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Abstract: This article deals with a numerical approach based on the symmetric space-time Chebyshev
spectral collocation method for solving different types of Burgers equations with Dirichlet boundary
conditions. In this method, the variables of the equation are first approximated by interpolating
polynomials and then discretized at the Chebyshev–Gauss–Lobatto points. Thus, we get a system of
algebraic equations whose solution is the set of unknown coefficients of the approximate solution of
the main problem. We investigate the convergence of the suggested numerical scheme and compare
the proposed method with several recent approaches through examining some test problems.

Keywords: Burgers equation; Chebyshev spectral collocation method; Chebyshev–Gauss–Lobatto
nodes; convergence analysis

1. Introduction

Many phenomena in physics, biology and engineering can be modelled mathematically by partial
differential equations (PDEs). The Burgers equation is one of the most important PDEs to be surveyed
in the recent years by many researchers [1,2]. This equation describes various kinds of phenomena
in plasma physics, solid state physics, optical fibers, fluid dynamics, chemical kinetics, non-linear
acoustics, gas dynamics, traffic flow, etc.

Also, the generalized Burgers–Fisher equation is one of the most important classes of non-linear
PDEs which has appeared in several categories of applications, such as shockwave formation,
turbulence, heat conduction, sound waves in viscous medium, and some other fields of applied
branches of science and engineering [3]. Moreover, The Burgers–Huxley equation has been considered
to be an evolution equation that describes nerve pulse propagation in biology from which molecular
CB properties shall be computed. The generalized Burgers–Huxley equation was investigated to
describe the interaction between reaction mechanisms, convection effects, and diffusion transport [4].

Since an analytical in a closed-form solution is generally unavailable for non-linear PDEs,
numerical methods are widely used for solving them. There are some effective numerical methods to
solve PDEs, especially for the Burgers equation. In [5], a comprehensive review of some techniques
is presented. Berger and Kohn in [6] used the med refinement method. Budd et al. in [7] applied
mesh movement. Soheili et al. used a moving-mesh PDE (MMPDE) approach [8]. In [9], Ramadan
et al. suggested a method based on collocation of septic B-splines over finite elements for numerical
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solutions of the non-linear Burgers equation. Ramadan and El-Danaf considered the solution of
the modified Burgers equation using the collocation method with quintic splines [10]. Haq et al.
in [11] formulated simple classical radial basis functions (RBFs) collocation method for the numerical
solution of the non-linear dispersive and dissipative Burgers equation. Both Orac et al. in [12] and
Lepik in [13] investigated the numerical solutions using Haar wavelet. Inan and Bahadir described
implicit exponential difference method in two cases: finite and fully finite [14]. Saka and Dog used
quintic B-spline collocation procedure [15]. Irk in [16] used sextic B-spline collocation technique.
In [17], Demiray suggested the hyperbolic tangent method and presented travelling wave solution
for the perturbed Burgers equation. Hon and Mao in [18] applied the multiquadric (MQ) as a spatial
approximation scheme. Schulze-Halberg discussed a linearization method for solving Burgers equation
with time dependent coefficients and a non-linear forcing term [19]. In [20], Seydaoglu presented the
high-order splitting methods. Guo et al. proposed a high-order finite-volume compact scheme [21].
In [22], Mukundan and Awasthi used new efficient numerical techniques for solving one-dimensional
quasi-linear Burgers equation. Hammad and El-Azab solved Burgers–Huxley and Burgers–Fisher
equations with discretization in time by a new linear approximation scheme and in space by a high
order compact finite difference method in [23]. In [24], Arora and Kumar used a new numerical
method entitled “modified cubic B-spline differential quadrature method (MCB-DQM)” to find the
approximate solution of the Burgers equations.El-Wakil et al. presented the Burgers equation and some
other PDEs with self-similar solutions [25]. Singh et al. in [26] approximated numerical solutions for
the generalized Burgers–Huxley (gBH) equation using modified cubic B-spline differential quadrature
method (MCB-DQM). The scheme was based on the differential quadrature method in which the
weighted coefficients were computed using modified cubic B-splines as a set of basis functions.

The spectral collocation (SC) method is one of the most important methods to solve
continuous-time problems including ODEs and PDEs systems in various fields of science and
engineering. In this method, an interpolating polynomial is applied to approximate the unknown
function. In fact, unknown function in the problem can be expressed in the term of the approximate
values at the special nodes. This method shows suitable results in comparison with those of other
methods, since it has used the orthogonal polynomials for instance, Legendre and Chebyshev
polynomials.

Weinan in [27] analyzed numerical methods for some evolutionary equations which admit
semigroup formulations and the author shows the spectral accuracy of the spectral and pseudospectral
methods for the Burgers equation. Xiao et al. used the non-linear Petrov–Galerkin method to reduce
the order of Navier–Stokes equations and improved the stability of ROM results without tuning
parameters. Also, the obtained numerical results show that the proposed POD Petrov–Galerkin
method gives more accurate and stable results than the corresponding results obtained by using
the POD Bubnov–Galerkin method [28]. In [29], a generalized Langevin equation is investigated
and shown that the form of its coefficients depends critically on the assumption of continuity of the
reconstructed trajectory. In [30], the two-dimensional unsteady Burgers equation is presented and
the authors use the 4-bit lattice Boltzmann model to solve the 2D unsteady Burgers equation. In [31],
numerical solutions for the 2D Burgers equation are computed using higher-order accurate finite
difference schemes. More precisely, the author used the fourth-order accurate Du Fort Frankel scheme
for solving the two-dimensional Burgers equation.

