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Abstract: The class of Suzuki mappings is reanalyzed in connection with a three-steps Thakur
procedure. The setting is provided by a uniformly convex Banach space, that is normed space
endowed with some symmetric geometric properties and some topological properties. Once more,
the fact that property (C) holds on as a generalized nonexpansiveness condition is emphasized
throughout some examples. One example uses the setting of R2 with the Taxicab norm. It is further
included in a numerical experiment in connection with seven iteration procedures, resulting a visual
analysis of convergence.
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1. Introduction

There are various problems in the field of applied mathematics that can be reformulated by means
of fixed point theory. Fixed point theorems provide us with sufficient conditions for the existence
of a fixed point, and thus the existence of a solution for the original problem is ensured.

The first step in the direction of a fixed point theory on metric spaces was Banach contraction
principle. Came out as an abstraction for Picard iteration, this principle not only ensures the existence
and uniqueness of a fixed point for contraction mappings, but also provides us an iterative algorithm
to approximate this point. Finding iterative ways to approximate fixed points of different kind
of mappings becomes essential as many problems of nonlinear analysis can not be solved analytically.
In this regard, Picard iteration was an important starting point for the development of other processes.
Despite the success it had with contraction mappings, Krasnoselskii [1] proved in 1955 that Picard
iteration does not always converge to a fixed point when taking a larger class of mappings defined
on Banach spaces, namely nonexpansive mappings (for C being a nonempty closed convex subset
of a Banach space X over the real field R, a mapping T : C → C is said to be nonexpansive if
it satisfies the inequality ‖Tx− Ty‖ ≤ ‖x− y‖, for all x, y ∈ C; moreover, if F(T) 6= ∅, where
F(T) = {x ∈ C : Tx = x} and ‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and p ∈ F(T), then T is called
quasi-nonexpansive). The main reason for such a behavior is that, unlike contraction mappings,
successive iteration for nonexpansive mappings needs not converge to a fixed point. From this
moment onwards, many others iterative processes have been developed for numerical reckoning fixed
points of nonexpansive mappings. For instance, one of the earliest would be Mann’s [2] iteration
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process, defined as follows: for an arbitrary chosen x0 ∈ C, the sequence of successive iterations is
defined by

xn+1 = αnxn + (1− αn)Txn, n ≥ 0,

where {αn} is a sequence of real numbers in the interval (0, 1), followed by Ishikawa [3] iteration,
a two step iteration process widely applied for numerical reckoning fixed points of nonexpansive
mappings; for a starting point x0 ∈ C, this iterative scheme is defined by{

xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTxn, n ≥ 0,

where {αn}, {βn} ∈ (0, 1). Important to be mentioned would also be Agarwal et al. [4]’s two step
iteration process introduced in 2007: for an arbitrary x0 ∈ C, define{

xn+1 = (1− αn)Txn + αnTyn

yn = (1− βn)xn + βnTxn, n ≥ 0,

with {αn} and {βn} sequences in (0, 1).
In 2000, Noor [5] introduced a new three-step iteration scheme for approximation fixed points

of nonexpansive mappings as follows: starting with x0 ∈ C, define {xn} iteratively by
xn+1 = (1− αn)xn + αnTyn

yn = (1− βn)xn + βnTzn

zn = (1− γn)xn + γnTxn, n ≥ 0,

where {αn}, {βn}, {γn} are sequences of real numbers in (0, 1). This has pioneered a number
of new three-step iteration techniques as, for example, Abbas and Nazir [6]: for an arbitrary x0 ∈ C,
the sequence {xn} is defined by

xn+1 = (1− αn)Tyn + αnTzn

yn = (1− βn)Txn + βnTzn

zn = (1− γn)xn + γnTxn, n ≥ 0,

where {αn}, {βn}, {γn} are real number sequences in (0, 1). In the sequel, we will consider the
following iterative process defined by Thakur et al. in [7] for numerical reckoning fixed points
of nonexpansive mappings; see, also [8]: for an arbitrary chosen element x0 ∈ C, the sequence {xn} is
generated by 

xn+1 = (1− αn)Tzn + αnTyn,
yn = (1− βn)zn + βnTzn,
zn = (1− γn)xn + γnTxn,

(1)

for all n ≥ 0, where {αn}, {βn}, {γn} are sequences of real numbers in (0, 1). We shall refer to this
iterative procedure as TTP.

As it can be seen, nonexpansive mappings are an intensely studied category of operators in terms
of finding various conditions for the existence of their fixed points (see for example Browder [9] and
Kirk [10]), in terms of defining iterative processes to approximate the fixed points whose existence
has been established, or even in connection with hybrid methods in very recent research directions
(see, for instance [11]). However, in 2008, Suzuki [12] introduced a new class of mappings on
Banach spaces (herein referred as Suzuki-generalized nonexpansive mappings or Suzuki mappings),
which properly includes the class of nonexpansive mappings; this came out by limiting the range
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of points satisfying the nonexpansive inequality. One simple example provided by Suzuki in order
to emphasize the idea that the newly introduced class is larger than nonexpansiveness is the following

T : [0, 3]→ [0, 3], Tx =

{
0, x 6= 3
1, x = 3.

This new property, named condition (C), caught the attention of many authors that searched
different fixed point theorems for such mappings (see for example [13–16]). In particular, a consistent
analysis in connection with condition (C) was performed in [17], in a modular vectorial setting.
An interesting extension of (C)-property is the class of generalized nonexpansive mappings that satisfy
the so-called condition (E) introduced by Garcia-Falset et al. [18]. Condition (E) is wider than Suzuki’s
condition but stronger than quasi-nonexpansiveness. Another extension was subject to analysis in [19].
However, these generalized properties will not be a topic to be approached in this survey.

