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1. Introduction

Lorentz and CPT symmetry are two of the greatest principles in modern physics. In the last
few decades, the exactness of the symmetry has been put into question, and its violation has been
pursued as a candidate low energy signal for a quantum theory of gravity. The potential of Lorentz
and CPT symmetry as a low energy signal was first proposed following the realization that realistic
mechanisms for spontaneous Lorentz- and CPT-breaking in string theory are possible [1,2]. Since then,
other studies have suggested that Lorentz- and CPT violation might be low energy signals for several
theories beyond the standard model and general relativity such as noncommutative field theory [3–5],
loop quantum gravity [6], multiverse scenarios [7], and granular spacetime models [8].

The Standard Model Extension (SME) was introduced as an effective field theory designed to assist
in the systematic search for evidence of CPT and Lorentz violation [9,10]. Since the early years of the
SME, models for atomic systems in the presence of Lorentz and CPT violation have been proposed [11–15].
Based on these models, experimental bounds on coefficients for Lorentz violation have been reported [16–29].
The original SME, referred to as the minimal SME, only considered the contributions from Lorentz-violating
operators of mass dimensions three and four [9,10]. In the last decade, the SME has been extended
by considering operators of higher mass dimensions that are called nonminimal operators [30–33].
Relevant to this work is the systematic classification of the Lorentz-violating nonminimal Dirac fermion
operators [32]. This classification permitted the study of the prospects of searching for nonminimal Lorentz
and CPT violation in atomic spectroscopy experiments. The study of these prospects resulted in three
publications [34–36]. The first two publications [34,35] considered light atoms, including exotic atoms
such as antihydrogen, positronium, and muonic atoms. The third publication considered heavier atoms
that are usually used in high precision spectroscopy experiments or atomic clocks [36]. These publications
complement each other, and together, they form a picture of the phenomenology of Lorentz and CPT
violation in atomic systems.

This article is intended as a brief overview of the phenomenology of Lorentz and CPT violation in
atomic systems based on three recent publications [34–36]. Section 2 is an overview of the perturbative
Hamiltonian used in the publications [34–36]. The nonrelativistic coefficients for Lorentz violation are
introduced in this section. The next section, Section 3, justifies the use of the perturbation introduced
in Section 2. Section 4 discusses the Zeeman-hyperfine transitions of the ground state, which are the
most sensitive transitions to Lorentz violation in atomic spectroscopy experiments. Section 5 discusses
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the prospects for measuring the electron coefficients that do not contribute to the Zeeman-hyperfine
transitions of the ground state. Section 6 addresses the problem of testing CPT symmetry in the
presence of Lorentz violation. Section 7 discusses differences in the signals for minimal and nonminimal
Lorentz-violating terms. Section 8 gives an overview of what systems are more sensitive to certain
kinds of Lorentz-violating operators. Finally, we conclude with a brief outlook in Section 9.

2. Classification of the Lorentz- and CPT-Violating Dirac in the Quadratic Lagrange Density for
a Dirac Fermion

The first systematic classification of nonminimal Lorentz-violating operators of arbitrary mass
dimension was limited to Lorentz-violating photon operators [30]. This work was followed by systematic
classifications of nonminimal neutrino operators [31], nonminimal Dirac fermion operators [32], and
a more general classification of gauge field theories with nonminimal Lorentz-violating operators [33].
In this article, we will reproduce some of the results presented in [32] as most of the models to be
discussed in this review article will be based on the Lorentz violation perturbation terms derived in this
reference.

The authors of [32] considered the most general Lorentz-violating Lagrangian density for a free
Dirac fermion with flavor w, and it has the form:

L = 1
2 w̄w(γ

µi∂µ −mw + Q̂w)ww + h.c., (1)

where ww is the Dirac fermion field operator, mw the fermion’s mass, and Q̂w is a spinor matrix
containing the Lorentz-violating terms. The spinor matrix Q̂w can be represented as the linear
combination of the spinor matrices γI ∈ {I, γµ, γ5, γ5γµ, σµν}. The linear expansion of Q̂w is assumed
to have the form:

Q̂w = ∑
I
Q̂I

wγI = Ŝw + iP̂wγ5 + V̂
µ
wγµ + Âµ

wγ5γµ + 1
2 T̂

µν
w σµν, (2)

where Q̂I
w ∈ {Ŝw, P̂w, V̂µ

w, Âµ
w, T̂ µν

w } are the expansion coefficients. The hat on top of the coefficients
identifies them as functions of the derivative operator i∂µ, and they can be expanded as:

Q̂I
w =

∞

∑
d=3
Q(d)Iα1α2 ...αd−3

w i∂α1 i∂α2 . . . i∂αd−3 , (3)

where the coefficients Q(d)Iα1α2 ...αd−3
w are the coefficients for Lorentz violation that are assumed to be

constant in an inertial reference frame.
The magnitude of a coefficient for Lorentz violation quantifies the degree of the breaking of the

Lorentz symmetry. The indexes in the coefficients refer to the properties of the Lorentz violation operators,
and Table 1 contains brief explanations of the indices most relevant to the discussion presented in this
work. In this discussion also, we will introduce several types of coefficients for Lorentz violation and
the terminology used to identify different subsets of the coefficients. For convenience, the terminology
needed for this work is collected in Table 2.

The superscript d of the coefficients is the mass dimension of the Lorentz-violating operator that is

multiplied by the coefficient Q(d)Iα1α2 ...αd−3
w in Equation (1) after using the expansions in Equations (2)

and (3). The expansions in Equations (2) and (3) consider Lorentz-violating operators of arbitrary mass
dimension as there is no upper bound on the mass dimension of the operators.
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Table 1. Definitions of some of the relevant superscripts and subscripts for the coefficients.

Symbol Description

d Mass dimension of the Lorentz-violating operator contracted with the coefficient in
the Lagrangian density. Used in effective Cartesian and spherical coefficients.

w Specifies the flavor of the Lorentz-violating operator contracted with the coefficient
in the Lagrangian density. Used in all coefficients.

j Specifies the rank of the spherical tensor contracted with the coefficient in the
one-particle Hamiltonian; j > 0. Used in nonrelativistic and spherical coefficients.

m Specifies the component of the spherical tensor contracted with the coefficient in the
one-particle Hamiltonian; m ∈ {−j,−j + 1, . . . , j− 1, j}. Used in nonrelativistic and
spherical coefficients.

n Specifies the power of the three-momentum when the the one-particle Hamiltonian
is expressed in terms of E0 and |p|. Used in spherical coefficients; see Equation (8).

k Specifies the power of the three-momentum when the the one-particle Hamiltonian
is expressed in terms of mw and |p|. Used in nonrelativistic coefficients; see Equation (10).