In this paper, we apply the symmetric space-time Chebyshev SC (CSC) method for solving Burgers
equation and compare the associated results with those of some other aforementioned well-known
methods. Through the numerical examples, we show that CSC method is more effective than other
methods and we can achieve to more precise results for the solution of Burgers equations. In fact, we
see that the number of discretization points (i.e., the CGL points in CSC method) and also the error of
CSC method are less than the others used to solve Burgers equations.

This paper is organized as follows: In Section 2, Burgers equation and its different types are
introduced. The CSC method for Burgers equation is implemented in Section 3. In Section 4, the
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convergence of the CSC method is analyzed. Next, the two-dimensional Burgers equation is introduced
in Section 5 and the CSC method is applied to solve the equation. Then, Section 6 contains numerical
examples to solve the Burgers equations in both cases of one and two-dimensional. Also, the figures of
errors (associated with the proposed method) are depicted in some cases which confirm the efficiency
of our suggested numerical scheme. Finally, the paper is concluded with a reasonable conclusion.

2. Burgers Equation

Three important types of Burgers equations are as follows:

1. For a field V(., .) and diffusion coefficient (or viscosity, as in the original fluid mechanical context)
ε, the general form of viscous Burgers equation is as follows

Vt + VVx − εVxx = 0 , a ≤ x ≤ b , t > 0. (1)

2. The Burgers–Fisher equation is a non-linear PDE of second order of the form

Vt −Vxx + α(t)VVx = β(t)V(1−V) , a ≤ x ≤ b, (2)

where α(.) and β(.) are given functions. It plays an important role in various fields of gas
dynamics, traffic flow, physics applications, financial and applied mathematics [23].

3. The Burgers–Huxley equation is as follows

Vt + αVδVx − βVxx = γV(1−Vδ)(Vδ − η) , 0 ≤ x ≤ 1, (3)

where α, β, δ, γ and η are given constants. The Burgers–Huxley as a non-linear PDE describes the
interaction between reaction mechanisms, convection effects, and diffusion transports [23].

In this paper, we represent the Burgers equations (1)-(3) as the following general form

Vt = Λ(t, V, Vx, Vxx). (4)

The time initial and space boundary conditions (in Dirichlet form) for Burgers equation (4) are
usually given as follows

V(0, x) = f (x) , a ≤ x ≤ b, (5)

V(t, a) = g1(t) , t ∈ [T0, T1], (6)

V(t, b) = g2(t) , t ∈ [T0, T1]. (7)

3. Implementing the CSC Method

Here, the CSC method for Burgers Equation (4) with conditions (5)–(7) is presented. The CSC
method [32–34] is one of the most efficient numerical methods to solve continuous-time problems.
Recently, some researchers have applied it to solve special problems (see [35–37]). One of the most
important advantages of CSC method in comparison with other approximate methods is the high
degree of accuracy that CSC approximations offer. Also, the CSC underlying polynomial space
spanned by Chebyshev orthogonal polynomials on the interval [−1, 1] with respect to a weight

function w(t) =
1√

1− t2
. In the CSC method, we use some points on the interval [−1, 1] to discretize
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the problem. Hence, we first transform the variables of Equation (4) to this interval by the following
relations 

t =
T1 − T0

2
t̄ +

T1 + T0

2
, t ∈ [T0, T1] , t̄ ∈ [−1, 1],

x =
b− a

2
x̄ +

b + a
2

, x ∈ [a, b] , x̄ ∈ [−1, 1].
(8)

Therefore, Burgers Equation (4)–(7) converted into the following form
Ut̄ = ψ (t̄, U(t̄, x̄), Ux̄(t̄, x̄), Ux̄x̄(t̄, x̄)) ,

U(−1, x̄) = F(x̄),

U(t̄,−1) = G1(t̄),

U(t̄, 1) = G2(t̄),

(9)

where

ψ (t̄, U, Ux̄, Ux̄x̄) =
T1 − T0

2
Λ
(

T1 − T0

2
t̄ +

T1 + T0

2
, U, Ux̄, Ux̄x̄

)
U(t̄, x̄) = V(

T1 − T0

2
t̄ +

T1 + T0

2
,

b− a
2

x̄ +
b + a

2
),

Ux̄(t̄, x̄) =
2

b− a
Vx(

T1 − T0

2
t̄ +

T1 + T0

2
,

b− a
2

x̄ +
b + a

2
),

Ux̄x̄(t̄, x̄) =
(

2
b− a

)2
Vxx(

T1 − T0

2
t̄ +

T1 + T0

2
,

b− a
2

x̄ +
b + a

2
),

F(x̄) = f (
b− a

2
x̄ +

b + a
2

),

G1(t̄) = g1(
T1 − T0

2
t̄ +

T1 + T0

2
),

G2(t̄) = g2(
T1 − T0

2
t̄ +

T1 + T0

2
).

To discretize system (9), we use the CGL points on [−1, 1] which are defined by the following relations

x̄k = t̄k = cos(
N − k

N
π) , k = 0, 1, ..., N, (10)

where they are the roots of (1− t̄ 2)
dTN
dt̄

and TN(.) is the Chebyshev polynomial of order N. It should
be noted that the Chebyshev polynomials are expressed by

Tj(t̄) = cos(jcos−1(t̄)) , t̄ ∈ [−1, 1] , j = 0, 1, . . . , N, (11)

and it is easy to show that {
T0(t̄) = 1 , T1(t̄) = t̄

Tj+1(t̄) = 2 t̄ Tj(t̄)− Tj−1(t̄) , j = 1, 2, . . . .