In this paper, we will focus on extending the study of the above-mentioned TTP process to the
more general class of Suzuki-generalized nonexpansive mappings. In this respect, we will provide an
outcome regarding the existence of fixed points for Suzuki mappings in the framework of uniformly
convex Banach spaces. In addition, some convergence theorems concerning this iterative process will
be stated.

2. Preliminaries

Firstly, let us recall some theoretical results that will be useful for our new approach.

Definition 1 ([20]). A normed vector space X is called uniformly convex if for each ε ∈ (0, 2] there is δ > 0

such that for x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε imply
∥∥∥∥ x + y

2

∥∥∥∥ ≤ 1− δ.

Lemma 1 ([21], Lemma 1.3). Suppose that X is a uniformly convex Banach space and 0 < p ≤ tn ≤ q < 1
for all n ≥ 1 (i.e., {tn} is bounded away from 0 and 1). Let {xn} and {yn} be two sequences of X such
that lim sup

n→∞
‖xn‖ ≤ r, lim sup

n→∞
‖yn‖ ≤ r and lim sup

n→∞
‖tnxn + (1− tn)yn‖ = r hold for some r ≥ 0.

Then lim
n→∞

‖xn − yn‖ = 0.

Let C be a nonempty closed convex subset of a Banach space X, and let {xn} be a bounded
sequence in X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

‖x− xn‖

The asymptotic radius of {xn} relative to C is given by

r(C, {xn}) = inf{r(x, {xn}) : x ∈ C}

and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

Edelstein [22] showed that for a nonempty closed convex subset C of an uniformly convex Banach
space and for each bounded sequence {xn}, the set A(C, {xn}) is a singleton.

Definition 2 ([12]). Let C be a nonempty subset of a Banach space X and T be a selfmap on C. T is said
to satisfy condition (C) if

‖Tx− Ty‖ ≤ ‖x− y‖ , whenever
1
2
‖x− Tx‖ ≤ ‖x− y‖
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for all x, y ∈ C. Such mappings are often called generalized nonexpansive mappings or Suzuki mappings.

Obviously, the class on nonexpansive mappings is included in the class of Suzuki mappings.
Moreover, each Suzuki mapping is quasi-nonexpansive. In order to support this statement, we shall
provide two fresh examples.

Proposition 1 ([12]). Let C be a nonempty subset of a Banach space X and T : C → C an operator satisfying
condition (C). Then, the following properties hold for every x, y ∈ C:

(i)
∥∥Tx− T2x

∥∥ ≤ ‖x− Tx‖ ([12], Lemma 5).

(ii) Either
1
2
‖x− Tx‖ ≤ ‖x− y‖ or

1
2

∥∥∥T2x− Ty
∥∥∥ ≤ ‖Tx− y‖ holds ([12], Lemma 5).

(iii) ‖x− Ty‖ ≤ 3 ‖Tx− x‖+ ‖x− y‖ ([12], Lemma 7).

Definition 3 ([23]). A Banach space X is said to satisfy the Opial property if for each weakly convergent
sequence {xn} in X with a weak limit x,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for all y ∈ X with y 6= x.

Lemma 2 ([12], Proposition 3). Let T be a mapping on a subset C of a Banach space X with the Opial property.
Assume that T satisfies condition (C). If {xn} converges weakly to z and lim

n→∞
‖Txn − xn‖ = 0, then Tz = z.

That is, I − T is demiclosed at zero.

Senter and Dotson [24] introduced the following definition of a mapping satisfying condition (I).

Definition 4 ([24]). A mapping T : C → C is said to satisfy condition (I), if there exists a nondecreasing
function f : [0, ∞) → [0, ∞) with f (0) = 0 and f (r) > 0 for all r > 0 such that d(x, Tx) ≥ f (d(x, F(T)))
for all x ∈ C, where d(x, F(T)) = inf

p∈F(T)
d(x, p). We denote by d(x, p), the distance between any point x of C

and a fixed point p of T.

Lemma 3 ([12]). Let C be a weakly compact convex subset of a UCED Banach space X, and T be a selfmapping
on C. Assume that T satisfies the condition (C). Then T has a fixed point.

Dhompongsa et al., in [14], improved the result above by stating the following fixed point
existence result for subsets being not necessarily compact.

Theorem 1 ([14]). Let C be a nonempty bounded closed convex subset of a Banach space X. Let T : C → C be
a mapping satisfying condition (C). Suppose that the asymptotic center in C of each bounded sequence of X is
nonempty and compact. Then T has a fixed point.

3. Convergence Theorems

Inspired by the results obtained in [7] via the iteration procedure (1), for nonexpansive mappings,
we phrase and prove similar convergence outcomes regarding mappings satisfying condition (C).
Knowing that property (C) leads to a wider class of mappings than nonexpansiveness, the results
provided next are expected to be more general than the outcomes in [7].

