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Abstract: Category theory allows one to treat logic and set theory as internal to certain categories.
What is internal to SET is 2-valued logic with classical Zermelo–Fraenkel set theory, while for general
toposes it is typically intuitionistic logic and set theory. We extend symmetries of smooth manifolds
with atlases defined in Set towards atlases with some of their local maps in a topos T . In the case of
the Basel topos and R4, the local invariance with respect to the corresponding atlases implies exotic
smoothness on R4. The smoothness structures do not refer directly to Casson handless or handle
decompositions, which may be potentially useful for describing the so far merely putative exotic
R4 underlying an exotic S4 (should it exist). The tovariance principle claims that (physical) theories
should be invariant with respect to the choice of topos with natural numbers object and geometric
morphisms changing the toposes. We show that the local T -invariance breaks tovariance even in the
weaker sense.
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1. Introduction

Symmetry, and patterns of breaking it, are indisputably one of the basic guiding principles in
modern natural science. The development of classical and quantum physics, in particular, can be
seen as exemplifying the invariances of theories with respect to global or local symmetry groups.
The gauge groups of quantum field theory, and diffeomorphism groups of smooth manifolds as in
general relativity (GR), are intrinsic concepts underlying our understanding of the world. Along with
symmetries, the patterns of symmetry breaking have become equally important. 20th-century
mathematics has given us an alternative competing view as to its foundations. Basically, this was
achieved via the development of category theory, in which we can view the modifications of set
theory, logic, and geometry in a unified way. Such as approach shed light on new understanding of
symmetry and physics. This is particularly the case in respect of topos theory, which has been found to
be applicable to physics to a degree that could hardly have been envisaged (e.g., [1–9]). Along with
clarifying the role of category theory in relation to the foundations of mathematics and quantum
physics, researchers became interested in an emerging fundamental symmetry of a new kind, namely
the invariance of theories with respect to the choice of new foundations of mathematics given by the
broad class of toposes. The class of toposes contains ones with natural numbers objects with geometric
morphisms as morphisms of toposes [10]. Later, the invariance of a theory with respect to the choice of
such toposes came to be named “tovariance”, and this has served to indicate its conceptual resemblance
to GR covariance [11,12].
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In the case of geometric morphisms between toposes and a theory formulated in the geometric
language, the invariance of the theory with respect to the choice of a topos with NNO has a direct
solution: The invariant theory just is the theory in such language. So, one takes a theory in the
intuitionistic logic formulated in geometric language and this theory will be invariant without any
modifications in any topos with NNO. All its interpretations in toposes with NNO survive the
modifications by geometric morphisms of toposes. Moreover, this kind of global symmetry will not
affect a Set description, provided it is limited to intuitionistic and geometric means. The proposal put
forward by Landsman et all claims that such invariance (tovariance) should be the guiding principle
for every physical observation: i.e., that one cannot decide experimentally which topos with NNO
is actually better to use compared to any other. Such a democracy of toposes would show that one
can freely switch between toposes, while invariant physics remains as the geometric and intuitionistic
content of a theory. In addition, this, in turn, would have a quite surprising consequence: Any quantum
theory would be equivalent to classical one in a special topos [11].

In the present paper, we study smoothness structures on manifolds which allow for certain local
modifications by smooth toposes (e.g., [13]). Our position is that the tovariance principle is an example
of global symmetry and the global invariance of a theory requires (intuitionistic) geometric language.
The passage from global to local symmetry has become very fruitful in physics and mathematics.
The local gauge symmetry generates additional invariant physical fields in in such theories as those
of electrodynamics or the standard model of particles and fields in general. Guided by this kind of
role played by local symmetry in physics, we apply a similar strategy to smooth manifolds and the
invariance of their smoothness structures under modifications by toposes with NNO. “Local,” on this
approach, means defined on a local chart from the smooth atlas on a manifold M. Thus, to locally
modify M by a smooth topos means considering certain of its local charts internally in a topos.
The resulting invariant smoothness structure of such a construction must be modified. Choosing the
Basel topos B extensively studied by Moerdijk and Reyes in [13] as a locally deforming smooth topos,
and given M = R4, the shift of the smoothness structure forces one to replace the standard R4 by an
exotic R4. Subsequent local modifications of R4 gives rise also to a certain exotic R4 nondiffeomorphic
to the initial one. However, we do not know at present whether the sequence of such modified
smoothings leads to a set of pairwise different and nondiffeomorphic R4’s.

The motivations behind developing such a description of exotic smoothness on R4 come from
both from physics and mathematics. First, we do not know any analytical forms of smooth functions
on an exotic R4, nor do we know any Riemann metric on it. This is particularly important in physics,
where exotic R4’s are becoming increasingly applicable to crucial problems often in contexts where
there is no alternative option available. A pertinent example is the recent proof by Etesi [14] that large
exotic R4’s are gravitational instantons, and so have to be taken into account by any theory of quantum
gravity with GR as its classical limit, or in the calculation of the realistic value of the cosmological
constant which, moreover, is a topological invariant [15]. Knowing analytic expressions on an exotic
R4 would certainly shed light on the possible construction of quantum gravity and the cosmological
constant problem. Second, we are seriously lacking in insights into the structure of large exotic R4’s.
The method of Casson handles or even handle decompositions, successfully explaining the structure
of a small exotic R4, does not give substantial progress or even does not work for large R4’s (e.g., [16]).
The proposing of an alternative mathematical construction for these R4’s a much-anticipated event.
Finally, such an alternative description, valid in principle for an exotic R4 allowing finitely many
open covers in its smooth atlas, would be especially useful for understanding an exotic R4 obtained
from putative exotic 4-spheres. Such an R4 would remain exotic after one-point compactification,
leading to an exotic S4, such behavior being quite unusual for all known exotic R4’s recognized so
far. The approach in this paper is aimed at employing the extended symmetry principle for analyzing
exotic smoothness structures on R4. The extension is two-fold: Topos-theoretic—it allows for internal
domains in the Basel topos—and local—i.e., local on M—modifications. Even though the invariance of
a theory with respect to the global symmetry of toposes (tovariance) forces the language of the theory
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to be geometric, in the case of local symmetry the invariance transcends geometric morphisms, as the
object of natural numbers in the Basel topos has to be set as N distinct from N.

