2m I2m S2m

I2m+1

L2m+2 I2m+2

. . . . . .
Ln In



H =



U1 S1
. . . . . .

Um−1 Sm−1

Um

Lm+1 Um+1 Sm+1
. . . . . .

U2m−1 S2m−1

U2m

L2m+1 U2m+1 S2m+1

. . . . . .
Un−1 Sn−1

Un



(3)

in which

Si = Bi, i = m(q− 1) + 1, · · · , m(q− 1) + m− 1, q = 1, · · · , p
Si = BiA−1

i+1, i = mq, q = 1, 2 · · · , p− 1

Li = Ci, i = m(q− 1) + 1, q = 2, 3, · · · , p
Li = CiU−1

i−1, i = m(q− 1) + 2, · · · , m(q− 1) + m, q = 1, · · · , p
Ui = Ai, i = m(q− 1) + 1, q = 1, · · · , p
Ui = Ai − LiSi−1, i = mq + 2, · · · , mq + m− 1, q = 0, · · · , p− 1; i = mq + m, q = p− 1
Ui = Ai − LiSi−1 − SiLi+1, i = m(q− 1) + m, q = 1, · · · , p− 1
and Ii is a di × di unit matrix, i = 1, · · · , n.

Then

N = M−A
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that is

N =



(O)

O SmSm+1

O
Lm+2Lm+1

(O)

O S2mS2m+1
. . .

O
L(p−1)m+2L(p−1)m+1

(O)


where (O) is the

m∑
i=1

di ×
m∑

i=1
di zero matrix. Therefore, the new iterative scheme for the large-scale band

system of equations is
GHx(k+1) = Nx(k) + b (4)

where the iterative matrix is
T = H−1G−1N

Obviously, GH is nonsingular, which is the necessary condition that the algorithm holds. In terms
of the structure of G and H, the parallelism of the iterative algorithm is preferable.

The strategy is an ILUP algorithm. Compared with published algorithms [2,10,40], the ILUP
algorithm requires less multiplication and adds calculation among every iteration, meaning this
algorithm has more speedup and higher parallel efficiency. It is appropriate for solving the large-scale
system of equations and partial-differential equations for multi-core processors.

3. Analysis of Convergence

3.1. Preliminary

Here, some notations are introduced. Two definitions and one lemma are mentioned.

Definition 1. ([39]) A real n× n matrix A = (ai, j) with ai, j ≤ 0 for all i , j is an M-matrix if A is nonsingular
and A−1

≥ O.

Definition 2. ([39]) The matrix A, M, N, A = M−N is a regular splitting of A if M is nonsingular, M−1
≥ O,

N ≥ O.

Lemma 1. ([39]) Presume A = M−N is a regular splitting of A. Then, A is nonsingular and A−1
≥ O, if and

only if ρ(M−1N) < 1.

3.2. Proposition and Theorem

Note that the inverse matrix of the following matrix is gained by the algorithm of the Gaussian
elimination. Firstly, from the definitions and lemma, a proposition is obtained as follows.

Proposition 1. If A is an M-matrix, in this way, the matrices Ui (i = 1, 2, 3, · · · , n) defined by Expression (3)
satisfy U−1

i ≥ O.
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Proof. From Expression (3), in terms of the contracture of A, G, H and M = GH, N = M−A, we have

Ui = Ai, i = m(q− 1) + 1, q = 1, · · · , p
Ui = Ai − LiSi−1 = Ai −CiU−1

i−1Bi−1, i = m(q− 1) + 2, · · · , m(q− 1) + m− 1, q = 1, · · · , p− 1;
i = n−m + 1, · · · , n, q = p;
Ui = Ai − LiSi−1 − SiLi+1, i = m(q− 1) + m, q = 1, · · · , p− 1.

As A is an M-matrix, then U−1
i ≥ O for i = m(q− 1) + 1 , q = 1, · · · , p

Let Wi =


A(i−1)m+1 B(i−1)m+1

C(i−1)m+2 A(i−1)m+2
. . .

. . . . . . Bim−1

Cim Aim


, then W−1

i ≥ O.