For interpolating in the CSC method, the following Lagrange polynomials are used

Lk(t̄) =
N

∏
j=0
j 6=k

t̄− t̄j

t̄k − t̄j
=

2
Nµk

N

∑
j=0

1
µj

Tj(t̄k)Tj(t̄), k = 0, 1, . . . , N, t̄ ∈ [−1, 1],
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where

µj =

{
2, i f j = 0, N,

1, i f 1 ≤ j ≤ N − 1,

and we have

Lj(t̄k) = δjk =

{
1, i f j = k,

0, i f j 6= k.
(12)

In the CSC method, to approximate the solution of Burgers Equation (9), we use the following
polynomial interpolation

U(t̄, x̄) ≈ UN(t̄, x̄) =
N

∑
i=0

N

∑
j=0

āN
ij Li(t̄)Lj(x̄). (13)

By (12), we have
UN(t̄i, x̄j) = āN

ij . (14)

To express the derivative UN
t̄ (·, ·), UN

x̄ (·, ·) and UN
x̄x̄(·, ·) in terms of UN(·, ·) at the node points t̄k ,

we can use the matrix multiplication D = (Dkj) and get
UN

t̄ (t̄p, x̄k) = ∑N
i=0 āN

ik Dpi,

UN
x̄ (t̄p, x̄k) = ∑N

j=0 āN
pjDkj,

UN
x̄x̄(t̄p, x̄k) = ∑N

j=0 āN
pjD̂kj, k, p = 0, 1, . . . , N,

(15)

where

Dkj = L′j(t̄k) =



µk
µj

(−1)k+j 1
t̄k − t̄j

, i f j 6= k,

− t̄k

2− 2t̄2
k

, i f 0 ≤ j = k ≤ N − 1,

−2N2 + 1
6

, i f j = k = 0,

2N2 + 1
6

, i f j = k = N,

(16)

D̂ = D ·D = (D̂kj), D̂kj = ∑N
l=0 Dkl Dl j, k, j = 0, 1, . . . , N. In fact, multiplication by matrix D transforms

a vector of the state variables at the CGL points to the vector of approximate derivatives at these points.
Now, by relations (14) and (15), the system (9) can be converted into the following system of algebraic
equations 

∑N
i=0 āN

ik Dpi − ψ
(

t̄p, āN
pk, ∑N

j=0 āN
pjDkj, ∑N

j=0 āN
pjD̂kj

)
= 0,

āN
0k = F(x̄k); k = 0, 1, . . . , N,

āN
p0 = G1(t̄p), āN

pN = G2(t̄p); p = 1, . . . , N.

(17)

Here, by solving above system with respect to (āN
pk; p, k = 0, 1, . . . , N), we can obtain continuous

and pointwise approximate solutions (13) and (14), respectively.

4. The Convergence of the Method

In this section, first we give definition of the modulus of continuity and then analyze the
convergence of the presented method.

Assume that Ω̄ = [−1, 1]× [−1, 1]. With Cr(Ω̄) we denote the space of the continuous functions
with continuous derivatives of rth order.
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Definition 1. Function W : R+ → R+ with the following properties is called a modulus of continuity [38]

1. W is increasing,
2. limz→0 W(z) = 0,
3. for any z1 and z2 ∈ R+, W(z1 + z2) ≤W(z1) + W(z2),
4. there exists a constant c such that for all 0 < z ≤ 2, cW(z) ≥ z.

Some important modulus of continuity can be defined as

W(z) = zα, 0 < α ≤ 1. (18)

Now, assume that B2 is a unit circle in R2. We say that a continuous function f (·, ·) on Ω̄ admits
W(·) as a modulus of continuity, if the following value is finite

| f (·, ·)|W = sup
{
| f (t̄, x̄)− f (t̃, x̃)|

W (‖(t̄, x̄)− (t̃, x̃)‖∞)
: (t̄, x̄), (t̃, x̃) ∈ Ω̄, (t̄, x̄) 6= (t̃, x̃)

}
, (19)

where

‖(t̄, x̄)− (t̃, x̃)‖∞ = max{|t̄− t̃|, |x̄− x̃|}; (t̄, x̄), (t̃, x̃) ∈ Ω̄, (t̄, x̄) 6= (t̃, x̃). (20)

With C1
W(B2) we denote the space of all functions f (·, ·) on B2 with continuous first-order partial

derivatives, and let it is endowed with the following norm

‖ f (·, ·)‖1,W = ‖ f (·, ·)‖∞ + ‖ f t̄(·, ·)‖∞ + ‖ f x̄(·, ·)‖∞ + | f t̄(·, ·)|W + | f x̄(·, ·)|W · (21)

Next, define

C1
W(Ω̄) =

{
f (·, ·) ∈ C1(Ω̄) : ∀(t̃, x̃) ∈ Ω̄, ∃ map φ : B2 → Ω̄, s.t.

(t̃, x̃) ∈ int(φ(B2)) and f ◦ φ(·, ·) ∈ C1
W(B2)

}
. (22)

It can be proved that if Ω̄ =
⋃l

i=1 int(φi(B2)) for some φ1, . . . , φl , then f (·, ·) ∈ C1
W(Ω̄) if and only

if f ◦ φi(·, ·) ∈ CW(B2) for each i = 1, . . . , l. Moreover, C1
W(Ω̄) with norm

‖ f (·, ·)‖1,W =
l

∑
i=1
‖ f ◦ φi(·, ·)‖1,W , (23)

is a Banach space (for more details see [38]). At follows, we show the space of all polynomials of total
degree at most 2N on Ω̄ by Pol(N, N, Ω̄), i.e.,

Pol(N, N, Ω̄) = {η(t̃, x̃) =
N

∑
i=0

N

∑
j=0

γij t̃i x̃j : (t̃, x̃) ∈ Ω̄, γij ∈ R}.