As a result, we must allow for twisted geometric morphisms between toposes deforming local
atlases on M. We show that the invariance of such smooth manifolds with respect to the above ‘change
of toposes’ traced in Set leads to a change of smoothness structure on R4. Juxtaposing this result with
the successful physical application of exotic R4’s indicates that the tovariance principle of Landsman
et all is to be broken.

The main result of the paper is Theorem 5 which states that given any exotic R4, and modifying
its smoothness structure locally by B, one gets (as invariant in Set) a new smoothness structure that
is nondiffeomorphic to R4. On this basis, we perform an analysis of the general tovariance principle
which even in its weak form, is presumably broken up to the equivalence of exotic R4 and Set-invariant
local B-structures on R4. Assuming this alleged equivalence, one obtains a statement along the lines of
Conjecture 1. As far as we know, the approach presented in this paper is new, though it can be seen as
essentially extending the results in [17–19].

2. Results

Let us recall that a topological n-dimensional manifold is a Hausdorff, metrizable topological
space M together with an atlas of charts {(Uα, φα)}α∈I where M =

⋃
α∈I Uα and the maps φα : Uα →

φ(Uα) ⊆ Rn are homeomorphisms onto their images being open sets of Rn.
An atlas is smooth whenever for any pair of indices α, β ∈ I and Uαβ = Uα ∩Uβ 6= ∅ the maps

φαβ := φβ ◦ φ−1
α |φα(Uαβ)

: φα(Uαβ)→ φβ(Uαβ) . (1)

are smooth with smooth inverses (φαβ)
−1 = φβα. The manifold M with such an atlas is a

smooth manifold.
The smooth structure of a smooth manifold M is defined as the maximal atlas {(Uα, φα)}α∈I of

local smooth charts.
An open cover {(Uα, φα)}α∈I of a topological manifold M is called a good cover if all the Uα and

all their non-empty finite intersections are contractible topological spaces.
A smooth good open cover of a smooth n-manifold M is a good cover whose all finite non-empty

intersections are diffeomorphic to an open ball, hence to Rn.

Lemma 1. Every smooth manifold admits a good smooth open cover.

Proof. The proof follows from the fact that every open cover of a smooth manifold admits a
subordinated smooth division of unity [20] (Th. 2.25, p. 54) and that this last is equivalent to the
paracompactness of M. However, each paracompact smooth manifold admits a smooth good open
cover (for the proof see e.g., [21].)

So, from now on we can always assume that the cover of a smooth manifold we work with is
open good. Let M be the category of smooth manifolds and smooth maps [13] and Set be the category
of sets and functions. Set can be naturally seen as a topos

1. The terminal object 1 in Set is an arbitrary singleton since there exists a unique arrow (function)
X → 1 for every set X.

2. There exist exponentiable set XY of functions for every pair (X, Y) of sets;
3. The fibered products: Given f : B→ A and g : C → A their fibered product is the set B×A C =

{(b, c) ∈ B× C : f (b) = g(c)}.
4. The sub-object classifier and truth object: Ω = {0, 1} determines subsets as the codomain of the

characteristic functions. The truth arrow reads 1 >→ Ω.
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2-valued classical logic is thus written in the Ω and the classical ZF theory of sets can be assigned
to a well-pointed abelian toposes [21].

Let T be a Grothendieck topos which is a topos of sheaves on a site (e.g., [13,22]) with 1. a
sub-object classifier as defined in the sheaves toposes, 2. the internal logic is now intuitionistic and
internal reasoning is performed without any use of the axiom of choice in set theory and the excluded
third low (p ∨ ¬p = 1), 3. intuitionistic set theory. M is defined in Set but can be embedded to certain
toposes e.g., smooth toposes widely analyzed in [13]. Let B be the Basel topos which is one of the
smooth toposes defined in [13]. Then it holds

Lemma 2 ([13] Lemma 5.2, p. 286). The embedding of the category M into B, s : M ↪→ B, is full and faithful.

Remark 1. The topos B is a Grothendieck topos which is construed as the category of sheaves on the site B.
Then the global section functor applied to B, Γ : B → Set, has a left adjoint ∆, i.e., the locally constant sheaf
functor which is the sheafification of the constant presheaf in the presheaves category SetB

op

M s // B Γ // SET.
∆oo

Thus, one can switch between Set and B by these two functors. As we will see later they create
the unique geometric morphisms between B and Set (see Section 2.3).

Remark 2. The category L of loci is the opposite category of smooth rings and smooth maps between them [13].
The profound examples of smooth rings are C∞(Rn), n = 1, 2, ... and quotients of these spaces by ideals
Id ⊂ C∞(Rn). L already contains all smooth manifolds from M. The embedding s : M→ L is depicted by the
same latter s (as to B). Thus, smooth manifolds are replaced consistently in new categorical environment by
smooth rings of functions.

Remark 3. We have direct description of s : M→ L. Let ⊗∞ be the coproduct in the category of smooth rings.
Given any M ∈M there exists n ∈ N and the ideal Id in C∞(Rn) such that

s(M) = C∞(M) = C∞(Rn)/Id (2)

s(R) = C∞(R) and s(M× N) = s(M)⊗∞ s(N) (3)

s(Rn) = C∞(Rn) = C∞(R)⊗∞ ...⊗∞ C∞(R) = s(R)⊗∞ ...⊗∞ s(R) (4)

Additionally, for s : M→ B: ∀M∈M Γ(s(M))
diff' M, ∀M,N∈M Γ(s(N)s(M))

diff' C∞(M, N). (5)

Let C∞(M) in the category L (as opposite to smooth rings) be `C∞(M) (the locus). It holds already
for L [13] (Proposition 1.2, p. 60)

Proposition 1. The functor s : M→ L given by s(M) = `C∞(M), is full and faithful.