Since the block on the m-th row and m-th column of W−1
i is U−1

i for i = m(q− 1) + 2 , · · · , m(q−
1) + m− 1 and q = 1, · · · , p− 1;

Hence, U−1
i ≥ O for i = m(q− 1) + 2 , · · · , m(q− 1) + m− 1 and q = 1, · · · , p− 1;

Furthermore,

Vi =


A(i−1)m+1 B(i−1)m+1

C(i−1)m+2 A(i−1)m+2
. . .

. . . . . . B(i−1)m+m
C(i−1)m+m+1 A(i−1)m+m+1


,

Similarly, the block on the m-th row and m-th column of V−1
i is U−1

i for i = m(q − 1) + m , q =

1, · · · , p − 1 by inducing. Therefore, U−1
i ≥ O for i = m(q − 1) + m , q = 1, · · · , p − 1. Then, we have

U−1
i ≥ O (i = 1, · · · , n).

Secondly, taking advantage of the above lemma and proposition, a theorem is given. �

Theorem 1. If A is an M-matrix, then the approximate factorization of matrix A can be represented by
Expression (2), and the iterative scheme Algorithm (4) converges to X∗ = A−1b.

Proof. From the above proposition, the approximate factorization of matrix A can be represented by
Expression (2).

Firstly, prove N ≥ O.
As A is an M-matrix, then A−1

im+1 ≥ O, Bim+1 ≤ O, Bim ≤ O, Cim+1 ≤ O, Cim+2 ≤ O, for
i = 1, · · · , p − 1. Hence, BimA−1

im+1Bim+1 ≥ O, Cim+2A−1
im+1Cim+1 ≥ O, for i = 1, · · · , p − 1. Therefore,

N ≥ O.
Secondly, prove M−1

≥ O.

Since M−1 =
~
U
−1 ~

L
−1

, provided
~
L
−1

=



_
L1 −

_
S1
_
L2 −

_
S2

. . . . . .
_
Lp−1 −

_
Sp−1
_
Lp


,

where

_
L i =


I(i−1)m+1
−L(i−1)m+2 I(i−1)m+2

. . . . . .
−Lim Iim

, i = 1, · · · , p,−
_
S i =


O
...

O
−Sim

, i = 1, · · · , p− 1,

and
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~
U
−1

=



_
U1
_
C2

_
U2
. . . . . .

_
Cp−1

_
Up−1
_
Cp

_
Up


,

where

_
Ui =



U−1
(i−1)m+1 −U−1

(i−1)m+1B(i−1)m+1U−1
(i−1)m+2 · · · (−1)m−1m−1∏

j=1
U−1

j B jU−1
im

. . . . . .
...

U−1
(i−1)m+m−1 −U−1

(i−1)m+m−1B(i−1)m+m−1U−1
im

U−1
im


,

_
Ci =


−C(i−1)m+1U−1

(i−1)m
...

O
O

. i = 2, · · · , p.

According to the proposition, U−1
i ≥ O(i = 1, · · · , n). Since

L(i−1)m+ j = C(i−1)m+ jU
−1
(i−1)m+ j−1 , j = 2 , · · · , m, i = 1, · · · , p

we have −L(i−1)m+ j ≥ O, i = 1, · · · , p, j = 2, · · · , m. Therefore,
~
L
−1
≥ O,

~
U
−1
≥ O M−1

≥ O.
Finally, based on M−1

≥ O, N ≥ O and Lemma 1, we conclude that ρ(M−1N) < 1. That is, this
algorithm converges. �

This section shows that the condition in the theorem is a sufficient condition for convergence of
the algorithm. If A is not an M-matrix, Algorithm (4) is sometimes convergent, as is shown in the
following section (Example 1).

4. Parallel Implementations

4.1. Storage Method

For the i-th processor Pi(i = 1, · · · , p), allocate A(i−1)m+ j, B(i−1)m+ j, C(i−1)m+ j (i , p, j =

1, · · · , m, m + 1; i = p, j = 1, · · · , m), b(i−1)m+ j ( j = 1, · · · , m), the initial vector x(0)
(i−1)m+ j

, and the
convergence tolerance ε.

4.2. Circulating

(1) Gy = b + Nx(k) is solved to obtain y.