Table 2. Terminology used to refer to certain types of coefficients for Lorentz violation.

Terminology Description Types of Coefficients

Effective Cartesian Coefficients for Lorentz-violating operators Vw
(d)µα1 ...αd−3
eff

expressed as Lorentz tensors. T̃w
(d)µνα1 ...αd−3
eff

Spherical Coefficients for Lorentz-violating operators Vw
(d)
njm

expressed as spherical tensors Tw
(d)(0B)
njm , Tw

(d)(1B)
njm

Nonrelativistic Linear combinations of spherical coefficients Vw
NR
kjm

of arbitrary mass dimension d. Tw
NR(0B)
kjm , Tw

NR(1B)
kjm

Minimal Coefficients for minimal operators Coefficients with d ≤ 4

Nonminimal Coefficients for nonminimal operators Coefficients with d > 4

CPT-even Coefficients for CPT-invariant operators V-type with even d or c-type

T -type with odd d or H-type

CPT-odd Coefficients for CPT-violating operators V-type with odd d or a-type

T -type with even d or g-type

Spin-dependent Coefficients proportional to the Pauli matrices T -type; or equivalently

in the one-particle Hamiltonian g-type and H-type

Spin-independent Coefficients not proportional to the Pauli V-type; or equivalently

matrices in the one-particle Hamiltonian a-type and c-type

Isotropic Coefficients for rotational scalar Spherical or nonrelativistic

Lorentz-violating operators coefficients with j = 0

Anisotropic Coefficients for Lorentz-violating operators Spherical or nonrelativistic

that are not rotational scalars coefficients with j > 0

Starting from the Lagrange density (1), a Lorentz-violating perturbation to the one-particle Dirac
Hamiltonian was obtained [32]. The form of the perturbation is:



Symmetry 2019, 11, 1433 4 of 16

δh = − 1
E0

[
V̂ν

eff +
˜̂T 0ν

eff
p · σ
mwi

+ ˜̂T iν
eff

(
σi + pi

p · σ
(E0 + mw)mw

)]
pν, (4)

where E0 is the energy of the fermion, p is the three-momentum of the fermion, and σ is the Pauli vector.

The terms V̂ν
eff and ˜̂T 0ν

eff can be expressed as polynomials of the components of the four-momentum;
see Equations (77) and (79) of [32]. This is similar to the expansion in Equation (3) with the
reinterpretation of the operator i∂µ as the one-particle four-momentum operator. The coefficients of the

expansion, denoted as Vw
(d)µα1 ...αd−3
eff and T̃w

(d)µνα1 ...αd−3
eff , are called the effective Cartesian coefficients

for Lorentz violation.
The operators contributing to the perturbation (4) can be classified into several categories.

The operators multiplied by the V-type coefficients are called spin-independent coefficients as they are
independent of the spin degree of freedom. In contrast, operators multiplied by the T -type coefficients
are called spin-dependent coefficients. The properties of the operators in (1) under CPT transformation
are determined by the mass dimension d of the operator. By convention, different letters are used for the
coefficients corresponding to CPT-violating operators and for the ones corresponding to CPT-invariant
operators. The spin-independent operators with even mass dimensions are CPT-invariant operators,
and the coefficients are c-type coefficients. In contrast, the spin-independent operators with odd mass
dimensions are CPT-violating operators, and the coefficients are a-type coefficients. These coefficients
are related to the V-type coefficients by:

Vw
(d)µα1 ...αd−3
eff =

{
−aw

(d)µα1 ...αd−3
eff if d is odd

+cw
(d)µα1 ...αd−3
eff if d is even

. (5)

The spin-dependent terms can also be divided into CPT-invariant and CPT-violating terms. The relation
between the T -type coefficients and the other set of coefficients is given by:

T̃w
(d)µνα1 ...αd−3
eff =

{
−H̃w

(d)µνα1 ...αd−3
eff if d is odd

+g̃w
(d)µνα1 ...αd−3
eff if d is even

, (6)

where H-type coefficients correspond to CPT-invariant operators and the g-type coefficients to
CPT-violating operators.

The perturbation Hamiltonian (4) can be expressed in momentum-space spherical coordinates
instead of Cartesian coordinates. The three-momentum p is the product of its magnitude |p| and
direction p̂. The unit vector in the direction of the three-momentum can be represented as a function of
the polar and azimuthal angles as p̂ = (sin θ cos φ, sin θ sin φ, cos θ). The direction of the Pauli vector
can be indicated in terms of the direction of the three-momentum by introducing a helicity basis with
unit vectors ε̂± = (θ̂± iφ̂)/

√
2 and ε̂r = p̂. After these changes, the Hamiltonian has the generic form:

δh = hw0 + hwrσ · ε̂r + hw+σ · ε̂− + hw−σ · ε̂+. (7)

The explicit expressions for the terms hw0, hwr, hw+, and hw− can be found in Equations (85) and (87)
in [32]. As an example, consider the expression for hw0,

hw0 =
∞

∑
d=3

d−2

∑
n=0

∑
j

j

∑
m=−j

Ed−3−n
0 |p|n Yjm(p̂)Vw

(d)
njm, (8)

where the sum over j is restricted to j ≥ 0 and j ∈ {n, n− 2, n− 4, . . .}. The coefficients Vw
(d)
njm are called

the spherical coefficients for Lorentz violation. The spherical coefficients for Lorentz violation are
linear combinations of the effective Cartesian coefficients for Lorentz violation. The relation between
the two sets of coefficients is explained in detail in Section IV of [32]. In the Equation (8), the symbol
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Yjm(p̂) represents the spherical harmonics and the subscripts j and m of the spherical coefficients label
the indices of the corresponding spherical harmonic. The index d is the mass dimension of the operator,
and the index k is the power of the magnitude of the three-momentum. The relation between the
indices j, d, and n for all the different types of coefficients is summarized in Table III of [32].