Remark 4. Given the topos SetL
op

of presheaves on L one embeds M to SetL
op

. This embedding is given by the
Yoneda embedding which sends M ∈M to the (representable) presheaf M

M = L(−, s(M))

where L(−, s(M)) is the class (set) of all morphisms in L ending at s(M).

Remark 5. The site for the topos B is B which is just L being the category of loci L with the special Grothendieck
topology [13] (pp. 285–286). It holds [13] (Lemma 5.2, p. 286).

Lemma 3. The Yoneda embedding Y : L→ SetL
op

factors through B ↪→ SetB
op

.
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Finally, M 3 M→ s(M) = M := B(−, s(M)) in B.

In every Grothendieck topos with natural numbers object there exists the canonical representation
of NNO given by the so-called constant sheaf N = ∆(N) := N. This ’constant sheaf’ is the sheaf
corresponding to the constant presheaf N. Moreover, given two toposes T1, T2 with the canonical

constant sheaves NNO’s N1, N2, and geometric morphisms g : T1 → T2, g∗N1
iso
= N2, so thus these

canonical NNO’s are preserved by geometric morphisms.
However, there appear variety of difficulties when trying to do analysis on manifolds internally

to B with respect to N. In particular, [13] (p. 226)

• s : M→ B does not preserve compactness, e.g., [0, 1] ⊂ R = s(R) is not compact;
• s does not preserve open covers;
• s does not preserve partitions of unity subordinated to open covers;
• the ring R is not any local ring.

We will see later how to cure these unwanted properties.

2.1. Local Ext/Int Symmetry on Smooth Manifolds

Given a smooth Rn (in Set) and s : M→ B sending Rn to B our present aim is to find descriptions
of s(R4) distinguishing its exotic smoothness structure from the standard one. This is well-defined
question since the functor s : M→ B sends fully and faithfully all smooth manifolds from Set internally
to B.

Remark 6. R4 depicts any of nonstandard smoothings on R4. They are called exotic smooth R4, i.e., R4’s
(e.g., [16]). Each such smoothness structure of R4 is a smooth manifold homeomorphic to the topological R4

but nondiffeomorphic to it with the standard smoothing. The standard smooth structure of Rn is such that the
product R×Rn−1 is smooth. There is unique standard smooth Rn, n = 1, 2, .... It is known that there exist at
least two families, each of cardinality of the continuum, of exotic R4’s: Small and large exotic R4’s. The later
are not smoothly embeddable in the standard R4, or S4, as open subsets while the small R4’s allow for such
embedding.

Let A be a smooth ring and `A the corresponding locus in L. We use abbreviation `A for the sheaf
in B representing A, i.e., s(A) = `A.

Lemma 4. The standard R4 is represented as (s(R))4 = `C∞(R)⊗∞ ...⊗∞ C∞(R) = `C∞(R4) in B.

Proof. The standard smooth R4 in Set is the global smooth Cartesian product of 4 factors R× ...×R.
It is sent to C∞(R4) in B. This last is `C∞(R)⊗∞ ...⊗∞ C∞(R) in B by (2) and (3). L is B with modified
Grothendieck topology hence loci are objects in B and sheaves are representable (Remarks 4 and 5).

Thus, the standard smooth R4 from Set is R4 = `C∞(R4) in B.

Lemma 5. Any small exotic R4 is represented in B as `C∞(R5)/id and large exotic R4 by `C∞(Rm)/Id
where Id is certain non-trivial ideal in C∞(Rm) and id in C∞(R5) and 9 ≥ m ≥ 6.

Proof. Every small exotic R4 is embeddable smoothly as an open subset of R4 so the result for
small R4 follows from [13] (Corollary 2.2, p. 25). Large R4’s are not embeddable in R4 but are still
smooth manifolds so they are representable in the claimed form, i.e., C∞(R4) is finitely presented
C∞(R4) = C∞(Rm)/Id where Id is finitely generated [13] (p. 24). The upper bound m ≤ 9 follows
from the Whitney embedding theorem for the real smooth manifolds.

Remark 7. It would be interesting to give the explicit description of ideals distinguishing between different
exotic R4’s. Such task presumably requires making use of complicated boundaries of Casson handless which are
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infinite geometric constructions. As far as we know such an approach to invariants of R4’s have never been
carried out.

Here we will follow different strategy without direct referring to Casson handles. We are
developing new kind of symmetry for exotic smoothness structures on R4 based on B and Set.

Let us consider a smooth manifold M in Set, M ∈M, with a smooth atlas {(Uα, φα)}α∈I . We assign
to each α ∈ I a map s : M→ B, s : Uα → s(Uα) or the identity (isomorphism in Set, diffeomorphism)
i : Uα → Uα in Set. Thus, the following function is defined

∀(α ∈ I)Uα 7→
{

i(Uα) ' Uα, for α ∈ A ⊂ I

s(Uα) ∈ B, for α ∈ I \ A .
(6)

Definition 1. (a) B-cover of a smooth manifold M is the above assignment (6) such that A 6= ∅ and A 6= I,
i.e.,

∃(α, β ∈ I)Uα 7→ Uα and Uβ 7→ s(Uβ) .

(b) A B-local smooth manifold is a smooth manifold M which every atlas has underlying B-cover, i.e.

∀(U an open good cover of M)∃(B-cover defined from U ) .

Remark 8. When M is certain smooth manifold in Set then to be B-local means that for any its smooth cover
U = (M, {Uα}α∈I) there exists certain B-cover such that every Uα ∈ U is i(Uα) or ΓUBα . We say that a
smooth cover of M derives from a B-cover if the smooth cover has underlying B-local atlas.

We are going to explore what structures on M are determined by its B-local covers. First, let us
assume that the structure we are looking for is invariant with respect to the choice of the local maps
consisting B-covers. Moreover, we want the structure M̂ be a smooth structure of a manifold of the
same dimension.

Proposition 2. If M = Rn and M̂ is smooth, then M̂ ' exotic R4.

