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Abstract: Periodic responses of linear and nonlinear systems under discontinuous and impulsive
excitations are analyzed with non-smooth temporal transformations incorporating temporal
symmetries of periodic processes. The related analytical manipulations are illustrated on a strongly
nonlinear oscillator whose free vibrations admit an exact description in terms of elementary functions.
As a result, closed form analytical solutions for the non-autonomous strongly nonlinear case are
obtained. Conditions of existence for such solutions are represented as a family of period-amplitude
curves. The family is represented by different couples of solutions associated with different numbers
of vibration half cycles between any two consecutive pulses. Poincaré sections showed that the
oscillator can respond quite chaotically when shifting from the period-amplitude curves.
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1. Introductory Remarks and Example

Impact loads applied to physical systems are often modeled with Dirac’s generalized functions
(distributions) by ignoring the short-term load profiles and using their integral effects instead.
However, the presence of distributions in a differential equation of motion requires the entire equation
to be considered within the theory of distributions that leads to theoretical complications especially
in nonlinear cases [1,2]. In the present work, we illustrate non-smooth temporal substitutions
incorporating the pulse effects into a periodic time folding argument. Substituting such an argument
into the differential equation of motion generates singularities of derivatives that can be effectively
used to balance the loading Dirac’s delta impulses or discontinuities from the differential equations.
In this introductory section, we outline necessary analytical manipulations based on general time
symmetries of periodic processes regardless their temporal mode shapes. Namely, any periodic process
admits time shifts with reflections. Such properties can be easily incorporated into the corresponding
differential equations at the preliminary stage of study by means of the following standard pair of
non-smooth periodic functions

τ(t) = 2
πarcsin

(
sin

(
πt
2

))
=

{
t if − 1 ≤ t ≤ 1

2− t if 1 < t ≤ 3
, τ(t + 4) ∀t

= τ(t)

e(t) =
.
τ(t) = sgn

(
cos

(
πt
2

))
=

{
1 if − 1 < t < 1
− if 1 < t < 3

, e(t + 4) ∀t
= e(t)

(1)

As follows from the graphical illustration in Figure 1, the couple of functions τ(t) and e(t) can
be interpreted as a coordinate and velocity of a small particle oscillating between two perfectly stiff
barriers without energy loss.
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Figure 1. Non-smooth periodic basis. 

Note that the derivative ( )tτ  remains undefined at discontinuity points ( ){ }: = 1t tτ ± . Also, 

since ( )e t  is a rectangular cosine-wave with step-wise discontinuities, its first generalized derivative 
is given by the periodic sequence of Dirac’s δ - functions as 
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Distribution (2) associates with the impulsive force applied from the barriers to the particle 
whenever the particle strikes the barriers. In addition, the following differential and algebraic 
properties hold 

2, 1, 0 1e e eτ τ= = ≠ ⇔ = ±   (3) 

Although functions (1) are quite specific, they create a general basis for considering a broader 
class of oscillating processes. This is based on the statement that any periodic process ( )x t  of the 
period 4T a=  admits representation in the form of ‘hyperbolic number’ [3,4] 
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1( ) [ ( ) (2 )]
2

1( ) [ ( ) (2 )]
2

X x a x a a

Y x a x a a

τ τ τ

τ τ τ

= + −

= − −
  (5) 

Here, the terms ( )X τ  and ( )Y τ  depict the sin- and cos-type symmetries, and can be viewed 

as “real” and “imaginary” parts of the hyperbolic number due to the relationship 2 1e =  (3). Note 
that the term ‘hyperbolic number’ represents one of the multiple versions typically applied to the 
abstract algebraic combination [5], jα β+  ( 2 1j = ). In our case, the unipotent j is represented by 
the periodic step-wise discontinuous function ( / ) ( / )e t a t aτ ′=  describing the velocity of impact 
oscillator. Identity (4) can be easily proved by substituting (5) in (4) and considering the result on one 
period 3a t a− ≤ ≤ ; see Appendix A. The following example reveals temporal symmetries of the 
both components in (4) 

( ) ( )sin cos sin cos ( ), , .
2 2 2 2

tt t t tA B A B e t A B constπ π πτ πτ∀
+ = + =   

In particular, if a periodic function ( )x t  is even with respect to the quarter of period t a= , 
then ( ) 0Y τ ≡  and identity (4) has only the “real component” ( )x X τ= . The corresponding 
geometrical interpretation is shown in Figure 2. 
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Figure 1. Non-smooth periodic basis.