The Hamiltonian (7) is only valid at linear order on the coefficients for Lorentz violation. At this
order, the energy E0 can be assumed to be the energy for a free fermion given by E0 =

√
|p|2 + m2

w.
In nonrelativistic systems, the ratio p/mw is a small number that can be used to expand the energy as
a Taylor series. Using the binomial formula, we have that:

E0 = mw

√
1 +

(
|p|
mw

)2

= mw

∞

∑
k=1

( 1
2
k

)( |p|
mw

)2k
, (9)

where
(

j
k

)
is the binomial coefficient. Using this formula, we can express Equation (8) as:

hw0 = −∑
kjm
|p|n 0Yjm(p̂)Vw

NR
kjm , (10)

where Vw
NR
kjm is the linear combination of all the spherical coefficients Vw

(d)
njm that are proportional to

the same power of |p| after replacing the energy in Equation (8) in terms of |p| by using Equation (9).
The index n in Equation (8) is the power of |p| when the Hamiltonian was represented as a function of
the energy and three-momentum, and it is different from the index k in Equation (10) that corresponds
to the power of |p| after replacing the energy using Equation (9).

The coefficients Vw
NR
kjm are called the nonrelativistic coefficients and are the observable coefficients in

most nonrelativistic experiments. The term observable effective coefficients means that the Lorentz-violating
shift to the observables in nonrelativistic experiments can be expressed as linear combinations of the
nonrelativistic coefficients. The nonrelativistic coefficients are defined in Equations (111) and (112) of [32].
For instance, consider the definition of Vw

NR
kjm,

Vw
NR
kjm = ∑

d
md−3−k

w ∑
q≤k/2

(
(d−3−k+2q)/2

q

)
Vw

(d)
(k−2q)jm. (11)

The nonrelativistic coefficients are the linear combination of coefficients for Lorentz violation of
arbitrary mass dimension multiplied by powers of the fermion’s mass mw. The mass dimension of the
nonrelativistic coefficients can be determined with some basic dimensional analysis. If the operator
multiplied by the coefficient Vw

(d)
njm has mass dimension d, then the coefficient has mass dimension

4− d. The mass dimension of the nonrelativistic coefficient Vw
NR
kjm is the mass dimension of Vw

(d)
njm

multiplied by the mass dimension of md−3−k
w . Putting the pieces together, we can conclude that the

mass dimension of Vw
NR
kjm is equal to 1− k.

In many nonrelativistic experiments, it is impossible to distinguish between the spherical
coefficients that contribute to the same nonrelativistic coefficient [34–36]. For that reason, Lorentz
violation effects in atomic systems usually result in bounds on the nonrelativistic coefficients for
Lorentz violation. Exceptions to this rule are Lorentz-violating models that consider contributions due
to the electromagnetic fields [37] or boost effects [35,36]; see Section 8.

3. Hierarchy and the Lorentz-Violating Perturbation

The Lorentz-violating corrections to the free propagation of the electron and the proton in the
hydrogen atom are expected to be responsible for the dominant Lorentz- and CPT-violating effects if
we consider all the possible Lorentz-violating operators [12,35,38]. The previous statement needs some
clarification. In the context of models for Lorentz violation in atomic systems, there are two kinds of
small parameters. The first kind is the expansion parameters used to obtain corrections to the atomic
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energies using perturbative methods. Examples of these parameters are the ratio |p|/mw between the
magnitude of the three-momentum and the mass of the electron, the ratio mw/M between the mass of
the electron and the mass of the nucleus, and the fine structure constant α. These parameters introduce
a hierarchy on the atomic corrections.

The second kind of small parameter is the coefficients for Lorentz violation. The coefficients
for Lorentz violation are considered small parameters to be measured, but before measuring them,
we cannot compare two coefficients for Lorentz violation. For example, we cannot tell which one
of the following dimensionless terms cw

(4)
200, cw

(4)
210 or mw aw

(5)
200 is greater. A common practice is not

to assume a hierarchy between the coefficients for Lorentz violation in the absence of experimental
bounds. We consider all the coefficients to be independent of each other. We also usually consider
only linear contributions due to the coefficients for Lorentz violation; therefore, any hierarchy on the
perturbative corrections is due to the atomic expansion parameters. For each coefficient for Lorentz
violation, we have a perturbative series that has a similar hierarchy as the usual atomic corrections
in the absence of Lorentz violation. For example, the Lorentz-violating contributions to the energy
shift proportional to the same coefficient can be classified or ranked in terms of the nonrelativistic
expansion that is the expansion on the small parameter |p|/mw.

To illustrate the idea, we need to study the form of the nonrelativistic expansion for a free Dirac
fermion. Using Equation (9), we obtain:

E0 =
√
|p|2 + m2

f ' m f

(
1 +

1
2

( |p|
mw

)2
− 1

8

( |p|
mw

)4
+ . . .

)
. (12)

The contributions at different orders in the expansion have the generic form mw(|p|/mw)n. Even in
the case of a Dirac fermion in the presence of an external electromagnetic field, we can expand the
Hamiltonian in terms of the small parameter |p|/mw using the Foldy–Wouthuysen transformation [39].
In the particular case of the hydrogen atom, the Coulomb-potential term appears at the first-order
in the nonrelativistic expansion, but it is suppressed by a factor of the fine structure constant α that
makes the Coulomb term of the same size as a second-order term such as the nonrelativistic kinetic
energy |p|2/2mw.

Consider the term E0|p|2cw
(6)
200 that contributes to the one-particle Hamiltonian (8). If we want

to determine the dominant contribution from the coefficient cw
(6)
200 to the energy shift, we can use the

nonrelativistic expansion of the energy and get:

E0|p|2cw
(6)
200 ' m f

(
1 +

1
2

( |p|
mw

)2
− 1

8

( |p|
mw

)4
+ . . .