Proof. The result is a direct consequence of the following fundamental fact. Any smooth atlas of
any exotic R4 cannot contain just one local chart. Moreover, if each smooth atlas on R4 is not a
single-element one such R4 is diffeomorphic to certain exotic R4 and is not diffeomorphic to the
standard smooth R4. This is simply the consequence of the fact that given a single-element atlas on R4

it is just the standard R4.

Thus, the existence of a B-covers for every open cover of M can change its smoothness structure.
We will see in Section 2.2.3 that indeed one finds an action on smooth functions on M in Set which
derives from existence of B-covers (again for M ' R4). This is Definition 4 which makes precise
the equivalence of functions modified by B-covers on R4 with functions from certain smoothness
structure on R4 in Set. This smoothness structure is called Set-invariant B-local smoothness structure
in Section 2.2.3.

Here we use phrase B-invariant smoothness structure or B-invariant structure for indicating this
possibility that B-covers can modify smoothness structures on manifolds. The resulting structure is
then called B-invariant structure.

Corollary 1. Any realization of the B-invariant smooth structure on any R̂n must be an exotic R4.

2.2. Is Any Exotic R4 Equivalent to a B-Invariant Structure?

We showed that any B-invariant smooth structure on R4 is an exotic R4. Now we are going to
approach the reverse problem: Given any exotic R4 is it generated by the canonical B-invariant smooth



Symmetry 2019, 11, 1429 7 of 17

structure? If Yes and if there are tools to distinguish different exotic structures in terms of B-invariance,
which would mean the equivalence of both constructions. We do not resolve this problem here with all
generality. Instead we show that B-covers lead us precisely towards understanding of exotic smooth
functions on R4. Thus, we will work rather with real-valued functions on R4 than with handle-bodies
underlying known exotic R4. Moreover, the B-invariance can be used also for describing exotic
smoothings of R4 with finitely many maps in the smooth atlas. The similar approach, though based
more on the structure of Casson handles, was initialized in [17,18] and further developed in [19].

Let R4 be an exotic R4 when working in Set. When switching to B R4 is the canonical image of R4

via the embedding s : M→ B. The meaning of R4 will be clear from the context. Given exotic R4 in Set
we have the space of exotic smooth functions on it C∞(R4). The space of standard smooth functions
C∞(R4) is related with C∞(R4). All exotic and all standard smooth functions are continuous

C∞(R4) ⊂ C0(R4) ⊃ C∞(R4) .

Moreover, if C∞(R4) = C∞(R4) then R4 diff.
= R4 [23] so for any exotic R4 there have to exist smooth

exotic functions which are merely continuous with respect to the standard smoothness structure..
Let f ∈ C0(R4) be one of such continuous function which become exotic smooth in some exotic
smoothness structure of an exotic R4. The subsequent task is to understand and perform infinite many
differentiations of this continuous function in the exotic smoothness structure. This kind of problem
has been successfully resolved in the theory of distributions. Thus, the question we want to explore
further is whether distribution theory can help understanding exotic smoothness on R4.

2.2.1. First Comparison of Distributions and Exotic Smoothness Structures on R4

Let us consider a smooth function f ∈ C∞(R4) and a test function φ ∈ C∞
0 (R4) = D(R4) with the

support in a certain ball in R4, hence vanishing at infinity. The space D(R4) of test functions is the sum
of subspaces DK, of test functions with supports in K, over all compact subsets K ⊂ R4 [24] (p. 151).
Then it holds∫

R4
∂α f (x) · φ(x)dx = (−1)|α|

∫
R4

f (x) · ∂αφ(x)dx, for all test functions φ ∈ D(R4) (7)

where α = (α1, ..., α4) is a multi-index and |α| = α1 + ... + α4 so that ∂α = ∂α1

∂x
α1
1
· ... · ∂α4

∂x
α4
4

. This formula,

as is well known, serves as a prescription how to extend the differentiation over nondifferentiable
functions from f ∈ C0(R4). Then the rich distribution theory has been developed which extends
differentiation over non-continuous functions and over proper distributions not-being functions at all.

Remark 9. The important fact which follows from (7) is that whenever a distribution h ∈ D′(R4) is represented
by a smooth function H ∈ C∞(R4) then the distributional differentiation coincides with the usual differentiation
of the smooth function H and we write h = H for such regular distributions. Thus, differentiation of continuous
functions by distributions preserves differentiations of smooth functions.

Remark 10. This extension of continuous functions is minimal: One must take the space of all distributions
to include all continuous functions with all partial derivatives. If we take any proper subclass of distributions
then it follows that not all continuous functions were included. This is the consequence of the two following
theorems [24] (pp. 167, 169, Theorems. 6.26, 6.28).

Let D′(Ω) be the space of distributions on open subset Ω ⊆ R4.

Theorem 1 ([24]). Suppose h ∈ D′(Ω), and K is a compact subset of Ω. Then there is a continuous function f
in Ω and there is a multi-index α such that

hφ = (−1)|α|
∫

Ω
f (x)(Dαφ)(x)dx
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for every φ ∈ DK.

This can be made more global ([24] (p. 169, Th. 6.28).

Theorem 2 ([24]). Suppose h ∈ D′(Ω). There exist continuous functions gα in Ω, one for each multi-index α,
such that

a. each compact K ⊂ Ω intersects the supports of only finitely many gα, and
b. h = ∑α Dαgα

If h has finite order, then the functions gα can be chosen so that only finitely many are different from 0.

Let us note that quite analogous situation takes place for exotic smooth functions on R4. As we
observed before given an exotic R4 some continuous functions become differentiable and some
standard smooth become nondifferentiable but only continuous. To distinguish one exotic smoothness
structure from another, one should find a way to distillate the set of continuous functions which
become exotic smooth when switching between various R4’s. This is currently out of our reach
(however, see [25] where functional subspaces were analyzed from the point of view of trees defining
Casson handless).