Theorem 1. For any f (·, ·) ∈ C1
W(Ω̄), there is a polynomial η(·, ·) ∈ Pol(N, N, Ω̄) such that

‖ f (·, ·)− η(·, ·)‖∞ ≤
c0c1

2N
W(

1
2N

), (24)

where c1 = ‖ f (·, ·)‖1,W and c0 is a constant that depends on W(·), but independent of N.

Proof. The proof is a result of Theorem 2.1 in [38].
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To prove the existence of solutions of the system (17), we convert it in the following form
|∑N

i=0 āN
ik Dpi − ψ

(
t̄p, āN

pk, ∑N
j=0 āN

pjDkj, ∑N
j=0 āN

pjD̂kj

)
|

≤
√

N
2N−1 W( 1

2N−1 ), p, k = 1, 2, . . . , N − 1,

|āN
p0 − G1(t̄p)| ≤

√
N

2N−1 W( 1
2N−1 ), |āN

pN − G2(t̄p)| ≤
√

N
2N−1 W( 1

2N−1 ), p = 0, 1, . . . , N,

|āN
0k − F(x̄k)| ≤

√
N

2N−1 W( 1
2N−1 ), k = 0, 1, . . . , N,

(25)

where N is sufficiently big and W(·) is a given modulus of continuity. Since limN→∞√
N

2N−1 W( 1
2N−1 ) = 0, any solution āN = (āN

pk; p, k = 0, 1, . . . , N) for system of algebraic inequalities (25)
is a solution for system of algebraic equations (17) when N tends to infinity.

We assume that ψ has bounded and continuous derivatives with respect to its arguments. Hence,
there exists a constant M such that

|ψ (t̄, U, Ux̄, Ux̄x̄)− ψ
(
t̄, Ũ, Ũx̄, Ũx̄x̄

)
| ≤ M|U − Ũ|. (26)

Now we will show that the system (25) has at least one solution āN .

Theorem 2. Let U(·, ·) be a solution for system (9) where U(·, ·) is in C1
W(Ω̄). Then there is a positive integer

K such that for any N ≥ K, system (25) has a solution as

āN = (āpk; p, k = 0, 1, . . . , N), (27)

which satisfies

|U(t̄p, x̄k)− āN
pk| ≤

L
2N − 1

W(
1

2N − 1
) , p, k = 0, 1, . . . , N, (28)

where L is a positive constant independent of N.

Proof of Theorem 2. Assume that η(·, ·) in Pol(N − 1, N, Ω̄) is the best polynomial approximation of
Ut̄(·, ·). By Theorem 1, we get

‖Ut̄(t̄, x̄)− η(t̄, x̄)‖∞ ≤
γ

2N − 1
W(

1
2N − 1

) , (t̄, x̄) ∈ Ω̄, (29)

where γ is a constant independent of N. We define

Ũ(t̄, x̄) = U(−1, x̄) +
∫ t̄

−1
η(τ, x̄)dτ, (t̄, x̄) ∈ Ω̄, (30)

and
āN

pk = Ũ(t̄p, x̄k); p, k = 0, 1, . . . , N. (31)

We will see that āN = (āN
pk; p, k = 0, 1, . . . , N) satisfies system (25). By (29), (30) and (31), for

(t̄, x̄) ∈ Ω̄, we get

|U(t̄, x̄)− Ũ(t̄, x̄)| = |
∫ τ

−1
(Ut̄(τ, x̄)− η(τ, x̄))dτ| ≤

∫ τ

−1
|Ut̄(τ, x̄)− η(τ, x̄)| dτ (32)

≤ γ
2N−1 W( 1

2N−1 )
∫ τ
−1 dτ ≤ 2γ

2N−1 W( 1
2N−1 ).
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Now, by the relation (30), the function Ũ(·, x̄), x̄ ∈ [−1, 1], is a polynomial of total degree at most
2N. Hence, its derivatives at CGL nodes t̄0, t̄1, . . . , t̄N are exactly equal to the value of the polynomial
at the nodes multiplied by the differential matrix D, defined by (16). Thus, we have

N

∑
i=0

āN
ik Dpi = Ũt̄(t̄p, x̄k); p, k = 0, 1, . . . , N. (33)

Therefore, by the relations (26) and (32), we get∣∣∣∣∣ N

∑
i=0

aN
ik Dpi − ψ

(
t̄p, āN

pk,
N

∑
j=0

āN
pjDkj,

N

∑
j=0

āN
pjD̂kj

)∣∣∣∣∣ (34)

≤
∣∣Ũt̄(t̄p, x̄k)−Ut̄(t̄p, x̄k)

∣∣+∣∣∣∣∣Ut̄(t̄p, x̄k)− ψ

(
t̄p, āN

pk,
N

∑
j=0

āN
pjDkj,

N

∑
j=0

āN
pjD̂kj

)∣∣∣∣∣
=
∣∣η(t̄p, x̄k)−Ut̄(t̄p, x̄k)

∣∣+∣∣∣∣∣ψ
(

t̄p, U(t̄p, x̄k), Ux̄(t̄p, x̄k), Ux̄x̄(t̄p, x̄k)

)
− ψ

(
t̄p, āN

pk,
N

∑
j=0

āN
pjDkj,

N

∑
j=0

āN
pjD̂kj

)∣∣∣∣∣
≤
∣∣η(t̄p, x̄k)−Ut̄(t̄p, x̄k)

∣∣+ M
∣∣∣U(t̄p, x̄k)− āN

pk

∣∣∣
≤ γ

2N − 1
W(

1
2N − 1

) + M
2γ

2N − 1
W(

1
2N − 1

)

=
γ(2M + 1)

2N − 1
W(

1
2N − 1

), p, k = 1, . . . , N − 1,

where M is a Lipschitz constant which satisfies the relation (26). Furthermore, for boundary conditions,
we get ∣∣Ũ(−1, x̄k)− F(x̄k)

∣∣ ≤
∣∣Ũ(−1, x̄k)−U(−1, x̄k)

∣∣+ |U(−1, x̄k)− F(x̄k)| (35)

≤ 2γ

2N − 1
W(

1
2N − 1

), k = 0, 1, . . . , N.