)
|p|2cw

(6)
200. (13)

Using this result, we can recognize that a term of the form:

m f |p|2 cw
(6)
100 = mw

(
|p|
mw

)
( |p| aw

(6)
200 ), (14)

is a zero-order term in the nonrelativistic expansion, and it is the dominant contribution from the
coefficient cw

(6)
200. In the context of the nonrelativistic expansion of the Lorentz-violating perturbation,

this term is a large term of the order of the rest energy of the particle, and it is greater than any
Lorentz-violating term proportional to cw

(6)
100 that is produced by the electromagnetic interaction in

the atom. However, its contribution to the atomic energy is really small because it is proportional to
a coefficient for Lorentz violation. The crucial point is that we know that any term that is proportional
to both the coefficient and an interaction term such as the Coulomb potential will be smaller than
this term.
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We can also consider the term of the form:

|p|4
mw

cw
(6)
100 = mw

(
|p|
mw

)2

( |p|2cw
(6)
200 ) (15)

and recognize that it is a second-order term in the nonrelativistic expansion; it is not the dominant
contribution from the coefficient cw

(6)
200, and it can contribute at the same order as a Coulomb

potential term that is proportional to the same coefficient; for that reason, in order to study this
term, we must consider the Lorentz-violating electromagnetic interaction terms [12,35,38]. Fortunately,
in practice, we can ignore this term and only consider the term m f |p|2 cw

(6)
100 that dominates over the

Lorentz-violating terms that contain electromagnetic interactions.
Going back to the statement at the beginning of this section, the dominant contribution to the

atomic spectrum is obtained by considering only the dominant free-propagation corrections to the
proton and the electron for each coefficient. The implication is that it is enough to consider the
perturbative Hamiltonian (7) in order to study the dominant Lorentz-violating effects in the spectrum
of an atom [35,36].

4. Hyperfine Transitions and Anisotropic Terms

The best limits on Lorentz-violating operators obtained from atomic spectroscopy experiments are
from hyperfine transitions of the ground state [34–36]. In the standard atomic theory, effects that depend
on the total angular momentum of the atom, such as the hyperfine structure, are suppressed. For this
reason, in general, hyperfine structure transitions have lower frequencies than gross structure transitions.
On the other hand, many of the dominant Lorentz-violating terms are anisotropic, and their expectation
values depend on the atomic total-angular-momentum quantum number F. For example, consider
the term mwgw

(4)(0B)
010 σ · p̂ Y10(p̂). This is the dominant contribution of the coefficient gw

(4)(0B)
010 to the

perturbation Hamiltonian as the other contributions are suppressed by powers of |p|/mw. Because this
term depends on the spin expectation value, it does contribute to hyperfine structure transitions [34–36].
What makes this kind of term special is that its contribution has the same size as the gross structure or
hyperfine structure transitions. However, because the hyperfine transitions are usually more sensitive
to smaller frequency shifts than gross structure transitions, then the hyperfine structure transitions are
more sensitive to the coefficient gw

(4)(0B)
010 than other types of transitions [34–36].

At first-order in perturbation theory, the anisotropic terms in the Lorentz-violating Hamiltonian
affect the spectrum in a fashion that is analogous to the presence of small external electric and magnetic
fields. For example, some of the leading-order Lorentz-violating energy shifts have a structure that
resembles the Zeeman and Stark effects [12–15,34–36]. This is a challenge because transitions that
are insensitive to Zeeman or Stark effects may also be insensitive to these Lorentz-violating effects.
To understand this statement, we need to understand what are the common tests for Lorentz violation
in atomic systems.

The most common tests for Lorentz violation are sidereal and annual variations of the transition
frequency [16–23]. The idea behind these tests is to compare the transition frequency of the atom
at different velocities and orientations relative to a fixed inertial reference frame. For convenience,
the Sun-centered frame is used as the fixed reference frame [40]. The best approach to control the
orientation of the atom is to introduce an external magnetic field in the z-direction in the instantaneous
laboratory frame. Because of the presence of the magnetic field, the stationary states of the system are
quantum states of the z-component of the total-angular-momentum Fz relative to the laboratory frame.
As the applied magnetic field rotates with the Earth, the stationary states are rotated adiabatically
around the Sun-centered frame, and we can test the rotational symmetry of the atomic spectrum.
Similarly, the velocity of the atoms changes as the atoms are accelerated in the Sun-centered frame
due to the rotation of the Earth around its axis and the motion of the Earth around the Sun. In this
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scenario, the Lorentz-violating terms appear as small corrections to the Zeeman levels that depend on
the annual and sidereal time [12–15,34–36].

If we are forced to use applied magnetic fields, then we want to reduce the uncertainty due to
the magnetic fields. A common method is to use transitions insensitive to the linear Zeeman effect.
Examples of this kind of transition are the clock transitions in hydrogen masers and cesium atomic
fountain clocks. This is a bad idea in the context of Lorentz violation. Whatever makes these transitions
insensitive to the linear Zeeman effect also makes them insensitive to linear effects due to other uniform
anisotropic external fields such as the anisotropic Lorentz-violating background fields [35,36]. In other
words, these transitions are insensitive to the dominant CPT- and Lorentz-violating effects. Still,
there is one advantage of having transitions that are insensitive to the dominant Lorentz-violating
terms. We measure a frequency by comparing it to another frequency. We need to know if the
Lorentz-violating model predicts any variation in the reference frequency in order to search for time
variations of a transition frequency [13]. Using the perturbation (7), we know that the hydrogen
maser and the cesium standards are insensitive to the dominant Lorentz-violating effects and are good
reference frequencies for time variation studies of transition frequencies [35,36].

Other methods used to reduce the uncertainty due to the magnetic field, such as averaging over
Zeeman pairs, can also eliminate contributions due to the anisotropic Lorentz-violating terms [36].
For example, consider the measurement of the hyperfine transition of the ground state of antihydrogen [41].
In the experiment, two frequencies were averaged to suppress the contribution due to the magnetic
field. This process also eliminated the contributions from the dominant CPT-violating terms. In other
words, the sensitivity of the measurement to CPT violation is suppressed compared to other kinds of tests
that could be done using the same system. A method that can be used to eliminate the magnetic field
without eliminating the contribution of the Lorentz-violating terms is to extrapolate the frequency to the
zero-magnetic-field value [36]. The dominant CPT-violating terms are independent of the magnitude of the
magnetic field, and they will contribute to the extrapolated zero-field frequency. Another method that has
been proposed is to compare the σ and π1 antihydrogen transitions [42]. The σ transition is insensitive to
the dominant CPT-violating terms, and it can be used as a reference frequency for searching for a sidereal
variation of the Lorentz violation-sensitive π1 transition [35].