Lemma 4. Let C be a nonempty, closed and convex subset of a Banach space X and T : C → C a mapping
satisfying condition (C) with F(T) 6= ∅. For an arbitrary chosen x0 ∈ C, let {xn} be the sequence generated
by (1). Then lim

n→∞
‖xn − p‖ exists for any p ∈ F(T).
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Proof. Let p ∈ F(T). Since T satisfies condition (C) and has at least a fixed point; it follows that T is
quasi-nonexpansive. Thus, from (1), one has

‖zn − p‖ = ‖(1− γn)xn + γnTxn − p‖
= ‖(1− γn)(xn − p) + γn(Txn − p)‖
≤ (1− γn) ‖xn − p‖+ γn ‖Txn − p‖
≤ (1− γn) ‖xn − p‖+ γn ‖xn − p‖
= ‖xn − p‖ . (2)

The same reasoning applies to ‖yn − p‖, and one obtains

‖yn − p‖ = ‖(1− βn)zn + βnTzn − p‖
= ‖(1− βn)(zn − p) + βn(Tzn − p)‖
≤ (1− βn) ‖zn − p‖+ βn ‖Tzn − p‖
≤ (1− βn) ‖zn − p‖+ βn ‖zn − p‖
= ‖zn − p‖ .

Now, using inequality (2), one finds

‖yn − p‖ ≤ ‖xn − p‖ . (3)

In addition, the following inequality holds

‖xn+1 − p‖ = ‖(1− αn)Tzn + αnTyn − p‖
= ‖(1− αn)(Tzn − p) + αn(Tyn − p)‖
≤ (1− αn) ‖zn − p‖+ αn ‖yn − p‖ ,

and together with (2) and (3) becomes

‖xn+1 − p‖ ≤ (1− αn) ‖xn − p‖+ αn ‖xn − p‖
= ‖xn − p‖ . (4)

We conclude from (4) that {‖xn − p‖} is bounded and nonincreasing for all p ∈ F(T). Hence,
lim

n→∞
‖xn − p‖ exists.

Theorem 2. Let C be a nonempty, closed and convex subset of a uniformly convex Banach space X, and let
T : C → C be a mapping satisfying condition (C). For an arbitrary chosen x0 ∈ C, let the sequence {xn}
be generated by (1) for all n ≥ 0, where {αn}, {βn}, {γn} ∈ (0, 1), {γn} bounded away from 0 and 1.
Then F(T) 6= ∅ if and only if {xn} is bounded and lim

n→∞
‖Txn − xn‖ = 0.

Proof. Let us first prove the direct implication. Suppose F(T) 6= ∅ and let p ∈ F(T). By Lemma 4 it
follows that lim

n→∞
‖xn − p‖ exists and {xn} is bounded. Let us denote

r = lim
n→∞

‖xn − p‖ . (5)

From (2), it is known that ‖zn − p‖ ≤ ‖xn − p‖. Taking lim sup on both sides of the inequality
and using (5), one obtains

lim sup
n→∞

‖zn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (6)
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Again, since T is quasi-nonexpansive, one has

lim sup
n→∞

‖Txn − p‖ ≤ lim sup
n→∞

‖xn − p‖ = r. (7)

Now, the following inequality holds true

‖xn+1 − p‖ = ‖(1− αn)Tzn + αnTyn − p‖
≤ (1− αn) ‖zn − p‖+ αn ‖yn − p‖

and combined with (3) becomes

‖xn+1 − p‖ − ‖xn − p‖ ≤ (1− αn)(‖zn − p‖ − ‖xn − p‖).

Dividing the above relation by (1− αn), conducts to

‖xn+1 − p‖ − ‖xn − p‖
(1− αn)

≤ ‖zn − p‖ − ‖xn − p‖ .

and it follows that

‖xn+1 − p‖ − ‖xn − p‖ ≤ ‖xn+1 − p‖ − ‖xn − p‖
(1− αn)

≤ ‖zn − p‖ − ‖xn − p‖ .

i.e.,
‖xn+1 − p‖ ≤ ‖zn − p‖ . (8)

Applying lim sup to (8) and using (5) together with (6), one obtains

r = lim sup
n→∞

‖xn+1 − p‖ ≤ lim sup
n→∞

‖zn − p‖ ≤ r

which implies
lim sup

n→∞
‖zn − p‖ = r. (9)

Relation (9) can be rewritten as

lim sup
n→∞

‖zn − p‖ = lim sup
n→∞

‖(1− γn)xn + γnTxn − p‖

= lim sup
n→∞

‖(1− γn)(xn − p) + γn(Txn − p)‖

= r.

From (5), (7), (9) and Lemma 1 one finds lim sup
n→∞

‖Txn − xn‖ = 0.

Let us now prove the converse statement. Suppose {xn} is bounded and lim
n→∞

‖Txn − xn‖ = 0.

Let p ∈ A(C, {xn}). By Proposition 1(iii) one has

r(Tp, {xn}) = lim sup
n→∞

‖xn − Tp‖

≤ lim sup
n→∞

(3 ‖Txn − xn‖+ ‖xn − p‖)

= lim sup
n→∞

‖xn − p‖

= r(p, {xn}).



Symmetry 2019, 11, 1441 7 of 18

The above relation implies that Tp ∈ A(C, {xn}). As mentioned above, when dealing with closed
bounded convex subsets of uniformly convex Banach spaces, the asymptotic center is a singleton.
Therefore, Tp = p i.e., F(T) 6= ∅, and the proof is complete.

Theorem 3. Let C be a nonempty closed convex subset of a uniformly convex Banach space X with Opial’s
property, T and {xn} be as in Theorem 2 and F(T) 6= ∅. Then {xn} converges weakly to a fixed point of T.