Pi (i = 1, · · · , p − 1) acquires x(k)
(i+1)m+2

from Pi+1 and then computes to obtain

y(i−1)m+q, q = 1, · · · , m − 1, i = 1, · · · , p and yn. Pi (i = 1, · · · , p − 1) gains y(i+1)m+1 from Pi+1

and then obtains yim, i = 1, · · · , p− 1.

(2) Hx(k+1) = y is solved to obtain x(k+1).

Pi (i = 1, · · · , p) computes to obtain x(k+1)
(i−1)m+q

(q = 2, · · · , m, i = 1, · · · , p) and x(k+1)
1 . The -ith

processor Pi (i = 2, · · · , p) gains x(k+1)
im from Pi−1 and then computes to obtain x(k+1)

(i−1)m+1
, i = 2, · · · , p.
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(3) On Pi(i = 1, · · · , p), judge ‖x(k+1)
(i−1)m+ j

− x(k)
(i−1)m+ j

‖ ≤ ε. Following this, stop if correct, or otherwise,
go back to step (1).

5. Results Analysis of Numerical Examples

For testing the new algorithm, some results on the Inspur TS10000 cluster have been given by
the new algorithm and order 2 multi-splitting algorithm [2], which is a well-known parallel iterative
algorithm. The PEk method [40] is used on the inner iteration of the order 2 multi-splitting algorithm.
Suppose di = di−1 = di+1 = t, x(0)i = (0, · · · , 0)T

t×1, ‖x(k+1)
− x(k)‖∞ < ε, ε = 10−10.

In the tables, P is the number of processors, l is the inner iteration time, k is the parameter of the
PEk method, T is the run time (in seconds), I is the iterative time, S is the speedup and E is the parallel
efficiency (E = S/P). In the following figures, ILUP, BSOR, PEk, and MPA, respectively, denote the
iterative incomplete lower and upper factorization preconditioner, the block successive over-relaxation
method, the PEk method, and the multi-splitting algorithm.

5.1. Results Analysis of the Large-Scale System of Equations

Example 1. A in Expression (1) represents

Ai =



12 −2
−3 12 −2

. . . . . . . . .
−3 12 −2

−3 12


t×t

, Bi =



2.2 −1.3
−3 2.2 −1.3

. . . . . . . . .
−3 2.2 −1.3

−3 2.2


t×t

,

Ci =



2 2
−1 2 2

. . . . . . . . .
−1 2 2

−1 2


t×t

, bi =



(i− 1)k + 1
(i− 1)k + 2

...
ik− 1

ik


t×1...

, and(i = 1, 2, · · · , n),

where Bn = C1 = O, n = 300, and t = 300. The numerical results are shown in Tables 1–5, and in
Figures 1 and 2.

The first example is not a numerical simulation regarding any partial differential equations (PDE);
we use this example in order to test the correctness of the iterative incomplete lower and upper
factorization preconditioner algorithm. The first example can build a good foundation for the second
example regarding PDE. The solutions to the large-scale system of equations for Example 1 by the ILUP
are shown in Table 1 and the details of these are as follows: This problem requires solving with more
than eight processors and the number of iterations is 238. When increasing the number of processors,
time and parallel efficiency all decrease. The number of processors for solving Example 1 transforms
from 4 to 64 and the parallel efficiency changes from 91.14% to 73.80%. All of the parallel efficiency
values are higher than those in published works, including Cui et al.’s [10], Zhang et al.’s [40], and
Yun et al.’s [2] methods, with the values being above 73%. No matter how many processors are used to
calculate the problem, the error tolerance of this example is the same: 6.897 × 10−11.
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Table 1. The iterative incomplete lower and upper factorization preconditioner (ILUP) for Example 1.