Averaging over Zeeman pairs does not always cancel all the contributions due to Lorentz violation.
For example, a Lorentz symmetry test with cesium fountain clocks cannot use the standard clock
transition as it is insensitive to the dominant Lorentz-violating terms. Time variation frequency studies
with cesium fountain clocks were done using an averaged pair of hyperfine-Zeeman transitions [22].
The process used to eliminate the linear Zeeman shift also canceled the contributions from the g-type and
H-type spin-dependent coefficients, but it allowed contributions from a-type and c-type spin-independent
ones [22,36]. The most successful method for eliminating the linear Zeeman effect without eliminating
the Lorentz-violating terms has been the use of comagnetometers [18,19,36]. The nonrelativistic g-type
and H-type coefficients for Lorentz violation with j = 1 produce small corrections to the Zeeman levels;
however, the corrections are not proportional to the gyromagnetic ratios and are by the method used to
eliminate the linear Zeeman shift in the comagnetometer.

The only spatially isotropic terms that can contribute to the Lorentz-violating shift to the
atomic spectrum are spin-independent operators that depend only on the magnitude of the
three-momentum [34–36]. These isotropic terms do not contribute to Zeeman-hyperfine transitions, and
for that reason, all the terms that contribute to these transitions are anisotropic. The Lorentz-violating
frequency shift for the Zeeman-hyperfine transitions depends on the orientation of the magnetic field
and the boost velocity of the instantaneous laboratory frame relative to the Sun-centered frame. Only
considering the rotation of the instantaneous laboratory frame due to the rotation of the Earth is not
enough to impose bounds on all the coefficients for Lorentz violation that contribute to the transition
frequencies. Models for space based experiments such as for the Atomic Clock Ensemble in Space
(ACES) [43] and for experiments on turntables have been considered to impose bounds on a greater
set of coefficients for Lorentz violation [35,36].
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5. Isotropic Terms and Optical Transitions

The isotropic term in the laboratory frame has the form V f
NR,lab
k00 |p|k, where the superscript “lab”

is a reminder that these coefficients are not constant and uniform because the laboratory frame is
not an inertial reference frame. The isotropic term does not contribute to the frequency shift for the
hyperfine-Zeeman transitions of the ground state, and for that reason, it cannot be measured using the
experiments mentioned in Section 4. This term does contribute to any gross structure transition such as
optical transitions. The best candidates to study the isotropic term are optical transitions such as the 1
s–2 s transition in hydrogen [35] or clock transitions used in optical clocks [36].

The isotropic term in the laboratory frame is independent of the orientation of the magnetic field,
and it is not canceled by any process that cancels the contributions from anisotropic external fields [36].
The implication is that the isotropic term can be studied using optical clocks without requiring the
optical clock to operate in a different way than usual. The drawback is that the isotropic term is
insensitive to changes in the orientation of the laboratory frame that is the dominant signal for Lorentz
violation. However, it is sensitive to boost effects, which are suppressed by a factor of 10−4 compared
to the dominant rotation effects.

An isotropic coefficient for Lorentz violation in the laboratory frame can be expressed in the
Sun-centered frame as:

V f
NR,lab
k00 = V f

NR,Sun
k00 + β⊕ fann(T) + βL fsid(T), (16)

where V f
NR,Sun
k00 is the isotropic coefficient in the Sun-centered frame, T is the time in the Sun-centered

frame, β⊕ = 10−4 is the orbital speed of the Earth, and βL = 10−6 is the rotational speed of the
Earth at the Equator. The function fann(T) is a linear combination of coefficients for Lorentz violation
with terms that vary with the first harmonic of the annual frequency and fsid(T) the same, but the
terms vary with the first harmonics of the sidereal frequency. The explicit expression for Equation (16)
can be found in Equation (63) in [35]. The best way to impose constraints on the coefficients that
contribute to fann(T) and fsid(T) is by searching for annual and sidereal variations of the optical
transitions in the first harmonic of the sidereal and annual frequency. The first term in Equation (16)
produces a constant shift that will be the same independent of wherever on the surface of the Earth the
experiment was done. This constant shift cannot be constrained by studying the time variation of the
transition frequency under consideration. However, the isotropic term in the Sun-centered frame has
been constrained by comparing the 1 s–2 s transitions frequency of hydrogen and antihydrogen [36] or
by comparing the experimental and theoretical values for the 1 s–2 s transitions in positronium [35]
and muonium [34].

6. The Problem of Testing CPT Symmetry Using Different Frames

A breaking of CPT symmetry implies Lorentz violation in interacting local field theories [44].
This result is also observed in the non-gravitational sector of the SME, where all the local CPT-violating
terms that can be added to the Lagrangian density also break Lorentz symmetry [9,10]. If we expect
CPT violation to emerge as small corrections to the standard model of particle physics, then we expect
CPT violation to be accompanied by Lorentz violation. This observation implies that CPT tests that
compare the properties of a system and its CPT counterpart must be conducted in the same laboratory
frame. Otherwise, Lorentz-violating effects that are not CPT-violating effects might be responsible or
might cancel any discrepancy between the two systems [37].

Even if the measurement of a system and its CPT counterpart is done in different reference frames,
we could use these results to test CPT symmetry by using a model for Lorentz violation. We can use the
model to transform the results from one frame to the other keeping track of all the Lorentz-violating
effects. In this case, the validity of the CPT test will be limited as it depends on the particular model
for CPT and Lorentz violation used. For example, consider the recent comparison between the value
of the 1 s–2 s transition in hydrogen [45] and antihydrogen [46]. As these two values were measured in
different reference frames, in principle, we should not compare the values without considering how
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Lorentz violation could impact these results. Using the Lorentz- and CPT-violating corrections for
the 1 s–2 s transition in hydrogen presented in [35], a model for comparing the two measurements
of the 1 s–2 s transition was developed [36]. The model considered only the isotropic contribution in
the Sun-centered frame to the frequency difference between the 1 s–2 s transition in hydrogen and
antihydrogen; see Section 5. In other words, even if the frequencies were measured in distinct reference
frames, there are corrections to the frequency difference that are independent of the frames used in the
measurements, and these terms correspond to the constant term in Equation (16). To justify this model
partially, some of the anisotropic or frame-dependent contributions to the frequency difference can
be disregard using results from time variation studies of transition frequencies in hydrogen [16,20].
More time variation studies in hydrogen and antihydrogen are needed to justify experimentally the
absence of many of the anisotropic terms that were not considered in the model. Fortunately, some of
these time variation studies are expected to happen soon [42]. The approach used to create the model
for the frequency difference between the 1 s–2 s transition in hydrogen and antihydrogen cannot be
replicated for the Zeeman-hyperfine transitions of the ground state as all the terms that contribute
to these transitions are anisotropic in the Sun-centered frame. Measurements of hyperfine transition
frequencies of the ground state for hydrogen and antihydrogen in the same location are pursued to
avoid any contributions from CPT-invariant Lorentz-violating operators [42].