2.2.2. Distributions in B

Distribution theory in the topos B has been presented in [13]. The choice of the topos B is crucial
here. As we noted already in Remark 1 the canonical NNO in B is the constant sheaf N = N which,
however, leads to the variety of problems regarding smooth manifolds in B. The crucial for curing these
weaknesses and for the proper representation of distributions in B is to substitute N by another NNO
object. The substitution is the object of smooth natural numbers, N, which is a kind of intuitionistic
end-extension of N in B. Such consistent replacement is one of the main topics of [13].

Remark 11. The object N contains nonstandard big natural numbers [13] and R either. Because of that
R = C∞(R) is non-Archimedean with respect to N and becomes Archimedean with respect to N. Moreover,
problems stated in (2) are now cured because of referring to N

• s : M→ B preserve compactness, e.g., [0, 1] ⊂ R = s(R) is s-compact (smooth compact, i.e., with respect
to N);

• s preserves open covers with respect to N;
• s preserves partitions of unity subordinated to open covers (with respect to N);
• the ring R is a local ring;

Let us follow the description of internal to B distributions. As we mentioned above R is a
non-Archimedean ring with respect to N which becomes Archimedean relating to N. The reason is
that N contains infinite big natural numbers r ∈ N \N which, however, can be inverted, i.e., 1

r ∈ R.
Thus, one has the object of invertible infinitesimals I as sub-object of R. Since B is a model of synthetic
differential geometry there exists also the object 4 of non-invertible infinitesimals. More precisely,
let � = {x ∈ R : ∀n∈N − 1

n+1 < x < 1
n+1} be a space (sub-object of R in B) of infinitesimals. There are

two sub-objects of �

I = {x ∈ � : x is invertible} = {x ∈ � : ∃n∈N x <
1

n + 1
or x >

−1
n + 1

}

4 = {x ∈ R : x is not invertible} = {x ∈ R : ∀n∈N −
1

n + 1
< x <

1
n + 1

} .

The ring of accessible reals is defined as

Racc = {x ∈ R : ∃n∈N − n < x < n} . (8)
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Remark 12. Note the appearance of different types, N and N, in definitions above. Thinking in Set the accessible
reals comprise those which are Archimedean with respect to N—the standard natural numbers. Infinitesimals
i.e., the object � can be well presented in terms of the apartness relation # on R: x # y iff ∃n∈N|x− y| > 1

n , then

� = {x ∈ R : ¬(x # 0)} .

So any infinitesimal cannot be apparted from zero by any 1
n , n ∈ N.

Remark 13. Internal logic of toposes is intuitionistic logic and because of that there exist non-invertible
infinitesimals in B which cannot exist in Set.

A function f ∈ RRn
is accessible if for every multi-index α and x ∈ Racc, ∂α f (x) ∈ Racc.

f ∈ RRn
has accessible support when ∃m∈N∀x∈Rn x ∈ [−m, m]n ⊂ Rn or f (x) = 0.

Definition 2. A test function f ∈ RRn
is an accessible function with accessible support.

Let Fn be the space of all test functions from RRn
and

(
RRn)

a be an object of functions with
accessible supports.

Definition 3. A distribution on Rn is an R-linear map

µ :
(

RRn)
a → R

which for f ∈
(

RRn)
a fulfils

∀x∈Rn∀α∂α f (x) ' 0⇒ f (x) ' 0 .

There is direct 1 : 1 correspondence between distributions from B and Set [13] (p. 336, Th. 3.15.3).

Theorem 3 ([13]). The global sections functor Γ : B → Sets induces a bijection between distributions
Fn

ν→ R in B and external distributions Γν : C∞
c (Rn)→ R, and between distributions with compact support,

i.e., R-linear maps RRn ν→ R and external distribution with compact support C∞(Rn)
Γν→ R.

Moreover, every distribution µ in B can be represented by a function (predistribution) µ0 : Rn
acc →

R. Specifically, every function µ0 as above defines an R-linear functional by integration in B

hµ0( f ) =
∫

µ0 f .

If µ0 fulfils the continuity rule

∀ f∈Fn∀α∈Nn∀x∈R∂α f (x) ' 0⇒ hµ0( f ) ' 0

it is called a predistribution.

Theorem 4 ([13], p. 324, Th. 3.6). For every distribution µ on Rn there exists a predistribution µ0 : Rn
acc → R

such that for all f ∈ Fn

µ( f ) =
∫

f (x)µ0(x)dx.

Thus, given the 1 : 1 correspondence between external and internal to B distributions now we have
the possibility to represent internally every distribution from Set by regular B-internal distribution.

Remark 14. From the proofs of both theorems above in [13] it follows that the facts stated are true only because
of the existence of invertible infinitesimals and replacing N by N consistently in B.
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2.2.3. The Construction of B-Invariant Functions as Smooth Exotic

Given a smooth B-local atlas on M (as in Definition 1), it always contains some local map(s) in
B (see Remark 8) such that some smooth transition function φαβ : Uαβ → Uαβ should be replaced by
φ→B : Uαβ → UBαβ. How can we define the transitions from Set to B and back? Certainly, the obvious
choice is to use global section functor Γ : B → Set and its left adjoint the constant sheaf functor
∆ : Set→ B. The pair (Γ, ∆) is a geometric morphism. Additionally, on manifolds M ∈M there exists
full and faithful embedding s : M→ B such that Γ(s(M)) ' M where ' is a diffeomorphism of M in
Set (see (5)). Thus, given Uαβ = Uα ∩Uβ ' R4 we can embed it by s into B and s(Uαβ) ' R4.

Now given a continuous function f ∈ C0(R4), f /∈ C1(R4), we are going to understand it as
differentiable or smooth in an exotic smoothness structure on R4. The crucial ingredient of the approach
is the allowed local shift φ→B in the B-atlas.

Definition 4. B-local smoothness structure UB on R4 is smoothly equivalent to certain smoothness structure
U on R4 iff every smooth B function is also smooth in the structure U .

B-local smoothness structure on R4 is Set-invariant when it is smoothly equivalent to certain smoothness
structure of R4 in Set.

Remark 15. This definition claims that certain continuous functions which are going to be smoothed out by
means of B-local structures can be smoothed out by the change of smoothness structure on R4.