Also, for all p = 0, 1, . . . , N,

∣∣Ũ(t̄p,−1)− G1(t̄p)
∣∣ = ∣∣Ũ(t̄p,−1)−U(t̄p,−1)

∣∣ ≤ 2γ

2N − 1
W(

1
2N − 1

), (36)∣∣Ũ(t̄p, 1)− G2(t̄p)
∣∣ = ∣∣Ũ(t̄p, 1)−U(t̄p, 1)

∣∣ ≤ 2γ

2N − 1
W(

1
2N − 1

). (37)

Hence, if we select K such that

max{γ(2M + 1), 2γ} ≤
√

N,

for N ≥ K, then by (34)-(37), āN satisfies the system (25). This completes the proof.

Now, we will show that the sequence of the solutions for the system (25) and the sequence of their
interpolating polynomials converge to the solution of the system (9).

Theorem 3. Let {āN = āN
pk; p, k = 0, 1, . . . , N}∞

N=K be a sequence of solutions for the system (25) and
{UN(·, ·)}∞

N=K be their interpolating polynomials sequence defined by (13). Also, we assume that for any x̄
in [−1, 1], the sequence {(UN(−1, x̄), UN

t̄ (·, ·))}∞
N=K has a subsequence {(UNi (−1, x̄), UNi

t̄ (·, ·))}∞
i=0 that
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uniformly converges to (φ∞(x̄), λ(·, ·)), where λ(·, ·) ∈ C2(Ω̄), φ∞(·) ∈ C2([−1, 1]) and limi→∞ Ni = ∞.
Then the pair

Ũ(t̄, x̄) = lim
i→∞

UNi (t̄, x̄), (38)

for (t̄, x̄) ∈ Ω̄, is a solution of the system (9).

Proof of Theorem 3. By our assumptions, we have

Ũ(t̄, x̄) = φ∞(x̄) +
∫ t̄

−1
λ(τ, x̄)dτ. (39)

We first show that Ũ(t̄, x̄) for t̄ ∈ [−1, 1] and x̄ = xk, k = 0, 1, . . . , N satisfy the system (9). Assume
that Ũ(·, x̄k) for some k = 1, . . . , N − 1 does not satisfy the first equation of (9). Then, there is a τ in
(−1, 1) such that

Ũt̄(τ, x̄k)− ψ
(
t̄p, Ũ(τ, x̄k), Ũx̄(τ, x̄k), Ũx̄x̄(τ, x̄k)

)
6= 0.

Since the CGL nodes {t̄p}N
p=0 are dense in [−1, 1] when N → ∞, there is a sequence {t̄lNi

}∞
i=1 such

that 0 < lNi < Ni and limi→∞ t̄lNi
= τ. Thus,

lim
i→∞

(
Ũt̄(t̄lNi

, x̄k)− ψ
(

t̄p, Ũ(t̄lNi
, x̄k), Ũx̄(t̄lNi

, x̄k), Ũx̄x̄(t̄lNi
, x̄k)

))
(40)

= Ũt̄(τ, x̄k)− ψ
(
t̄p, Ũ(τ, x̄k), Ũx̄(τ, x̄k), Ũx̄x̄(τ, x̄k)

)
6= 0.

On the other hand, since limi→∞

√
Ni

2Ni−1 W( 1
2Ni−1 ) = 0, by (25) we obtain

lim
i→∞

(
Ũt̄(t̄lNi

, x̄k)− ψ
(

t̄p, Ũ(t̄lNi
, x̄k), Ũx̄(t̄lNi

, x̄k), Ũx̄x̄(t̄lNi
, x̄k)

))
= 0,

which contradicts with (40). Thus, Ũ(t̄, x̄) (for all t̄ ∈ [−1, 1] and x̄ = x̄k, k = 1, . . . , N − 1) satisfies the
first equation of (9). Also, it can be easily proven that Ũ(·, x̄k), k = 0, 1, . . . , N, satisfies the boundary
conditions. For example, we show that Ũ(−1, x̄k) = F(x̄k) for k = 0, 1, . . . , N. We have

0 ≤ |Ũ(−1, x̄k)− F(x̄k)| = | lim
i→∞

UNi (−1, x̄k)− F(x̄k)| = lim
i→∞
|UNi (−1, x̄k)− F(x̄k)|

= lim
i→∞
|āNi

0k − F(x̄k)| ≤ lim
i→∞

√
Ni

2Ni − 1
W(

1
2Ni − 1

) = 0.

Hence, Ũ(−1, x̄k) = F(x̄k) for all k = 0, 1, . . . , N. Now, we know that the nodes {x̄k}N
k=0 are

dense in [−1, 1] when N → ∞. Therefore the pair Ũ(·, ·), defined by (38), is a solution of (9) on
Ω̄ = [−1, 1]× [−1, 1]. This completes the proof.