Proof. The proof is identical with the proof of the Theorem 3.3. in [15]. This is not surprising
since the conclusions of Lemma 4 and Theorem 2 are the same as in Theorem 3.2. and Lemma 3.1.
in [15], via a distinct iterative process. We chose to display the proof just for the sake of making the
paper self-contained.

Since F(T) 6= ∅, let p ∈ F(T). By Theorem 2, {xn} is bounded and lim
n→∞

‖Txn − xn‖ = 0 and by

Lemma 4, lim
n→∞

‖xn − p‖ exists. Since X is uniformly convex, according to Milman–Pettis’s Theorem,

it is reflexive. Therefore, by Eberlin’s Theorem, every bounded sequence of elements of X contains
a subsequence which converges weakly to an element of X. Let {xni} be the subsequence of {xn} ∈ X
which converges weakly to an element z1 ∈ X. Since C is closed and convex, according to Mazur’s
Theorem, z1 ∈ C. By Lemma 2, we obtain Tz1 = z1, consequently z1 ∈ F(T). Further we will show
that {xn} itself converges weakly to z1. Let us assume the contrary and suppose that there exists
a subsequence {xnj} of {xn}, such that xnj ⇀ z2 ∈ C, where z1 6= z2. Again, using Lemma 2 we have
Tz2 = z2 i.e., z2 ∈ F(T). Since X is endowed with Opial’s property, we obtain

lim
n→∞

‖xn − z1‖ = lim
i→∞
‖xni − z1‖ < lim

i→∞
‖xni − z2‖ = lim

n→∞
‖xn − z2‖

= lim
j→∞

∥∥∥xnj − z2

∥∥∥ < lim
j→∞

∥∥∥xnj − z1

∥∥∥ = lim
n→∞

‖xn − z1‖

This leads to a contradiction, so z1 = z2 and we conclude that {xn} converges weakly to a fixed
point of T.

Theorem 4. Let C be a nonempty, compact and convex subset of a uniformly convex Banach space X and let T
and {xn} be as in Theorem 2. Then {xn} converges strongly to a fixed point of T.

Proof. Again, the proof does not differ at all from the proof of Theorem 3.4 in [15].
By Lemma 3, we have F(T) 6= ∅. Since C is compact, there exists a subsequence {xnk} of {xn}

such that {xnk} converges strongly to an element p ∈ C. Using Proposition 1 (iii), we have∥∥xnk − Tp
∥∥ ≤ 3

∥∥Txnk − xnk

∥∥+ ∥∥xnk − p
∥∥ .

Taking the limit of the above relation, we obtain

lim
k→∞

∥∥xnk − Tp
∥∥ ≤ 3 lim

k→∞

∥∥Txnk − xnk

∥∥+ lim
k→∞

∥∥xnk − p
∥∥ .

By Theorem 2, we have lim
n→∞

∥∥Txnk − xnk

∥∥ = 0 and xnk → p, so the previous inequality gives

that lim
k→∞

∥∥xnk − Tp
∥∥ = 0 i.e., xnk → Tp. But the limit is unique, so Tp = p which implies p ∈ F(T).

Furthermore, by Lemma 4, lim
n→∞

‖xn − p‖ exists for any p ∈ F(T), thus p is the strong limit of the

sequence {xn} itself.

Theorem 5. Let C be a nonempty closed convex subset of a uniformly convex Banach space X, let T and {xn} be
as in Theorem 2 and F(T) 6= ∅. If T satisfies the condition (I), then {xn} converges strongly to a fixed point of T.

Proof. The proof runs as in [15] (Theorem 3.5).
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By Lemma 4, lim
n→∞

‖xn − p‖ exists for any p ∈ F(T), therefore lim
n→∞

d(xn, F(T)) exists. Suppose

limn→∞ ‖xn − p‖ = r, for some r ≥ 0. If r = 0, then the desired result follows. Let r 6= 0. By condition
(I) in Definition 4, we obtain

f (d(xn, F(T))) ≤ d(xn, Txn) = ‖Txn − xn‖ .

From the hypothesis F(T) 6= ∅ so using Theorem 2, lim
n→∞

‖Txn − xn‖ = 0 which implies

lim
n→∞

f (d(xn, F(T))) = 0.

Considering the properties of the function f , we find

lim
n→∞

d(xn, F(T)) = 0.

Let {xnk} be a subsequence of {xn} and {yk} ∈ F(T) such that

∥∥xnk − yk
∥∥ <

1
2k for all k ∈ N. (10)

Using (4), we obtain ∥∥xnk+1 − yk
∥∥ ≤ ∥∥xnk − yk

∥∥ ≤ 1
2k .

For k→ ∞, it follows

‖yk+1 − yk‖ ≤
∥∥yk+1 − xnk+1

∥∥+ ∥∥xnk+1 − yk
∥∥

≤ 1
2k+1 +

1
2k

<
1

2k−1 → 0,

therefore {yk} ∈ F(T) is a Cauchy sequence. Since F(T) is a closed set, {yk} converges to a fixed point
p. Letting k → ∞ in (10) we have {xnk} → p ∈ F(T). Since lim

n→∞
‖xn − p‖ exists, it leads to xn → p

which completes the proof.

4. Data Dependence

Computing the fixed point p of a desired mapping T can be tricky. That is because of the various
errors that can occur when using computer programs which lead us to actually use a perturbed
mapping T̃, instead of the theoretical one. The operator T̃ is called an approximate mapping of T and
is defined as follows:

Definition 5 ([25]). Let (X, ‖·‖) be an arbitrary Banach space and T, T̃ : X → X be two mappings. We
say that T̃ is an approximate mapping of T if, for some ε > 0 called maximum admissible error, we have∥∥Tx− T̃x

∥∥ ≤ ε, for all x ∈ X.