Theorem 5. If one begins with a local smooth cover of R4 and make it B-local smooth by taking some of its local
maps as B-local, then Set-invariant smoothness structure equivalent to this B-structure, is not diffeomorphic to
the initial one.

To prove this result, we need the following observation.

Proposition 3. For every B-local smooth cover of R4 which is Set-invariant there exist continuous functions
in C0(R4) which become smooth.

Proof. Let f ∈ C0(R4) be nondifferentiable. We still differentiate it as distribution C0(R4) 3 f ∂−→
f̂ ∈ D′(Ω), Ω ⊂ R4. Then the local transition function φ→B : Set → B sends R4 to R4 via s : M→ B.
The global section functor Γ : B → Set determines 1 : 1 correspondence between distributions in B
and external distributions in Set (Theorem 3). This correspondence goes as follows [13] (p. 234). Given
a distribution f̂ in Set it defines a natural transformation in B which is the internal B-distribution
µ f̂ . This natural transformation µ f̂ is defined by components. Let F(x, y) be an element F ∈ RR4

(`A)

and A is a smooth ring C∞(Rd)/Id with Id an ideal in C∞(Rd). So `A ∈ B are stages-components.
Given a sheaf in B e.g., R or RR4

one can consider them on stages `A and obtain R(`A), RR4
(`A)

correspondingly. Also any natural transformation, e.g., µ f̂ , is to be defined by components i.e., on `A
and then it reads µ f̂ |`A. Thus, the definition of µ f̂ on components is as follows (here Id is an ideal in

C∞(Rd))

µ f̂ |`A : RR4
(`A)→ R(`A), A = C∞(Rd)/Id .

µ f̂ |`A(F(x, y)) = f̂y(F(x, y)), F(−,−) : Rd ×R4 → R .

Given an external distribution f̂ we have the unique R-linear map µ f̂ in B which is the internal

distribution in B. This internal distribution can be marked as s( f̂ ) which indicates the reverse direction
of the correspondence, i.e., the global section functor uniquely retrieves the external distribution
Γs( f̂ ) = f̂ .
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The change of the local map from Set to B sends R4 to R4 and f̂ to µ f̂ . Next step is to represents

µ f̂ by the predistribution µ0
f̂

such that

µ0
f̂ ∈ RR4

and µ f̂ (g) =
∫

µ0
f̂ (x) · g(x)dx .

µ0
f̂

is continuous [13] (Remark 3.9.2, p. 311). Moreover, there always exist its differentials of arbitrarily

order (for any 4-index α) as follows from the Kock axiom [13] (p. 303). Thus, the local change of the
map into B-internal defines, in terms of B, smoothness of continuous functions on R4 in Set.

Externally, distributions in Set obtained by differentiating the continuous functions can be
represented by continuous functions due to Theorems 1 and 2. More precisely, there exist distributions
e.g., from D′(Ω) with respect to the test functions g ∈ DK as in Theorem 1 which are entirely
determined by a continuous functions on Ω ⊂ R4.

The diagram below shows the steps performed in the proof above (See Figure 1).

φαβ : Uαβ
//

φ→B

$$

Uαβ : C0(R4) 3 f ∂→ f̂ ∈ D′(R4) :

Th.31 : 1
��

Set : N

R4 = UBαβ µ f : RR4 → R :

Th.41 : 1
��

B : N

µ0
f : Rn → R : B : N→ N

Figure 1. B-smoothing of the continuous function f . Differentiating of f in Set gives rise to the
distribution which internally is certain unique B-distribution µ f̂ . This last is internally a regular

distribution (function) µ0
f̂

due to the replacement of N by N.

Proof of Theorem 5. Given a local map from a smooth atlas on R4 let it be changed into B-internal
one. It is then possible to find a continuous function on Uα ' R4 which becomes smooth in the
UBα ' R4 just by repeating the construction from the proof of Proposition 3. Then the Set-invariant
B-smoothness structure on R4 is not be diffeomorphic to the initial smoothness structure.

Remark 16. From the construction above it follows that, in principle, one can make locally any continuous
function f|Uα

B-smooth. To distinguish between smoothness structures on R4 we need some additional global
information. This is analogous to exotic smooth manifolds R4 which locally are describable by standard
smooth transition functions. The difference between them is written in some topological information given by
Casson handles.

Remark 17. The construction of Theorem 5 can be repeated however at this stage of development of the approach
we do not know whether obtained smoothness structures are pairwise different and nondiffeomorphic.

2.3. Local B-Invariance and General Tovariance

There is, however, a price to pay for the change N → N in B: The object of smooth natural
numbers N is not preserved by geometric morphisms between topoi (N does) - it does not even exist in
general. The consequence would be leaving the class of geometric morphisms and geometric theories
when approaching exotic 4-smoothness by B-means.

Remark 18. A geometric morphism g : T1 → T2 between toposes T1, T2 is the pair (g∗, g∗) of functors
g∗ : T1 → T2 and its left adjoint g∗ : T2 → T1 which preserves finite limits.



Symmetry 2019, 11, 1429 12 of 17

Remark 19. Let L be the 1st order language. The set of geometric formulae in L is the smallest set of formulae
containing atomic formulae and closed by finite conjunction (∧), arbitrary disjunction (∨), and existential
quantification (∃).

A theory is geometric if it can be axiomatized by sentences of the form ∀x(φ(
→
x )→ ψ(

→
x )) where φ and ψ

are geometric formulae and
→
x = (x1, ..., xn) for some n ∈ N.

Proposition 4 ([11]). The inverse image part g∗ of a geometric morphism g : T1 → T2 preserves any
geometric theory.

If T is a sheaf topos over a site C with N the object NNO (e.g., B with C ' B), then there is a

unique geometric morphism g = (∆ a Γ) : T Γ // Set
∆oo

where Γ is the global section functor and ∆
the inverse image being the locally constant sheaf functor (∆ is the sheafification functor of the constant
presheaf N in SetCop

). Then
∆(N) = ∆( ∑

n∈N
1Set) = ∑

n∈N
(∆1Set) .