7. Difference in the Signals for Minimal and Nonminimal Lorentz-Violating Terms

For experiments in laboratories on the surface of the Earth, the minimal Lorentz-violating
operators could produce sidereal variations in the first and second harmonic of the sidereal
frequency [11–14]. In the context of atomic spectroscopy experiments, we can understand this result
from the following observations. The minimal Lorentz violation a-type and c-type coefficients are
contained in the nonrelativistic coefficients Vw

NR
kjm with j ≤ 2, and similar relations hold for the

spin-dependent terms [32]. We can break the time-varying transition frequency shift in the Sun-centered
frame in terms of harmonics of the sidereal frequency [35,36]. If we ignore boost effects, we can break
the Sun-centered-frame transition frequency shift δν in the following way,

δν =
∞

∑
m=0

(
Am cos mω⊕T + Bm sin mω⊕T

)
, (17)

where ω⊕ ' 2π/(23 h 56 m) is the sidereal frequency and T is the time in the Sun-centered frame.
The amplitudes Am and Bm of the mth-harmonics are linear combinations of the coefficient Vw

NR
kjm

and Vw
NR
kj(−m) [35,36]. In other words, the absolute value |m| of the index m of the coefficient for

Lorentz violation in the Sun-centered frame indicates the harmonic of the sidereal frequency that
contributes together with the coefficient Vw

NR
kjm in the frequency shift. The absolute value of the index

m is related to the index j by 0 ≤ |m| ≤ j and for the minimal operators 0 ≤ |m| ≤ 2. As expected,
the minimal operators can only produce sidereal variations in the first and second harmonic of the
sidereal frequency.

In principle, the nonminimal Lorentz-violating operators can produce variations with all
harmonics of the sidereal frequency. However, nonminimal coefficients with an index j cannot
contribute to the energy shift of every atomic energy level. The maximum value of the index j that can
contribute to the energy shift depends on the angular momentum quantum numbers of the energy
level [35,36]. For instance, for the ground state of hydrogen, the angular moment quantum numbers
are L = 0 for the orbital angular momentum, J = 1/2 for the total electron angular momentum, and
F = 0 or F = 1 for the total atomic angular momentum. Based on the angular momentum quantum
numbers, we can conclude that only spin-independent terms with j = 0 and spin-dependent ones with
j ≤ 1 can contribute to the energy shift. A consequence of this observation is that even in the presence
of nonminimal terms, we should expect only first-harmonic sidereal variations of Zeeman-hyperfine
transitions of the ground state of hydrogen or the 1 s–2 s transition in hydrogen. These are the same
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signals predicted by the minimal SME, and for that reason, experimental constraints on these signals
already existed and were used to impose bounds on nonminimal coefficients [34–36].

In the minimal case, there was no advantage in considering transitions involving energy
levels with high angular momentum quantum numbers. However, the only way to use an atomic
spectroscopy experiment to search for Lorentz-violating operators with a high value of j is by
using transitions that involve high angular momentum states. In general, a transition could be
millions of times more sensitive to Lorentz violation than another transition, but because that more
sensitive transition only involves low angular momentum states, it will be sensitive to a small set
of Lorentz-violating operators, and if the less sensitive transition involves high angular momentum
states, it can provide the best bounds on coefficients for Lorentz violation on nonminimal operators
that cannot be studied with the more sensitive transition; see Section 8.

Another difference in the phenomenology of atomic spectroscopy in the presence of minimal
and nonminimal Lorentz violation is that the nonminimal terms depend on a higher power of the
three-momentum, and this means that the number of transitions that can be affected by Lorentz
violation increased significantly compared to the minimal case [35]. Furthermore, this means that
the sensitivity of the experiment to the nonminimal coefficients will be dependent on the expectation
values of the momentum, and that will make some systems more sensitive to some nonminimal
operators than others as is the case with muonic hydrogen and muonium, as discussed in [34].

8. Best Bounds on and Prospects for Coefficients for Lorentz Violation from
Spectroscopy Experiments

Table 3 contains the best bounds on the nonrelativistic spin-dependent coefficients for Lorentz
violation. The first column in the table specifies the type of nonrelativistic coefficient, and the other
columns specify the best bounds on the electron, neutron, proton, and muon coefficients. A time variation
study of hyperfine-Zeeman transition frequencies of the ground state of hydrogen is responsible for the
best bounds on nonminimal electron coefficients obtained in atomic spectroscopy experiments [16,35].
The bounds obtained on the coefficients ge

NR(0B)
011 , He

NR(0B)
011 , ge

NR(1B)
011 , and He

NR(1B)
011 are in the order of

10−27 GeV [35]. The superscript e in the coefficients means that these coefficients correspond to electron
operators. Technically, this experiment also has the best bounds on nonrelativistic proton coefficients, but
better bounds on proton coefficients might be obtained by just replacing the nuclear model used in [36].