Suppose p̃ is the fixed point of T̃ obtained by some iterative method. The problem that arises
in these conditions is whether p̃ approximates the theoretical fixed point p and if so, what is the
approximation error, namely the distance between p and p̃. As a response, we state and prove a data
dependence outcome of our TTP iterative process that gives us an upper bound for the distance
between p̃ and p.

Let us start with the following lemma that is essential for developing the proof of our
new approach.
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Lemma 5 ([26]). Let {ψn} be a nonnegative real number sequence for which one assumes there exists n0 ∈ N
such that for all n ≥ n0, the following inequality holds:

ψn+1 ≤ (1− φn)ψn + φn ϕn,

where φn ∈ (0, 1), for all n ∈ N,
∞

∑
n=0

φn = ∞, and ϕn ≥ 0 for all n ∈ N. Then

0 ≤ lim sup
n→∞

ψn ≤ lim sup
n→∞

ϕn.

Theorem 6. Let C be a nonempty closed convex subset of a Banach space X and T : C → C a contraction on C
(i.e., there exists a constant K ∈ [0, 1) such that ‖Tx− Ty‖ ≤ K ‖x− y‖, for all x, y ∈ C). Consider T̃ being
an approximate mapping of T with the maximum admissible error ε > 0. Let the sequence {xn} be generated
by (1) and define {x̃n} as follows: 

x̃0 ∈ C,
x̃n+1 = (1− αn)T̃z̃n + αnT̃ỹn,
ỹn = (1− βn)z̃n + βnT̃z̃n,
z̃n = (1− γn)x̃n + γT̃x̃n,

where {αn}, {βn} and {γn} are real number sequences in (0, 1) satisfying αnβnγn ≥
1
2

, for all n ∈ N.

If Tp = p and T̃ p̃ = p̃ such that lim
n→∞

x̃n = p̃, then

‖p− p̃‖ ≤ 7ε

(1− a)2 .

Proof. Let us start with the following inequality

‖zn − z̃n‖ =
∥∥(1− γn)xn + γnTxn − (1− γn)x̃n − γnT̃x̃n

∥∥
=

∥∥(1− γn)(xn − x̃n) + γn(Txn − T̃x̃n)
∥∥

≤ (1− γn) ‖xn − x̃n‖+ γn
∥∥Txn − T̃x̃n

∥∥
≤ (1− γn) ‖xn − x̃n‖+ γn ‖Txn − Tx̃n‖+ γn

∥∥Tx̃n − T̃x̃n
∥∥

≤ (1− γn) ‖xn − x̃n‖+ γn ‖Txn − Tx̃n‖+ γnε

≤ (1− γn) ‖xn − x̃n‖+ Kγn ‖xn − x̃n‖+ γnε

= [1− γn(1− K)] ‖xn − x̃n‖+ γnε. (11)

Furthermore, one finds

‖yn − ỹn‖ =
∥∥(1− βn)zn + βnTzn − (1− βn)z̃n − βnT̃z̃n

∥∥
=

∥∥(1− βn)(zn − z̃n) + βn(Tzn − T̃z̃n)
∥∥

≤ (1− βn) ‖zn − z̃n‖+ βn
∥∥Tzn − T̃z̃n

∥∥
≤ (1− βn) ‖zn − z̃n‖+ βn ‖Tzn − Tz̃n‖+ βn

∥∥Tz̃n − T̃z̃n
∥∥

≤ (1− βn) ‖zn − z̃n‖+ βn ‖Tzn − Tz̃n‖+ βnε

≤ (1− βn) ‖zn − z̃n‖+ Kβn ‖zn − z̃n‖+ βnε

= [1− βn(1− K)] ‖zn − z̃n‖+ βnε. (12)

Considering the relation (11), inequality (12) can be written as

‖yn − ỹn‖ ≤ [1− βn(1− K)][1− γn(1− K)] ‖xn − x̃n‖+ [1− βn(1− K)]γnε + βnε. (13)
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Now, using (11) and (13), it follows that

‖xn+1 − xn‖ =
∥∥(1− αn)Tzn + αnTyn − (1− αn)T̃z̃n − αn T̃ỹ

∥∥
=

∥∥(1− αn)(Tzn − T̃z̃n) + αn(Tyn − T̃ỹn)
∥∥

≤ (1− αn)
∥∥Tzn − T̃z̃n

∥∥+ αn
∥∥Tyn − T̃ỹn

∥∥
≤ (1− αn) ‖Tzn − Tz̃n‖+ (1− αn)

∥∥Tz̃n − T̃z̃n
∥∥+ αn ‖Tyn − Tỹn‖+ αn

∥∥Tỹn − T̃ỹn
∥∥

≤ K(1− αn) ‖zn − z̃n‖+ Kαn ‖yn − ỹn‖+ (1− αn)ε + αnε

≤ K(1− αn)[1− γn(1− K)] ‖xn − x̃n‖+ K(1− αn)γnε

+Kαn[1− βn(1− K)][1− γn(1− K)] ‖xn − x̃n‖+ Kαn[1− βn(1− K)]γnε + Kαnβnε + ε

< K[1− γn(1− K)− αnβn(1− K) + αnβnγn(1− K)2] ‖xn − x̃n‖

+Kγn[1− αnβn(1− K)]ε + Kαnβnε + ε

< K[1− αnβnγn(1− K)2] ‖xn − x̃n‖+ Kγn[1− αnβn(1− K)]ε + Kαnβnε + ε

< [1− αnβnγn(1− K)2] ‖xn − x̃n‖+ [γn − αnβnγn + αnβnγnK + αnβn + 1]ε

< [1− αnβnγn(1− K)2] ‖xn − x̃n‖+ [3 + αnβnγn]ε. (14)