Proposition 5 ([22], Lemma A.4.1.14). For any geometric morphism g = (g∗, g∗) between toposes T1, T2 the
inverse image functor g∗ preserves NNO, i.e., if N2 is a NNO in T2 then g∗N2 is the NNO in T1.

It follows

Corollary 2. The object N of smooth natural numbers in B is not preserved by the geometric morphism
g = (∆ a Γ) between B and Set.

Proof. N is not isomorphic to NB in B and for the geometric morphism g : B → Set the inverse image
part of it, g∗, sends NSet to NB 6= N.

Similarly, it holds

Corollary 3. Given a topos T with NNO and a geometric morphism g = (g∗, g∗) : B → T , then N in B is
not preserved by g, i.e., g∗NT 6= N.

Remark 20. N is not NNO in B. The arithmetic of natural numbers based on N is a weaker form of the
arithmetic based on N e.g., coherent induction principle holds instead of induction [13]. However, the distinction
between N and N in B remains undecidable and hard to be grasped [13] (p. 307).

Let (B,N), (B, N) be the topos B with the canonical NNO, N, and with N the object of smooth
natural numbers, respectively. Let the meta-procedure of consistent replacement of N by N be
abbreviated as δB . Hence δB : (B,N) → (B, N). In particular, δBN ' N, δBRN ' RN and RN is
non-Archimedean, nonlocal ring in B while RN is Archimedean and local ring. The best way to
describe δB is via a corresponding shift in axiomatic systems [13]. Such a shift leads to the weakening
of arithmetic. However, as we saw in Corollaries above, smooth N replacing the canonical NNO might
be a source of non-geometricity in theories formulated in (B, N) which are based on N.

For example, the theory of distributions in (B, N) and the meta correspondence as in Theorem 3
are non-geometric since they rely essentially on smooth natural numbers N. If these results have
additionally physical implications that would be a way showing the breaking of the tovariance
principle [11]. Below we will show how much we can push forward this program based on the results
of this paper.

The original general tovariance principle as in [11] relies on the free choice of arbitrary topos T
with NNO such that any physical quantum theory formulated in the geometric language internally
to T is equivalent to any other formulation internal to T ′, provided the change g : T → T ′ is a
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geometric morphism. It follows that physics does not distinguish between these two representations
and hence geometric logic is the language in which physical theories should be formulated. [11].
Consequently, any quantum theory with the quantum algebra of observables is equivalent to certain
commutative algebra of a classical theory. The equivalence is in terms of physical indistinguishability
which resembles effects of gravity in GR. They are locally indistinguishable from the acceleration of
the physical frame by any physical experiment. This quantum-classical equivalence for toposes is a
direct consequence of the fact that for each noncommutative C∗-algebra C there exists a topos TC in
which C becomes internally a commutative algebra. However, already in [11] the authors observed
that the construction of a C∗-algebra is not geometric (the completeness property and the existence of
a norm are not geometric in general) and that strong formulation of the tovariance principle may be
broken and not giving the strict equivalence of quantum and classical formulations. Consequently
the authors themselves quit referring to this principle as general physical rule [12] (p. 493). However,
still the point-free version of C∗-algebras (localic C∗-algebras) have been developed [26] which are
applicable to any topos and thus giving rise to the constructive version of the tovariance principle
(We are greatly indebted to the anonymous referee for indicating this fact to us.). We are not making
any specific use of the quantum-classical equivalence here, which, anyway, was the main reason for
considering general tovariance. Rather we consider a theory, eventually in the geometric language,
as physically (and mathematically) invariant with respect to the various interpretations in toposes
with NNO. Thus, at this stage, we can restrict the class of physical theories to these theories which are
formulated in the geometric language. Even this is done the shift δB , replacing N by N, is the source
of non-geometricity which cannot be preserved by geometric morphisms. That is why the general
tovariance principle gains the following weaker form becoming special tovariance principle

Special tovariance principle. When a physical theory is formulated in the geometric language
one cannot experimentally distinguish between their realizations in different toposes with
NNO when the change of the toposes is via geometric morphisms.

We thus left in this formulation undecided the question whether all physical theories can be
formulated as geometric theories. If they were (in a sufficiently general form) and if we changed
toposes by geometric morphisms then QM in the geometric formulation would lead to C∗-algebras
which be physically equivalent to commutative algebras of observables [11].

Even though this weak form of the tovariance principle were true the approach to exotic
smoothness in this paper shows that the original strong general tovariance principle could be
broken and the weak form above is too restrictive. Let us indicate two important ingredients of
the breaking process.

• We follow ‘global-to-local’ pattern known from gauge theories. This means that given local
B-structure on a smooth manifold M ∈ M one switches between Set and B frames without
possibility to leave entirely any of them (Definition 1). The Definition 1 can thus serve as an
obstruction to the global choice of a topos on M, i.e., Set or B. It can be restated as the property of
non-existence of any global Set or B-sections on M.

• Any B-invariant structure on M would rely on generalized equivalence between the Set
construction with respect to N and B construction with respect to N. The constructions are
not equivalent by geometric morphisms since N is not preserved - it does not exist in general
(Corollaries 2 and 3).

Thus, even if a theory is geometrically formulated local B-invariance can enforce its
non-geometricity and the weak tovariance principle would be too restrictive as allowing only for
geometric theories. However, as far as the non-geometric modifications like N → N give rise to no
physical implications, the status of the tovariance principle would be still unaffected on this ground.

To decide this problem, we are searching for an exotic R4 which has clear physical implications.
It is R4 embedded in K3#CP2 and considered in [15]. It was shown that the curvature of such
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embedded R4 is responsible for the realistic value of the cosmological constant [15] which, moreover,
is a topological invariant. This is a really strong connection of a physical quantity and topological
structure of this R4. If we assume that it is derived as some local B-structure then we can state the
following conjecture

Conjecture 1. If the exotic R4 as above is equivalent to certain Set-invariant local B-structure (see Definition 4)
then the strong general tovariance principle do not hold true and the weak tovariance principle is too restrictive.