An experiment using a 3He-129Xe comagnetometer imposed limits of the order of 10−33 GeV
on Lorentz-violating operators in the nucleon sectors of the SME [18,36]. To assign these bounds to
proton or neutron Lorentz-violating operators, we need to use a nuclear model. A simple nuclear
model assumes that only the neutron operators contribute to the Lorentz-violating frequency shift,
and using this simplistic model, bounds of the order of 10−33 GeV on the neutron coefficients gn

NR(0B)
011 ,

Hn
NR(0B)
011 , gn

NR(1B)
011 , and Hn

NR(1B)
011 were obtained [36]. From a more realistic nuclear model, we expect

to get contributions from both nucleons with smaller contributions from the proton than from neutron
operators. For instance, more realistic nuclear models showed that in the context of the minimal
SME, the corrections due to the proton operators were only suppressed by a factor of five compared
to the neutron operators [29]. Because the comagnetometer experiment is 106-times more sensitive
than the hydrogen experiment, we expect that by using a more realistic nuclear model, we will get
better bounds on the proton coefficients from the comagnetometer experiment than from the hydrogen
experiment. The best bounds on the proton or neutron coefficients depend on the nuclear models used
in the derivation of the Lorentz violation shift. However, in general, the best bounds on the nucleon
coefficients will be from hyperfine-Zeeman transitions of the ground states [16,22,35,36], as expected
from the discussion in Section 4.
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Table 3. Best bounds on the imaginary and real part of the spin-dependent anisotropic nonrelativistic
coefficients in the Sun-centered frame for electron, proton, neutron, and muon operators.

Coefficients Neutron [36] from Proton and Electron [35] from Muon [34] from

Xe-He Comagnetometer Hydrogen 1S Splitting Muonium 1S Splitting

Hw
NR(0B)
011 , gw

NR(0B)
011 4× 10−33 GeV 9× 10−27 GeV 2× 10−22 GeV

Hw
NR(1B)
011 , gw

NR(1B)
011 2× 10−33 GeV 5× 10−27 GeV 7× 10−23 GeV

Hw
NR(0B)
211 , gw

NR(0B)
211 4× 10−31 GeV−1 7× 10−16 GeV−1 1× 10−11 GeV−1

Hw
NR(1B)
211 , gw

NR(1B)
211 2× 10−31 GeV−1 4× 10−16 GeV−1 6× 10−12 GeV−1

Hw
NR(0B)
411 , gw

NR(0B)
411 4× 10−29 GeV−3 9× 10−6 GeV−3 2× 10−1 GeV−3

Hw
NR(1B)
411 , gw

NR(1B)
411 2× 10−29 GeV−3 5× 10−6 GeV−3 8× 10−2 GeV−3

The energy states involved in the Zeeman transitions used in the He-Xe comagnetometer
experiment have total angular momentum quantum number F = 1/2, and for that reason, the
transitions are only sensitive to nonrelativistic coefficients with j = 1. The best bounds on nucleon
coefficients with j > 1 are from the study of hyperfine-Zeeman transitions of the ground state
of cesium using a cesium fountain clock and front the sidereal variations studies with a Ne-Rb-K
comagnetometer [36]. In the case of the fountain clock, the energy levels involved in the transition have
quantum numbers F = 3 and F = 4, and these high angular momentum states permit contributions
from nonrelativistic coefficients with j ≤ 4 [36]. The experimental constraints obtained with the
atomic fountain clock on sidereal variations are only sensitive to proton coefficients if we assume
the nuclear model used in [36]. However, we expect that by using a more realistic nuclear model,
we can translate the experimental constraints as bounds on neutron and proton coefficients. Overall,
the comagnetometer is more sensitive to smaller frequencies than the cesium atomic clock, and the
bounds obtained from the comagnetometer are tighter than the bounds obtained from the atomic
fountain clock; however, the atomic fountain clock is sensitive to a greater number of coefficients for
Lorentz violation than the comagnetometer.

Hyperfine transitions in large atoms involve nuclear-spin flips, and they are not sensitive to
electron Lorentz-violating operators. To study the electron operators, we need to consider hyperfine
transitions in light atoms or electron transitions such as optical transitions. The hyperfine-Zeeman
transitions of the ground state of hydrogen or the 1 s–2 s transition in hydrogen are only sensitive
to electron coefficients with j ≤ 1. The best bounds on electron coefficients with j = 2 are obtained
from optical transitions in heavy ions such as 40Ca+ [24,25,36] and 171Yb+ [23]. These transitions
involve energy levels with high angular momentum. For example, the final energy state for the optical
transition in 171Yb+ has quantum number F = 3 [23], and it is sensitive to nonrelativistic coefficients
with j ≤ 6. The final energy state for the optical transition in 40Ca+ has F = 5/2 [24,25], and it is
sensitive to coefficients with j ≤ 4. Overall, the hyperfine-Zeeman transitions of the ground state
remain slightly more sensitive to Lorentz violation than the optical transition in 171Yb+; however, the
optical transition is sensitive to a greater number of coefficients for Lorentz violation. Unfortunately,
to translate the constraints obtained from the optical transition in 171Yb+ into bounds on nonminimal
coefficients for Lorentz violation, a many-body calculation is needed, and at the moment, this type of
calculation has only been done for minimal Lorentz-violating operators [23].

Lorentz violation operators that are isotropic in the laboratory frame cannot be studied using
Zeeman-hyperfine transitions of the ground state; see Section 5. The best limits on the coefficients
that contribute to fsid in Equation (16) are from an annual variation study of the 1 s–2 s transition
in hydrogen [20,35]; see the second and third column of Table 4. As mentioned in Section 5, optical
clocks are good candidates to improve these bounds. The best bounds on the isotropic CPT-violating
electron and proton terms in the Sun-centered frame are obtained from a comparison of antihydrogen
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and hydrogen 1 s–2 s transition [36] and for the CPT-even electron term from a comparison between
the theoretical and experimental value for the 1 s–2 s transition in positronium [35]. The bounds are
shown in Table 5 with the second, fourth, and sixth columns showing the constraints on the electron,
proton, and muon isotropic coefficients for Lorentz violation.

Table 4. Best bounds from atomic experiments on effective Cartesian coefficients of mass dimensions
d = 5 and d = 6 in the Sun-centered frame for electron [35], proton [35], and neutron [36]
Lorentz-violating operators.