Under the hypothesis that αnβnγn ≥
1
2

, one finds 3 + αnβnγn ≤ 7αnβnγn and so (14) becomes

‖xn+1 − x̃n+1‖ ≤ [1− αnβnγn(1− K)2] ‖xn − x̃n‖+ 7αnβnγnε. (15)

Let us denote ψn = ‖xn − x̃n‖, φn = αnβnγn(1− K)2 and ϕn =
7ε

(1− K)2 in (15) . Since all the

conditions of the Lemma 5 are satisfied, it follows that

0 ≤ lim sup
n→∞

‖xn − x̃n‖ ≤ lim sup
n→∞

7ε

(1− K)2 =
7ε

(1− K)2 . (16)

Assuming that lim
n→∞

xn = p and lim
n→∞

x̃n = p̃ we have

‖p− p̃‖ ≤ ‖p− xn‖+ ‖xn − x̃n‖+ ‖x̃n − p̃‖

and, by taking lim sup
n→∞

, we find ‖p− p̃‖ ≤ 7ε

(1− K)2 , hence the proof.

We will provide next a brief analysis of the obtained results. As it was stated at the beginning
of this section, by Theorem 6, the distance between p and p̃ is bounded. Let us denote by σ > 0 the

maximum admissible error between p and p̃, conveniently chosen. If the upper bound
7ε

(1− K)2 < σ,

then our iterative process is independent of the initial data of the problem. This means that small
perturbation of the initial data does not significantly affect the computational process of the fixed point
of T.

5. Example and Comparative Study

In order to emphasize the value of the analyzed TTP iteration procedure in connection with
Suzuki-type mappings, by comparing it further with other iterative processes, we consider next
an example.

Example 1. Consider the mapping

T : [0, 2]×
[

0,
1
7

]
→ [0, 2]×

[
0,

1
7

]
, Tx =


(2− x1, x2), x1 ∈

[
0,

1
7

)
(

x1 + 12
7

, x2

)
, x1 ∈

[
1
7

, 2
]

.
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We shall further prove that T is a Suzuki but not a nonexpansive mapping. To develop the desired proof we
chose to work with the Taxicab norm or 1-norm on R2, that is ‖(x1, x2)‖1 = |x1|+ |x2|.

Proof. We start by proving that there exist x1, y1 ∈ [0, 2] and x2, y2 ∈
[

0,
1
7

]
, such that, T mentioned

above is not nonexpansive. Let us take for example x1 =
14

100
∈
[

0,
1
7

)
, y1 =

1
7
∈
[

1
7

, 2
]

, and x2 =

y2 = 0 ∈
[

0,
1
7

]
. Then ‖T(x1, x2)− T(y1, y2)‖1 =

∣∣∣∣2− x1 −
y1 + 12

7

∣∣∣∣ = 614
4900

>
2

700
= |x1 − y1| =

‖(x1, x2)− (y1, y2)‖1, thus T is not a nonexpansive mapping.
To prove that T satisfies condition (C), the following cases need to be analyzed:

Case I: Let x1 ∈
[

0,
1
7

)
. If y1 ∈

[
0,

1
7

)
, then it can easily be seen that T is nonexpansive and

condition (C) is automatically satisfied. Further, if we take y1 ∈
[

1
7

, 2
]

, then
1
2
‖(x1, x2)− T(x1, x2)‖1 ≤

‖(x1, x2)− (y1, y2)‖1 stands true only for y1 ∈
[

6
7

, 2
]

. Moreover, evaluating the nonexpansiveness

condition ‖T(x1, x2)− T(y1, y2)‖1 ≤ ‖(x1, x2)− (y1, y2)‖1 for x1 ∈
[

0,
1
7

]
and y1 ∈

[
6
7

, 2
]

, one finds∣∣∣∣2− 7x1 − y1

7

∣∣∣∣ ≤ y1 − x1 which is obviously true as
∣∣∣∣2− 7x1 − y1

7

∣∣∣∣ ∈ [0,
8
49

]
, while y1 − x1 ∈

(
5
7

, 2
]

.

Therefore, T satisfies condition C for the case considered.

Case II: Let us now consider the rest of the interval i.e x1 ∈
[

1
7

, 2
]

. Similarly with Case I,

if x1 and y1 belongs to the same interval, then T is a contraction and satisfies condition C since all

contractions are included in the class of Suzuki mappings. On the other side, if y1 ∈
[

0,
1
7

)
then

1
2
‖(x1, x2)− T(x1, x2)‖1 ≤ ‖(x1, x2)− (y1, y2)‖1 becomes

1
2

∣∣∣∣x1 −
x1 + 12

7

∣∣∣∣+ 1
2
|x2 − x2| ≤ |x1 − y1|+

|x2 − y2|, or, even more,
6− 3x1

7
≤ x1 − y1 +

1
7

, as |x2 − y2| ∈
[

0,
1
7

]
. Further, this implies

10x1 − 5
7

≥

y1 i.e., x1 ∈
[

1
2

, 2
]

. For x1 ∈
[

1
2

, 2
]

and y1 ∈
[

0,
1
7

]
, the nonexpansive condition is

∣∣∣∣ x1 + 7y1 − 2
7

∣∣∣∣ ≤
|x1 − y1| which is true as

∣∣∣∣ x1 + 7y1 − 2
7

∣∣∣∣ ∈ [0,
3
14

]
and |x1 − y1| ∈

[
5
14

, 2
]

, so T satisfies condition C

for this case also.
Considering all the situations previously analyzed, we conclude that the above defined T is

indeed an example of a Suzuki mapping, although it is not a nonexpansive one.