The above conjecture in this formulation is true but still we do not know whether the ‘if’
assumption can be skipped. We will address this issue elsewhere.

3. Discussion

The results of this paper can be seen in a broader categorical perspective. The switching between
Set and a topos B locally on M ∈ M corresponds to switching between intuitionistic and 2-valued
classical descriptions. As we noted already when an intuitionistic theory is formulated also by
geometric formulae and the change between toposes is given by geometric morphisms this precisely
defines the invariant theory which is not sensitive to the choice of a topos. On the other side one can
reduce the allowed class of toposes such that each of them would determine uniquely the category
Set. Then the switching between such toposes and Set is allowed as non-constraining with respect
to the (local) Set descriptions. Set is a topos and one can extract categorical properties ensuring that
a given topos is equivalent to Set. Crucial property is well-pointedness which enforces that external
and internal properties of a well-pointed topos are the same, hence the external/internal symmetry
is reduced to the Set-based symmetry. More precisely, let E be a well-pointed topos. By definition it
means that E is an elementary topos (defined in 1st order theory) and

• The global section functor Γ : E→ Set is faithful—the terminal object is a generator,
• 1 is not an initial object (E is nondegenerate).

Theorem 6 ([27]). Set is, up to equivalence, the unique locally small and cocomplete well-pointed topos (or the
unique locally small and complete well-pointed topos).

In particular the sub-object classifier Ω of E has two global elements {⊥,>} and Γ in Set is the
identity functor. The invariance with respect to such well-pointed and complete toposes does not
essentially extends usual invariance in Set.

Then let us extend the allowed class of toposes such that they are not necessarily well-pointed.
Again, the restriction to geometric morphisms and intuitionistic geometric languages make the job
and an invariance is defined. However, the local on a smooth manifold M topos-based structures work
differently. B-local structure on M enforces that a resulting structure is not entirely in Set or B but still
can be equivalent to certain structures in Set. As we noted already the invariance in this case extends
geometric components since N replaces N in B locally on M. Since both Set local chart and B-chart are
active on M, thus the switch N→ N either. From Set perspective one way to grasp this is via suitable
weakening of the arithmetic of natural numbers, i.e., Peano arithmetic such that N and N become
interchangeable. As a matter of fact, this kind of task was the guiding principle of the approach in [13]
though from the B perspective. The authors have built the intuitionistic environment, the topos B,
where N is consistently replaced by N. They also discussed the suitable weakening of Peano arithmetic
allowing for such replacement.

Here we stipulate rather on the local character of the weakening: Depending on the chart of M
one has Set with N-based description though in another chart there is B with N-based description.
Resulting structure on manifold should be invariant with respect to the choice of such local descriptions.
We have not presented entire theory of such structures here. Rather we have focused on the particular
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construction relating exotic smoothings on R4 which, however, might serve probably as representable
for a general theory. We will work on this in a separate publication.

An approach to such general theory were performed by one of the present author in [17] where a
rule of indistinguishability of certain models of Peano arithmetic (PA), N and ∗N, in certain formal
environment assigned to a formal theory was proposed. It would be interesting to find a unifying
formal description of such theory applicable also in the case of this paper. In particular, the role of the
models (N, ∗N) and their indistinguishability could be played by (N, N) in our case.

Related with the above is the problem of distinguishing exotic R4’s or building suitable invariants.
Please note that ∗N is a nonstandard model of PA build by the ultrafilter construction while N in B is
intuitionistic nonstandard model of the weak PA which also contains nonstandard infinite smooth
numbers. Thus, switching between Set and B we switch between ∗N and N and thus unique N gains
infinite many possible Set images. The symmetry of the space of non-principal ultrafilters on N might
be helpful in determining suitable invariants of exotic R4’s (cf. [19]).

Another important aspect of the approach is the possible use of the presented description of
exotic R4 to the case of those allowing for the finitely many local charts and consequently can help
understanding of the problem of existence of an exotic S4. The important feature of our approach is
independence on Casson handles constructions (e.g., [16]) hence can be applied to a different class of
exotic R4’s. Even though the studies are only at the conceptual stage at present, any progress in this
field could shed light on the existence of another, unknown so far, smoothings of R4.

The applications to physics can also be worked out. The strict tovariance principle is overpassed by
exotic R4’s which are local B-structures as described in this paper. On the other side the applications to
physics of R4’s has been under development since 1980s; however only recently two important results
were worked out: Large exotic R4’s are gravitational instantons [14] and the curvature of embedded
in K3#CP2 exotic R4 is a topologically supported realistic value of the cosmological constant [15].
Moreover, there are strong indications that exotic R4’s are directly connected with noncommutative
von Neuman algebras [28,29]. In particular, the initial quantum state in the evolution of the universe is
geometrically interpreted as wildly embedded 3-sphere and its noncommutative algebra follows from
the embedding structure R4 ↪→ K3#CP2. Thus, exotic R4’s not only are curved Riemann manifolds
and large are gravitational instantons, but also they determine quantum structures topologically. In the
paper we have found and explore the symmetry principle allowing for such results. The symmetry
extends usual one defined in Set in such a way that logic and set theory become local physical variables
and the invariance with respect to their local changes implies the modification of 4-smoothness on
spacetime. If logic were constant (global) no such explanation would be possible (see Corollary 1
and Proposition 2). Moreover, if exotic R4’s are indeed derived as B-local structures (Conjecture 1)
that would mean that the dynamics of the changes of logic on spacetime gives rise to physical effects
such as the explanation of the smallness of the cosmological constant. Then in the search for the final
theory of quantum gravity one should deal with such extended symmetry and varying logic. On the
other side, bearing in mind the role played by exotic smoothness on open 4-manifolds in determining
quantum regime (e.g., [28]) the approach called ’Bohr’s doctrines of classical concepts’, assigning at
final stage classical windows to any quantum theory, found here a ’smooth’ ally. Working in this field
should certainly increase our understanding of important fundamental aspects of physical problems
and indicates the required modifications of the mathematical formalism.
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