P 1 4 8 16 32 64

T 119.1036 32.6697 17.5870 9.6202 4.8371 2.5217
I 233 237 238 238 238 238
S 3.6457 6.7723 12.3806 24.6231 47.2324
E 0.9114 0.8465 0.7738 0.7695 0.7380
∆ 6.897× 10−11 6.897× 10−11 6.897× 10−11 6.897× 10−11 6.897× 10−11 6.897× 10−11

The results of Example 1 when using the BSOR method [10] are listed in Table 2. When more than
four processors are used to resolve the problem of Example 1, the number of iterations is 216. When
increasing the number of processors, the time and parallel efficiency decrease. The cost of the time of
every iteration and communication is more than that found when using the ILUP algorithm for the
large-scale system of equations. Hence, the speedup, which is less than that found when using the
ILUP algorithm, decreases. Thus the parallel efficiency is not better than that found when using the
ILUP algorithm for the large-scale system of equations. When the number of processors for solving
Example 1 is four, the parallel efficiency is 59.56%; however, the parallel efficiency is 91.14% for four
processors when using the ILUP algorithm. When increasing the number of processors, the parallel
efficiency decreases to 44.81%, which is lower than that found when using the ILUP algorithm.

Table 2. The key to the block successive over relaxation method (BSOR) method for Example 1 (ω = 2.0).

P 1 4 8 16 32 64

T 112.0383 47.0284 25.0183 14.0130 7.5833 3.9065
I 211 216 216 216 216 216
S 2.3824 4.4783 7.9953 14.7743 28.6800
E 0.5956 0.5598 0.4997 0.4617 0.4481

The results of Example 1 when using the PEk method published by Zhang et al. [40] are described
as Table 3. When more than four processors are used to resolve the problem of Example 1, the number
of iterations is 227. When increasing the number of processors, the time and parallel efficiency decrease.
The cost of the time of every iteration and communication is more than that when using the ILUP
algorithm for the large-scale system of equations. Hence, the speedup, which is less than that found
when using the ILUP algorithm, decreases. Therefore, the parallel efficiency is poorer than that found
when using the ILUP algorithm for the large-scale system of equations. When the number of processors
used when solving Example 1 is four, the parallel efficiency is 64.08%; however, the parallel efficiency is
91.14% for four processors when using the ILUP algorithm. When increasing the number of processors,
the parallel efficiency decreases to 44.79%, corresponding to the parallel efficiency when using the
BSOR method, which is lower than that found when using the ILUP algorithm, 73.80%.

Table 3. Answers for the pseudo-elimination method with parameter k (PEk) for Example 1 (k = 1.6).

P 1 4 8 16 32 64

T 114.3098 44.5992 24.7489 14.2286 7.6159 3.9878
I 224 227 227 227 227 227
S 2.5630 4.6188 8.0338 15.0094 28.6649
E 0.6408 0.5773 0.5021 0.4690 0.4479

The results of Example 1 when using the multi-splitting algorithm (MPA) published by Yun et al. [2]
are introduced in Table 4. As seen in Table 4, when more than four processors are used to solve the
problem of Example 1, the number of iterations is 174. When increasing the number of processors, the
time and parallel efficiency decrease. The cost of the time of every iteration and communication is
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more than that when using the ILUP algorithm for the large-scale system of equations. Hence, the
speedup, which is less than that found when using the ILUP algorithm, decreases. Thus, the parallel
efficiency is poorer than when using the ILUP algorithm for the large-scale system of equations. When
the number of processors for solving Example 1 is four, the parallel efficiency is 55.64%, 33.50% less
than that that found when using the ILUP algorithm. When increasing the number of processors, the
parallel efficiency decreases to 40.82%, about 4% less than the parallel efficiency obtained with the
BSOR method, which is 23% lower than that that found when using the ILUP algorithm.

Table 4. The solutions to the multi-splitting algorithm (MPA) used for Example 1.

P 1 4 8 16 32 64

T 103.597 46.547 24.716 13.717 7.472 3.9564
I 172 174 174 174 174 174
S 2.2256 4.1915 7.5525 13.8647 26.1254
E 0.5564 0.5239 0.4720 0.4333 0.4082

This section compares the speedup and parallel efficiency performance of the ILUP algorithm
with methods in other recently published works, including Cui et al.’s [10], Zhang et al.’s [40], and
Yun et al.’s [2] methods. Table 5 introduces a summary and comparison of the speedup and parallel
efficiency with the different methods used for Example 1 on 64 CPU cores, which is better than other
works [2,10,40]. As seen in Table 5, the speedup obtained with our method for Example 1 on 64 CPU
cores is 47.2324, and the parallel efficiency is 73.80%. The parallel efficiency obtained with the ILUP
algorithm is about 29% higher than that obtained using the BSOR method. The parallel efficiency is
29.01% more than that obtained using the PEk method. The parallel efficiency obtained with the BSOR
method corresponds to the parallel efficiency obtained with the PEk method. The parallel efficiency is
23% higher than that obtained using the MPA algorithm.