5. The Generalization of the CSC Method for Two-Dimensional Burgers Equation

In this section, we introduce the two-dimensional Burgers equation and solve it by using the CSC
method. The two-dimensional Burgers equation is as follows

Ut(x, y, t) + U(x, y, t)Ux(x, y, t) + U(x, y, t)Uy(x, y, t) = ε(Uxx(x, y, t) + Uyy(x, y, t)),

(x, y, t) ∈ [0, 1]× [0, 1]× [0, T],
(41)

and the time initial and space boundary conditions are as follows

U(x, y, 0) = f (x, y), (42)
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U(0, y, t) = h1(y, t), (43)

U(1, y, t) = h2(y, t), (44)

U(x, 0, t) = h3(x, t), (45)

U(x, 1, t) = h4(x, t). (46)

As we explained x̄k, ȳn and t̄p are the CGL points which were defined in the section (3) .
Now, for obtaining the numerical solution of the two-dimensional Burgers equation (41) by

applying the CSC method, the interpolation polynomial is following

U(x̄, ȳ, t̄) ≈ UN(x̄, ȳ, t̄) =
N

∑
i=0

N

∑
j=0

N

∑
l=0

āN
ijl Li(x̄)Lj(ȳ)Ll(t̄). (47)

By (12), we have
UN(x̄k, ȳn, t̄p) = āN

knp (48)

To represent the derivatives UN
t̄ (·, ·, ·), UN

x̄ (·, ·, ·), UN
ȳ (·, ·, ·), UN

x̄x̄(·, ·, ·) and UN
ȳȳ(·, ·, ·) in terms of

UN(·, ·, ·) at the node points (x̄k, ȳn, t̄p), by using the matrix multiplication D = (Dkj), we have

UN
t̄ (x̄k, ȳn, t̄p) = ∑N

l=0 āN
knl Dpl ,

UN
x̄ (x̄k, ȳn, t̄p) = ∑N

i=0 āN
inpDki,

UN
ȳ (x̄k, ȳn, t̄p) = ∑N

j=0 āN
kjpDnj,

UN
x̄x̄(x̄k, ȳn, t̄p) = ∑N

i=0 āN
inpD̂kj,

UN
ȳȳ(x̄k, ȳn, t̄p) = ∑N

j=0 āN
kjpD̂nj, k, n, p = 0, 1, . . . , N,

(49)

where Dkj and D̂kj were defined in the section (3).
Now, by applying relations (48) and (49) equation (41) can be rewritten as

∑N
l=0 āN

knl Dpl + āknp

(
∑N

i=0 āN
inpDki + ∑N

j=0 āN
kjpDnj

)
− ε

(
∑N

i=0 āN
inpD̂kj + ∑N

j=0 āN
kjpD̂nj

)
= 0

ākn0 = f (x̄k, ȳn), k, n = 0, 1, . . . , N,

ā0np = h1(ȳn, t̄p), n = 0, 1, . . . , N, p = 1, . . . , N,

āNnp = h2(ȳn, t̄p), n = 0, 1, . . . , N, p = 1, . . . , N,

āk0p = h3(x̄k, t̄p), k = 1, . . . , N − 1, p = 1, . . . , N,

ākNp = h4(x̄k, t̄p), k = 1, . . . , N − 1, p = 1, . . . , N,

(50)

Now, we can obtain the numerical solution of the above system with respect to (āN
knp; k, n, p =

0, 1, . . . , N).

6. Numerical Examples

In the following examples, we use the Levenberg-Marquardt method (a quasi-Newton method)
for FSOLVE command in MATLAB software to solve the algebraic system (17). We calculate L2 and
L∞ errors as follows

L2 =‖ U(t̄, ·)−UN(t̄, ·) ‖2= (
N

∑
j=0
| U(t̄, xj)−UN(t̄, xj) |2)

1
2 ,

L∞ =‖ U(t̄, ·)−UN(t̄, ·) ‖∞= max
0≤j≤N

| U(t̄, xj)−UN(t̄, xj) |, (51)
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where xj, j = 0, 1, . . . , N, are the collocation points, t̄ ∈ [−1, 1] is a given point and U(·, ·) and UN(·, ·)
are the analytical and approximate solutions, respectively. Also, the absolute error can be obtained by

E(t̄, x̄) =| U(t̄, x̄)−UN(t̄, x̄) | , (t̄, x̄) ∈ [−1, 1]× [−1, 1].

Example 1. Consider the Burgers–Fisher equation (2), where T0 = −0.2, T1 = 0, a = −1, b = 0, α(t) = 24
and β(t) = −48 for t ∈ [T0, T1]. Also, we assume that the boundary conditions are given by

U(t,−1) =
1
2
− 1

2
tanh[6(−1− 8t)],

U(t, 0) =
1
2
− 1

2
tanh[6(−8t)],

and the initial condition is as follows

U(−0.2, x) =
1
2
− 1

2
tanh[6(x + 1.6)].

Then the exact solution is

U(t, x) =
1
2
− 1

2
tanh[6(x− 8t)].

We gain the numerical results by the CSC method at t = −0.1, −0.05, −0.04, −0.035, −0.03
for N = 30 × 30 which are shown in Table 1. We observe that our numerical results are better
than the results of MMPDE methods [8], which they are obtained for ∆t = 10−6 and ∆x = 1

60 (or
N = 200, 000× 60). In Table 1, L2 errors are presented. In Figures 1 and 2, we show the approximate
solution and absolute error, respectively. In Figure 3, we represent the exact and approximate solutions
for t = −0.1, −0.05 and −0.03. We also illustrate L2 errors in Figure 4.

Table 1. Comparison of the L2 error for Example 1.