Using this Suzuki mapping and the TTP iteration procedure, along with other iterative schemes
mentioned in the first section, let us visualize (and analyze) the convergence behaviors by performing
a numerical simulation. The results are pictured in the images included in Figures 1–7. The maximum
number of iterations to be performed until the algorithm stops is set to K = 30 and the exit parameter

to ε = 10−15. The [0, 2] ×
[

0,
1
7

]
rectangle is represented by an open window having the values

of x1 on the horizontal axis and those of x2 on the vertical one. As a general feature of the obtained
images, the first color (black) of the right-sided colorbar, corresponds to those pairs of points having
long orbits, non-convergent for the maximum number of iterations imposed. Apart from black,
each color in the range corresponds to a value between 1 and 30, in ascending order, signifying
the number of iterations needed to reach the fixed point of T with the error ε. On what concerns

the values of the involved parameters, we chose (purely arbitrary) the sequences αn =
1√

9n + 1
,

βn =
(2n + 1)

1
3

10n + 11
and γn =

√
n

3n + 4
. The Algorithm 1 is used to generate these images and goes
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through the following steps: first, take a pair of starting points from the area [0, 2] ×
[

0,
1
7

]
, then

choose an iteration procedure and perform it until the maximum number of iteration K is reached
or the exit criterion is satisfied (for this case, as we have worked with the Taxicab norm, the exit
criterion is

∥∥(xn1 , xn2)− (xn+11 , xn+12)
∥∥

1 =
∣∣xn1 − xn+11

∣∣+ ∣∣xn2 − xn+12

∣∣). When the loop terminates,
the program will assign to every starting point from the specified area a pixel and a corresponding
color, based on the number of iterations performed.

Algorithm 1: Convergence visualization
Data: T(x1, x2)− Suzuki mapping, A− area, K−maximum number of iterations,

eps− exit parameter, er− exit criterion, p− involved parameters,
I − iterative procedure,
colormap (K + 1)− colormap with K + 1 colors (including the first one i.e., black)

Result: Convergence visualization of all pairs of points on the area A via desired iterative
process

for (x01, x02) ∈ A do
n = 0;
while n < K do

(xn+11, xn+12) = I(T, (xn1, xn2), p);
if er((xn+11, xn+12), (xn1, xn2)) < eps then

break;
end
n=n+1;

end
if n < K then

color (x01, x02) with colormap (n + 2);
else

color (x01, x02) with colormap (1);
end

end

Figure 1. TTP.
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Figure 2. Picard.

Figure 3. Mann.
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Figure 4. Agarwal.

Figure 5. Ishikawa.
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Figure 6. Noor.

Figure 7. Abbas-Nazir.
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Let us take a closer look to the first image; namely, Figure 1, the one corresponding to the TTP
iterative process. One can see that, as the set of fixed points is approached, the color becomes darker,
meaning that the number of iterations performed decreases. Moreover, the last line of the image
takes a dark blue color. This is actually to be expected since that particular line is corresponding
to the set of fixed points of T and just one iteration is needed until the exit criterion is satisfied.
Similar analyses regarding convergence speed can be realized for the images provided by others
iterative processes, i.e., Picard, Mann, Agarwal and Abbas-Nazir. It is interesting to point out that
the corresponding images for iterations like Ishikawa and Noor are entirely black, meaning that the
procedures are very slowly convergent (they need more than 30 iterative steps) or they do not converge
at all. The explanation for such a behavior is that T defined above is a Suzuki-generalized nonexpansive
mapping, but it is not nonexpansive. Nevertheless, it is clear that, among all iterative processes, TTP
remains one of the fastest; it is only surpassed by he Abbas-Nazir procedure. This last statement is
also emphasized on the Table 1, by taking a random point from the domain of T ((x1, x2) = (1, 0.1),
also marked on each image with a red ’x’) and listing the number of iterations needed to approximate
the fixed point (x∗1 , x∗2) = (1, 0.1) for each iteration procedure.

Table 1. Number of iterative steps required for approximating a fixed point, with error ε = 10−15,
starting from the initial point (x∗1 , x∗2) = (1, 0.1)

TTP Picard Mann Ishikawa Agarwal Noor Abbas-Nazir

(1, 0.1) 15 19 25 - 19 - 11

In the following, we provide a second example of a Suzuki mapping which is not nonexpansive,
on a function space. This is meant to strengthen the assertion that mappings satisfying condition C is
indeed a wide class of operators, and examples for it can be provided both on R (see [15]) and R2, as
well as on infinite dimensional spaces.

Example 2. Consider the Banach space X = L∞(R) of all essentially bounded Lebesgue measurable functions,
endowed with the essential supremum norm

‖ f ‖∞ = ess sup R| f | = inf {M : | f (x)| ≤ M a.e. on R}.