Table 5. Comparison speedup and parallel efficiency with the different methods used for Example 1 on
64 central processing unit (CPU) cores.

Compared List ILUP
Algorithm

Block Successive
over Relaxation

Method [10]

Pseudo-Elimination
Method with

Parameter k [40]

Multi-Splitting
Algorithm [2]

Speedup 47.2324 28.6800 28.6649 26.1254

Parallel Efficiency 0.7380 0.4481 0.4479 0.4082

Figure 1 illustrates the speedup performances obtained with the ILUP algorithm and the other
three methods for Example 1 at different CPU cores. As seen from Figure 1, when increasing the
number of processors, the speedup obtained using all the methods increases. No matter how great
the number of processors, the speedup obtained using the ILUP algorithm is significantly higher
than that obtained using the other three methods, especially when the number of processors is more.
Regardless of the number of processors, the speedup values obtained using the BSOR method, the PEk
method, and the MPA algorithm are close, particularly those obtained with the BSOR method and the
PEk method.

Figure 2 shows the parallel efficiency performance of the ILUP algorithm and the other three
methods for Example 1 at different CPU cores. As seen from Figure 2, when increasing the number
of processors, the parallel efficiency obtained using all the methods decreases. Regardless of the
number of processors, the parallel efficiency obtained using the ILUP algorithm is much higher than
that found using the other three methods, maintaining a value of more than 70%. No matter the
number of processors, the parallel efficiency values obtained using the PEk method, the BSOR method,
and the MPA algorithm are lower and nearer, especially those found using the BSOR method and
the PEk method. In particular, when the number of processors is 64, the parallel efficiency obtained
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using the ILUP algorithm rises above 73%; however, the parallel efficiencies obtained using the BSOR
method, the PEk method, and the MPA algorithm are only about 40%. The ILUP algorithm has the
clear superiority of producing exceedingly higher parallel efficiency values.
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5.2. Results Analysis of the Partial-Differential Equations

Example 2. Given the equations

Cx
∂2u
∂x2 + Cy

∂2u
∂y2 + (C1 sin 2πx + C2)

∂u
∂x + (D1 sin 2πy + D2)

∂u
∂y + Eu = 0

0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and
u
∣∣∣x=0 = u

∣∣∣x=1 = 10 + cosπy
u
∣∣∣y=0 = u

∣∣∣y=1 = 10 + cosπx ,

Cx, Cy, C1, C2, D1, D2 and E are invariants. Let Cx = Cy = E = 1, C1 = C2 = D1 = D2 = 0 and
h = 1/101. The results are given in Tables 6–10 and in Figures 3 and 4.

The finite difference method is used to discretize Example 2 in the tests. We adopt second-order
central difference schemes to discretize Example 2 and then converse the format for numerical
simulation; lastly, we test the iterative incomplete lower and upper factorization preconditioner
algorithm on different processors. The results to the partial-differential equations for Example 2
obtained using the ILUP are listed in Table 6. The details are thus: This problem was solved with more
than four CPU cores and the number of iterations was 560. When increasing the number of processors,
the time and the parallel efficiency can be seen to all decrease. When the number of processors used
for solving Example 2 changes from 4 to 64 the parallel efficiency changes from 89.48% to 71.64%.
All of the parallel efficiency values are higher than in the published works [2,10,40], being above
71%. Regardless of how many processors are used to compute Example 2, the error allowance of this
problem can be seen to be equally 3.158 × 10−11.

Table 6. The iterative incomplete lower and upper factorization preconditioner for Example 2.