Method N t = −0.1 t = −0.05 t = −0.04 t = −0.035 t = −0.03

Presented method 30× 30 1.8293× 10−4 1.1920× 10−4 1.2691× 10−4 1.4053× 10−4 1.4187× 10−4

Mesh for optimal M [8] 200, 000× 60 2.1× 10−3 2.9× 10−3 3.4× 10−3 3.7× 10−3 4.2× 10−3

Mesh for arc-length M [8] 200, 000× 60 2.7× 10−3 8× 10−3 7.9× 10−3 7.6× 10−3 7.1× 10−3

Mesh for curvature M [8] 200, 000× 60 2.1× 10−3 2.4× 10−3 2.4× 10−3 2.4× 10−3 2.5× 10−3
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U
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Figure 1. The approximate solution for Example 1.
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Figure 2. The absolute error E(., .) for example 1
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Figure 3. Exact and approximate solutions for t = −0.1 , −0.05 and −0.03.
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Figure 4. L2 errors for Example 1.
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Example 2. Consider the Burgers–Fisher equation (2), where T0 = −0.05, T1 = 0.05, a = −1, b = 0,
α(t) = 20 and β(t) = −1 + 3sint for t ∈ [T0, T1]. Also, consider the boundary conditions

U(t,−1) =
cosh[−1− 3cost] + sinh[−1− 3cost]−

√
5

−4cosh[−1− 3cost] + 6sinh[−1− 3cost]
,

U(t, 0) =
cosh[−3cost] + sinh[−3cost]−

√
5

−4cosh[−3cost] + 6sinh[−3cost]
,

and the initial condition

U(−0.05, x) =
cosh[x− 3cos(−0.05)] + sinh[x− 3cos(−0.05)]−

√
5

−4cosh[x− 3cos(−0.05)] + 6sinh[x− 3cos(−0.05)]
.

By these, the exact solution is as follows

U(t, x) =
cosh[x− 3cost] + sinh[x− 3cost]−

√
5

−4cosh[x− 3cost] + 6sinh[x− 3cost]
.

We solve the system (17) according to this example. Table 2 shows the L2 errors at t = −0.05,
−0.025, 0, 0.025 and 0.05 for CSC method and MMPDE methods [8]. Our numerical results are satisfied
N = 10× 10 (or equivalently ∆x = 0.1 and ∆t = 0.01) and results of the MMPDE methods are with
∆x = 1

40 and ∆t = 10−4 (or equivalently N = 1000× 40). In Figures 5, 6 and 7, we illustrate the
approximate solution, absolute error and the L2 error, respectively.

Table 2. Comparison of the L2 error for Example 2.

Method N t = −0.05 t = −0.025 t = 0 t = 0.025 t = 0.05

Presented method 10× 10 4.8044× 10−6 2.4602× 10−4 4.1079× 10−4 5.3422× 10−4 6.2951× 10−4

Mesh for optimal M [8] 1000× 40 2.2× 10−3 4× 10−3 5.3× 10−3 3.5× 10−3 1.2× 10−3

Mesh for arc-length M [8] 1000× 40 1.8× 10−3 4.1× 10−3 6.6× 10−3 6.8× 10−3 2.3× 10−3

Mesh for curvature M [8] 1000× 40 2.2× 10−3 4× 10−3 5.2× 10−3 3.6× 10−3 9.6× 10−4
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Figure 5. The approximate solution for Example 2.
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Figure 6. The absolute error E(., .) for Example 2.
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Figure 7. L2 errors for Example 2.

Example 3. Consider the Burgers–Huxley equation (3) with α = 1, δ = 2 and γ = 0. Therefore, it can be
written as follows

Ut + U2Ux − βUxx = 0, (52)

where T0 = 1, T1 = 10, a = 0 and b = 1. Also, consider the boundary conditions

U(t, 0) = 0 ,

U(t, 1) =
1

t + t
√

t
c0

exp( 1
4βt )

, (53)

and the initial condition

U(1, x) =
x

1 + 1
c0

exp( x2

4β )
, (54)

where 0 < c0 < 1. Hence, the exact solution is given by

U(t, x) =
x
t

1 +
√

t
c0

exp( x2

4βt )
.
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We take c0 = 0.5 and β = 0.01. Table 3 shows the L∞ errors by using CSC method and given
methods in [9,12,15,16] for t = 2, 4 and 6 and N = 9× 9. In Figures 8 and 9, we show the approximate
solution and absolute error, respectively. Also, in Figure 10, we represent the exact and approximate
solutions for t = 2, 6 and 10. Moreover, Figure 11 shows the L∞ error.

Table 3. Comparison of the L∞ error for Example 3.

Method N T = 2 T = 6 T = 10

Presented method 9× 9 5.5673× 10−4 4.4466× 10−4 3.0034× 10−4

Haar wavelet method [12] 16× 900 7.5978× 10−4 4.6335× 10−4 1.16480× 10−3

QBC method [10] 200× 900 1.21698× 10−3 7.2249× 10−4 1.28124× 10−3

SBC method [9] 50× 900 1.70309× 10−3 7.6105× 10−4 1.80239× 10−3

QBCA1 method [15] 200× 900 8.1680× 10−4 5.2579× 10−4 1.28125× 10−3

QBCA2 method [15] 200× 900 8.2212× 10−4 5.2579× 10−4 1.28125× 10−3

SBC1 method [16] 200× 900 8.2934× 10−4 . . . 1.28127× 10−3

SBC2 method [16] 200× 900 8.2734× 10−4 . . . 1.28127× 10−3
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Figure 8. The approximate solution for Example 3.
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Figure 9. The absolute error E(., .) for Example 3.
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Figure 10. Exact and approximate solutions for t = 2 , 6 and 10.
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Figure 11. L∞ errors for Example 3.

Example 4. Consider the Burgers equation (52) for x ∈ [0, 1.3] and

U(t, 0) = 0 ,

U(t, 1) =
1.3

t + t
√

t
c0

exp( 1.69
4βt )

,

U(1, x) =
x

1 + 1
c0

exp( x2

4β )
.

The numerical results of our method and other methods [12,16] are displayed in Table 4 for
different values of t. The L∞ error results for this example is depicted in Table 4 along with the
comparison of the error computed by the present method and other methods. In Figures 12 and 13, the
approximate solution and absolute error are shown, respectively. Also, in Figure 14, we represent the
exact and approximate solutions for t = 2, 6 and 10.