Coefficient Electron [35] Proton [35] Coefficient Neutron [36] Coefficient Neutron [36]

GeV4−d GeV4−d GeV4−d GeV4−d

aw
(5)TTX
eff <3.4× 10−8 <3.4× 10−8 H̃w

(5)X(TXT)
eff <1× 10−27 g̃w

(6)X(TXTT)
eff <9× 10−28

aw
(5)TTY
eff <5.6× 10−8 <5.6× 10−8 H̃w

(5)X(TYT)
eff <8× 10−28 g̃w

(6)X(TYTT)
eff <7× 10−28

aw
(5)TTY
eff <1.3× 10−7 <1.3× 10−7 H̃w

(5)X(TZT)
eff <2× 10−27 g̃w

(6)X(TZTT)
eff <2× 10−27

aw
(5)KKX
eff <6.7× 10−8 <6.7× 10−8 H̃w

(5)Y(TXT)
eff <8× 10−28 g̃w

(6)Y(TXTT)
eff <6× 10−28

aw
(5)KKY
eff <1.1× 10−7 <1.1× 10−7 H̃w

(5)Y(TYT)
eff <8× 10−28 g̃w

(6)Y(TYTT)
eff <7× 10−28

aw
(5)KKZ
eff <2.5× 10−7 <2.5× 10−7 H̃w

(5)Y(TZT)
eff <2× 10−27 g̃w

(6)Y(TZTT)
eff <2× 10−27

cw
(6)TTTX
eff <3.3× 10−5 <1.8× 10−8 H̃w

(5)X(JXJ)
eff <4× 10−25 g̃w

(6)X(JXJT)
eff <9× 10−26

cw
(6)TTTY
eff <5.5× 10−5 <3.0× 10−8 H̃w

(5)X(JYJ)
eff <3× 10−25 g̃w

(6)X(JYJT)
eff <7× 10−26

cw
(6)TTTZ
eff <1.3× 10−4 <6.9× 10−8 H̃w

(5)X(JZJ)
eff <6× 10−25 g̃w

(6)X(JZJT)
eff <2× 10−25

cw
(6)TKKX
eff <3.3× 10−5 <1.8× 10−8 H̃w

(5)Y(JXJ)
eff <2× 10−25 g̃w

(6)Y(JXJT)
eff <2× 10−25

cw
(6)TKKY
eff <5.5× 10−5 <3.0× 10−8 H̃w

(5)Y(JYJ)
eff <3× 10−25 g̃w

(6)Y(JYJT)
eff <7× 10−26

cw
(6)TKKZ
eff <1.3× 10−4 <6.9× 10−8 H̃w

(5)Y(JZJ)
eff <6× 10−25 g̃w

(6)Y(JZJT)
eff <2× 10−25

H̃w
(5)TJTJ
eff <6× 10−25 g̃w

(6)TJTJT
eff <5× 10−25

Table 5. Best bounds on the spin-independent isotropic nonrelativistic coefficients in the Sun-centered
frame for electron, proton, and muon operators.

Constraint; Electron Constraint; Proton Constraint; Muon

|ae
NR
200| ∼4× 10−9 GeV−1 [36] |ap

NR
200| ∼4× 10−9 GeV−1 [36] |aµ

NR
200| ∼3× 10−5 GeV−1 [34]

|ce
NR
200| ∼2× 10−5 GeV−1 [35] |cµ

NR
200| ∼3× 10−5 GeV−1 [34]

|ae
NR
400| ∼50 GeV−3 GeV−3 [36] |ap

NR
400| ∼50 GeV−3 [36] |aµ

NR
400| ∼4× 105 GeV−3 [34]

|ce
NR
400| ∼3× 105 GeV−3 [35] |cµ

NR
400| ∼4× 105 GeV−3[34]

Table 4 contains bounds on effective Cartesian coefficients obtained from studying boost effects of
the 1 s–2 s transition in hydrogen and the Xe-He comagnetometer. The Lorentz-violating frequency
shift in the laboratory frame can be expressed in terms of the nonrelativistic coefficients; however,
to consider the annual or sidereal variations due to boost effects, we need to boost the frequency shift
from the local laboratory frame to the Sun-centered frame. The nonrelativistic coefficients have simple
transformation rules under rotation; however, their transformation under boost transformations is
quite complicated, and it is easier to expand the nonrelativistic coefficients in terms of the Cartesian
effective coefficients before studying boost effects [35,36]. For that reason, bounds due to boost effects
are usually on effective Cartesian coefficients.

Finally, the best bounds on the muon nonrelativistic coefficients were obtained from hyperfine
transitions of the ground state of muonium and the 1 s–2 s transition in muonium [17,34,47]; see
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Tables 3 and 5. The reader should be aware that many of the bounds reported in [34–36] have not been
reproduced in this section. Furthermore, the best bounds on minimal coefficients based on models that
do not consider nonminimal terms have also been omitted from the discussion.

9. Outlook

The current bounds on nonminimal Lorentz-violating operators from atomic spectroscopy
experiments are based on experimental studies that were designed to impose bounds on the minimal
operators [34–36]. Signals associated only with the nonminimal operators such as sidereal variations in
higher harmonics of the sidereal frequency have not been constrained experimentally, and they need
to be studied to impose bounds on the nonminimal Lorentz-violating operators. For example, time
variation studies of the Zeeman-hyperfine transitions of the ground state of cesium only considered
the possibility of time variations in the first and second harmonic of the sidereal frequency [22].
The nonminimal Lorentz-violating model predicts that Zeeman-hyperfine transitions are sensitive
to time variations up to the fourth harmonic of the sidereal frequency. Experimental constraints on
sidereal variations in the third and fourth harmonic of the sidereal frequency will produce limits on
coefficients for Lorentz violation that have not been bounded before. The same situation holds for the
time variation studies [23–25] of the optical transitions in 171Yb+ and 40Ca+. Sidereal variation studies
are also needed in the new field of high precision antihydrogen spectroscopy. The antihydrogen
collaborations must consider how to implement time variation studies in their experiments if they
want to test CPT symmetry systematically [35,36].

The recent publication [36] on the prospects of testing nonminimal Lorentz violation operators
in clock comparison experiments used simplistic models for the electron and nuclear configurations.
The advantage of using simple models is that they can be easily applied to a large range of systems and
the publication intended to recognize the signals for Lorentz violation in a broad range of systems. Using
more realistic models will not change the general form of these signals [36]; however, better models
are needed to translate experimental constraints on the signals for Lorentz violation into bounds on
coefficients. More realistic models have been used in the context of the minimal SME [22–24,29], and
similar calculations are needed in the context of the nonminimal SME.
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