Let C = { f : R→ [0, 7] : f (x) = f (0), ∀x ≤ 0} and

T : C → C, T f (x) =


f (x), x > 0

2
7

f (0), x ≤ 0, f (0) 6= 7

3, x ≤ 0, f (0) = 7.

We shall further prove that T mentioned above is an example of a Suzuki-generalized nonexpansive
mapping.

Proof. Suppose the inequality
1
2
‖ f − T f ‖∞ ≤ ‖g− f ‖∞ is satisfied. This is further equivalent with

1
2
|T f (0)− f (0)| ≤ max

{
| f (0)− g(0)| , ess sup (0,∞) | f (x)− g(x)|

}
. Thus, two cases arise:

Case 1: Let us presume that max
{
| f (0)− g(0)| , ess sup (0,∞) | f (x)− g(x)|

}
= | f (0)− g(0)|. For T

to satisfy condition (C), this must imply max
{
|T f (0)− Tg(0)| , ess sup (0,∞) |T f (x)− Tg(x)|

}
≤ | f (0)− g(0)|. Because of this last inequality, it is expected the problem to be divided again into

two sub-cases. We will analyze just the nontrivial one i.e.,
1
2
|T f (0)− f (0)| ≤ | f (0)− g(0)| implies

|T f (0)− Tg(0)| ≤ | f (0)− g(0)|, as the desired result follows easly from the other one. If f (0) 6= 7
and g(0) 6= 7, or f (0) = 7 and g(0) = 7, it can be easly noticed that T is nonexpansive, and therefore
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condition (C) is automatically fulfilled. For f (0) 6= 7 and g(0) = 7, T is nonexpansive just for f (0) ∈[
0,

28
5

]
, and again, condition (C) is satisfied. For f (0) ∈

(
28
5

, 7
)

and g(0) = 7,
1
2
|T f (0)− f (0)| ≤

| f (0)− g(0)| becomes
5 f (0)

14
≤ 7− f (0) which is not true as

5 f (0)
14

∈
(

2,
5
2

)
and 7− f (0) ∈

(
0,

7
5

)
.

The same result is obtained if we take f (0) = 7 and g(0) 6= 7. Considering all the situations analyzed,
we conclude that T is a Suzuki-mapping for the current case.

Case 2: Suppose max
{
| f (0)− g(0)| , ess sup (0,∞) | f (x)− g(x)|

}
= ess sup (0,∞) | f (x)− g(x)|.

The inequality
1
2
|T f (0)− f (0)| ≤ ess sup (0,∞) | f (x)− g(x)| must imply

max
{
|T f (0)− Tg(0)| , ess sup (0,∞) |T f (x)− Tg(x)|

}
≤ ess sup (0,∞) | f (x)− g(x)|. If we consider

that |T f (0)− Tg(0)| ≤ ess sup (0,∞) | f (x)− g(x)|, it follows ‖T f − Tg‖∞ = ess sup (0,∞) | f (x)− g(x)|;
but as | f (0)− g(0)| ≤ ess sup (0,∞) | f (x)− g(x)|, it follows that ‖ f − g‖∞ = ess sup (0,∞) | f (x)− g(x)|
too, so T is nonexpansive. If we suppose |T f (0)− Tg(0)| > ess sup (0,∞) | f (x)− g(x)|, kipping
in mind that ess sup (0,∞) | f (x)− g(x)| ≥ | f (0)− g(0)| on one side, ess sup (0,∞) | f (x)− g(x)| ≥
1
2
|T f (0)− f (0)| on the other side and considering all combinations that T could involve, we find

that the assumption is absurd and |T f (0)− Tg(0)| could not be grater than ess sup (0,∞) | f (x)− g(x)|.
So, overall, T is a Suzuki mapping in Case 2 also.

6. Conclusions

This paper analyzes a three-steps Thakur iterative procedure in connection with mappings
satisfying Suzuki’s generalized nonexpansiveness condition, known as property (C). A necessary
and sufficient condition regarding the existence of fixed points for Suzuki mappings is stated and
proved via the TTP iterative process. Furthermore, convergence results are obtained when additional
hypotheses related to Opial’s property, compactness or condition (I) are assumed. Fresh examples
of Suzuki mappings which are not nonexpansive are further provided; the settings for these examples
are R2, with the Taxicab norm, and L∞(R) endowed with the essential supremum norm. But, the most
interesting feature about the example in R2 is a numerical simulation, resulting in a visual comparative
analysis of the convergence behaviors of several iteration procedures. This numerical modeling uses
similar techniques as the root-finding procedures for complex polynomials, which ultimately led
to polynomiographic visualization.

Overall, the novelty of this paper is twofold. First, a new perspective on the TTP iteration
procedure is provided; this iterative scheme was originally conceived as a tool in connection with
nonexpansive mappings; now, it is proved to be an instrument as good as before for reaching the fixed
points of Suzuki mappings too. Moreover, having in mind the computational dimension of an iteration
procedure, a data dependency analysis is convenient, since errors can occur when using computer
programs. Usually, this constrains us to actually use a perturbed mapping T̃, instead of the theoretical
one. We managed to prove that a small perturbation of the initial data does not significantly affect the
computational process of the fixed point of a contractive operator.

Secondly, more complex examples of Suzuki mappings are provided. Picking R2 as the setting,
an interesting visual procedure is suggested as a possible new approach related to convergence analysis.
In addition, another example proves that one could easily exceed the framework of finite dimensional
normed spaces.
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