Table 4. Comparison of the L∞ error for Example 4.

Method N T = 2 T = 6 T = 10

Presented method 10× 10 5.306× 10−4 4.294× 10−4 3.166× 10−4

Haar wavelet method [12] 16× 900 7.2890× 10−4 4.5606× 10−4 3.2374× 10−4

SBC1 method [16] 260× 900 8.2934× 10−4 . . . 3.2723× 10−4

SBC2 method [16] 260× 900 8.2734× 10−4 . . . 3.2337× 10−4
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Figure 12. The approximate solution for Example 4.
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Figure 13. The absolute error E(., .) for Example 4.
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Figure 14. Exact and approximate solutions for t = 2 , 6 and 10.

Example 5. Consider the Burgers equation (1), where T0 = 1, T1 = 5, a = 0, b = 8 and ε = 0.5. The initial
condition for the current problem is

U(1, x) =
x

1 + exp( 1
4ε (x2 − 1

4 ))
, (55)
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and the boundary conditions are

U(t, 0) = 0 ,

U(t, 8) =
8

t + t( t
exp( 1

8ε )
)

1
2 exp( 16

εt )
. (56)

Here, we have the following analytical solution

U(t, x) =
x
t

1 + ( t
exp( 1

8ε )
)

1
2 exp( x2

4εt )
.

In Figures 15 and 16, we show the approximate solution and absolute error, respectively. Also,
Figure 17 illustrates the comparison between the exact solution and numerical solution given by the
proposed method. Also, we compare the L∞ and L2 errors which are computed by the present method
and other methods [14] in Table 5. We can observe that the results of CSC for N = 30× 30 are better
than the results of method of Inan and Bahadir [14] for N = 320× 40, 000.

Table 5. Comparison of the L∞ and L2 errors for Example 5

Method T N L2 L∞

Presented method T = 1.5 30× 30 3.2025× 10−8 1.2611× 10−7

I − EFD method [14] T = 1.5 320× 40, 000 2.1× 10−5 1.8× 10−5

FI − EFD method [14] T = 1.5 320× 40, 000 2.2× 10−5 1.9× 10−5

Presented method T = 3 30× 30 3.2026× 10−8 6.9546× 10−9

I − EFD method [14] T = 3 320× 40, 000 2.2× 10−5 3.8× 10−5

FI − EFD method [14] T = 3 320× 40, 000 2.3× 10−5 1.8× 10−5

Presented method T = 4.5 30× 30 3.2028× 10−8 1.6022× 10−9

I − EFD method [14] T = 4.5 320× 40, 000 4.08× 10−4 7.43× 10−4

FI − EFD method [14] T = 4.5 320× 40, 000 4.08× 10−4 7.43× 10−4
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Figure 15. The approximate solution for Example 5.
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Figure 16. The absolute error E(., .) for Example 5.

0 1 2 3 4 5 6 7 8
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

U
(t

,.
)

 

 
Approximate solution for t= 1.5
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Figure 17. Exact and approximate solutions for Example 5.

Example 6. By considering the two-dimensional Burgers equation (41) with T = 1 and ε = 0.1, 0.2, 0.5 and
1, the initial condition is as follow [30,31]

U(x, y, 0) =
1

1 + exp( (x+y)
2ε )

, (57)

and the boundary conditions are

U(0, y, t) =
1

1 + exp( y−t
2ε )

,

U(1, y, t) =
1

1 + exp( (1+y−t)
2ε )

, (58)

U(x, 0, t) =
1

1 + exp( (x−t)
2ε )

, (59)

U(x, 1, t) =
1

1 + exp( (x+1−t)
2ε )

. (60)



Symmetry 2019, 11, 1439 20 of 24

By these considerations, the exact solution is

U(x, y, t) =
1

1 + exp( (x+y−t)
2ε )

.

We calculate approximate solutions and absolute errors in different ε = 0.1, 0.2, 0.5 and 1 with
N = 10. In Figures 18 and 19, we observe the approximate solutions and absolute errors with ε = 0.1,
respectively. Also, Figures 20 and 21 illustrate the numerical solution and absolute error given by the
presented method for ε = 0.1. The approximate solutions and absolute errors with ε = 0.5 and 1 are
expressed in Figures 22–25, respectively. Moreover, we computed the L∞ errors for various ε at t = t0

which are shown in Table 6.

Table 6. The L∞ error for various ε Example 6.

The CSC Method ε = 0.1 ε = 0.2 ε = 0.5 ε = 1

L∞ 1.076× 10−4 3.421× 10−5 6.073× 10−5 7.333× 10−6
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Figure 18. The approximate solution for ε = 0.1 Example 6.
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Figure 19. The absolute error for ε = 0.1 Example 6.
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Figure 20. The approximate solution for ε = 0.2 Example 6.
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Figure 21. The absolute error for ε = 0.2 Example 6.
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Figure 22. The approximate solution for ε = 0.5 Example 6.
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Figure 23. The absolute error for ε = 0.5 Example 6.
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Figure 24. The approximate solution for ε = 1 Example 6.
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Figure 25. The absolute error for ε = 1 Example 6.

7. Conclusions

In this article, we used the Chebyshev spectral collocation method to get numerical solutions for
different types of one and two-dimensional Burgers equation. We analyzed the convergence of the
CSC method by using the concept of module of continuity and compared the obtained approximate
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solutions with those of other methods. We showed that the CSC method has very high accuracy and it
is more precise with respect to the other numerical methods. Our investigations can be used in the
three-dimensional case and we prepare these investigations as a future article.
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