P 1 4 8 16 32 64

T 121.7960 34.0280 19.6270 10.2140 5.1830 2.6565
I 578 560 560 560 560 560
S 3.5793 6.2055 11.9244 23.4991 45.8483
E 0.8948 0.7757 0.7453 0.7343 0.7164
∆ 3.158× 10−10 3.158× 10−10 3.158× 10−10 3.158× 10−10 3.158× 10−10 3.158× 10−10

The results for Example 2 obtained with the BSOR method [10] are listed in Table 7. When more
than four processors are used to resolve the problem of Example 2, the number of iterations is 793.
When increasing the number of processors, the time and parallel efficiency decrease. The cost of the
time of every iteration and communication is more than that obtained using the ILUP algorithm for
the large-scale system of equations. Hence, the speedup, which is less than that found when using
the ILUP algorithm, decreases. Thus, the parallel efficiency is not as good as that found using the
ILUP algorithm for the partial-differential equations. When the number of processors used for solving
Example 2 is four, the parallel efficiency is 86.24%, 3.24% lower than that found when using the ILUP
algorithm for the partial-differential equations. With increasing the number of processors, the parallel
efficiency decreases to 52.42%, which is less than that obtained using the ILUP algorithm, 71.64%.

Table 7. The key to the BSOR method for Example 2 (ω = 2.0).

P 1 4 8 16 32 64

T 144.8230 41.9830 26.6220 14.1590 7.6370 4.3165
I 779 793 793 793 793 793
S 3.4496 5.4400 10.2283 18.9633 33.5510
E 0.8624 0.6800 0.6393 0.5926 0.5242
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The results obtained for Example 2 using the PEk method [40] are given in Table 8. When more
than four processors are used to resolve the problem of Example 2, the number of iterations is 798.
When increasing the number of processors, the time and parallel efficiency decrease. The cost of the
time of every iteration and communication is more than that obtained using the ILUP algorithm for
the large-scale system of equations. Hence, the speedup, which is less than that obtained when using
the ILUP algorithm, decreases. Thus, the parallel efficiency is poorer than that found when using the
ILUP algorithm for the partial-differential equations. When the number of processors used for solving
Example 2 is four, the parallel efficiency is 80.59%, which is 8.89% lower than that found when using
the ILUP algorithm. When increasing the number of processors, the parallel efficiency decreases to
48.40%, which is 23.24% lower than that obtained with the ILUP algorithm.

Table 8. Answers to the PEk method for Example 2 (k = 2.7).

P 1 4 8 16 32 64

T 157.7210 48.9280 29.4860 16.0790 9.3640 5.0917
I 786 798 798 798 798 798
S 3.2235 5.3490 9.8091 16.8433 30.9764
E 0.8059 0.6686 0.6131 0.5264 0.4840

The results for Example 2 obtained with the multi-splitting algorithm [2] are introduced in Table 9.
As seen in Table 9, when more than four processors are used to solve the problem of Example 2, the
number of iterations is 838. When increasing the number of processors, the time and parallel efficiency
decrease. The cost of the time of every iteration and communication is more than that found when
using the ILUP algorithm for the partial-differential equations. Hence, the speedup, which is less
than that found using the ILUP algorithm, decreases. Thus, the parallel efficiency is poorer than
that obtained using the ILUP algorithm for the large-scale system of equations. When the number of
processors used for solving Example 2 is four, the parallel efficiency is 78.25%, 11.23% less than that
obtained using the ILUP algorithm. When increasing the number of processors, the parallel efficiency
decreases to 46.34%, about 6% less than the parallel efficiency obtained with with the BSOR method,
corresponding to the parallel efficiency obtained with the PEk technique, which is 25.3% lower than
that found using the ILUP algorithm.

Table 9. The solutions to the multi-splitting algorithm for Example 2.

P 1 4 8 16 32 64

T 180.6459 57.7139 32.2524 17.7462 10.9967 6.0917
I 824 838 838 838 838 838
S 3.1300 5.6010 10.1794 16.4273 29.6547
E 0.7825 0.7001 0.6362 0.5134 0.4634

This section compares the speedup and parallel efficiency performance of the ILUP algorithm
with methods in other recently published works, including Cui et al.’s [10], Zhang et al.’s [40], and
Yun et al.’s [2] methods. Table 10 provides a summary and comparisons of speedup and parallel
efficiency obtained using the different methods for Example 2 on 64 CPU cores, which is better than
other published works. As seen in Table 10, the speedup in our method for Example 2 on 64 CPU
cores is 45.8483 and the parallel efficiency is 71.64%. The parallel efficiency obtained using the ILUP
algorithm is 19.22% higher than found using the BSOR method. The parallel efficiency is 23.24% more
than that found using the PEk method. The parallel efficiency is 25.3% higher than that obtained using
the MPA algorithm.
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Table 10. Comparison of speedup and parallel efficiency values obtained using the different methods
for Example 2 on 64 CPU cores.

Compared List ILUP
Algorithm

Block Successive
over Relaxation

Method [10]

Pseudo-Elimination
Method with

Parameter k [40]

Multi-Splitting
Algorithm [2]

Speedup 45.8483 33.5510 30.9764 29.6547
Parallel Efficiency 0.7164 0.5242 0.4840 0.4634

Figure 3 compares the speedup performance of ILUP algorithm and the other three methods for
Example 2 at different CPU cores. As seen from Figure 3, when increasing the number of processors,
the speedup values of all the methods increase. Regardless of the number of processors, the speedup
obtained using the ILUP algorithm is much higher than that found using the other three methods, in
particular when the number of processors is greater. No matter the number of processors, the speedup
values found using the BSOR method, the PEk method, and the MPA algorithm are close, especially
for those found using the PEk technique and the MPA algorithm. For example, when the number of
processors is 64, the speedup found using the ILUP algorithm rises above 45; however, the speedup
values obtained using the BSOR method, the PEk method, and the MPA algorithm are only about 30.
Obviously, the ILUP algorithm has the advantage of producing higher speedup values.
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Figure 4 shows the parallel efficiency performance of the ILUP algorithm and the other three
methods for Example 2 at different CPU cores. As seen from Figure 4, when increasing the number of
processors, the parallel efficiency of all the methods decreases. Regardless of the number of processors,
the parallel efficiency obtained using the ILUP algorithm is much higher than that found using the other
three methods, maintaining a value of more than 70%. When increasing the number of processors, the
parallel efficiency values obtained using the BSOR method, the PEk method, and the MPA algorithm
are lower and sustain a descent, especially for those found using the MPA algorithm. In particular,
when the number of processors is 64, the parallel efficiency obtained using the ILUP algorithm rises
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above 71%; however, the parallel efficiency values found using the BSOR method, the PEk method,
and the MPA algorithm are only about 50%. The ILUP algorithm is clearly beneficial in its production
of exceedingly high parallel efficiency values.
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6. Conclusions

In this work, an iterative incomplete LU factorization preconditioner for partial-differential
equation systems has been presented. The partial-differential equations were discretized into linear
equations with the form Ax = b. An iterative scheme of linear systems was used. The iterative
ILU preconditioners of linear systems and partial-differential equations systems were performed on
different computation nodes of multi-CPU cores. From the above numerical results in the tables and
figures, we can obtain the following conclusions:

1. The ILUP algorithm for the large-scale system of equations and partial-differential equation
systems was performed on different multi-CPU cores. The numerical results show that the
solutions are consistent with the theory.

2. From Example 1, when A is neither positive nor an M-matrix, the ILUP algorithm still converges.
3. At any multi-CPU cores, the speedup of the ILUP algorithm for the system of equations is far higher

than that found using the BSOR method [10], the PEk method [40], and the MPA algorithm [2].
Evidently, the ILUP algorithm has the advantage of producing higher speedup values.

4. No matter the number of processors, the parallel efficiency of the ILUP algorithm is preferable.
The parallel efficiency of the ILUP algorithm is higher than that of the other three algorithms. For
example, the parallel efficiency of the ILUP algorithm achieves a value of above 73.8% (as seen in
Table 5), which is higher than that for any other algorithm, including the BSOR method [10], the
PEk method [40], and the MPA algorithm [2]. Obviously, the ILUP algorithm has the superiority
of producing exceedingly high parallel efficiency values.
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