Note that the derivative
.
τ(t) remains undefined at discontinuity points

{
t : τ(t) = ±1

}
. Also, since

e(t) is a rectangular cosine-wave with step-wise discontinuities, its first generalized derivative is given
by the periodic sequence of Dirac’s δ- functions as

.
e(t) = 2

∞∑
k=−∞

[δ(t + 1− 4k) − δ(t− 1− 4k)] (2)

Distribution (2) associates with the impulsive force applied from the barriers to the particle
whenever the particle strikes the barriers. In addition, the following differential and algebraic
properties hold

.
τ = e, e2 = 1,

.
e , 0⇔ τ = ±1 (3)

Although functions (1) are quite specific, they create a general basis for considering a broader
class of oscillating processes. This is based on the statement that any periodic process x(t) of the period
T = 4a admits representation in the form of ‘hyperbolic number’ [3,4]

x = X(τ) + Y(τ)e (4)

where τ = τ(t/a), e = e(t/a), and

X(τ) = 1
2 [x(aτ) + x(2a− aτ)]

Y(τ) = 1
2 [x(aτ) − x(2a− aτ)]

(5)

Here, the terms X(τ) and Y(τ) depict the sin- and cos-type symmetries, and can be viewed as
“real” and “imaginary” parts of the hyperbolic number due to the relationship e2 = 1 (3). Note that
the term ‘hyperbolic number’ represents one of the multiple versions typically applied to the abstract
algebraic combination [5], α+ β j ( j2 = 1). In our case, the unipotent j is represented by the periodic
step-wise discontinuous function e(t/a) = τ′(t/a) describing the velocity of impact oscillator. Identity
(4) can be easily proved by substituting (5) in (4) and considering the result on one period −a ≤ t ≤ 3a;
see Appendix A. The following example reveals temporal symmetries of the both components in (4)

A sin
πt
2

+ B cos
πt
2
∀t
= A sin

πτ(t)
2

+ B cos
πτ(t)

2
e(t), A, B = const.

In particular, if a periodic function x(t) is even with respect to the quarter of period t = a, then
Y(τ) ≡ 0 and identity (4) has only the “real component” x = X(τ). The corresponding geometrical
interpretation is shown in Figure 2.
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Let us outline some algebraic and differential properties of representation (4). 
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Figure 2. Geometrical interpretation of the particular case with a sine-wave temporal symmetry: 
observing the coordinate x does not reveal which of the two temporal variables, τ or t, is ‘in play’. 

Relationship (6) is proved by setting 1e = ±  and then solving the two equations for R  and I . 
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Figure 2. Geometrical interpretation of the particular case with a sine-wave temporal symmetry:
observing the coordinate x does not reveal which of the two temporal variables, τ or t, is ‘in play’.

Let us outline some algebraic and differential properties of representation (4).

• Algebraic properties. Taking into account that e2 = 1, e3 = e, e4 = 1, . . . , gives, for instance,

(X + Ye)2 = X2 + Y2 + 2XYe
(X + Ye)3 = X3 + 3XY2 +

(
Y3 + 3YX2

)
e

1
X + Ye

=
X

X2 −Y2 −
Y

X2 −Y2 e if X , ±Y

and
exp(X + Ye) = exp(X)[cosh(Y) + sinh(Y)e]

Generally
f (X + Ye) = R + Ie (6)

where
R = 1

2 [ f (X + Y) + f (X −Y)]
I = 1

2 [ f (X + Y) − f (X −Y)]

Relationship (6) is proved by setting e = ±1 and then solving the two equations for R and I.
• Differential properties. Despite of the presence of non-smooth and discontinuous functions on the

right-hand side of identity (4), its class of smoothness coincides with a class of smoothness of
the function x(t). Namely, the behavior of the right-hand side of (4) in the neighborhoods of
singularities Λ =

{
t : τ(t/a) = ±1

}
is determined by the functions X(τ) and Y(τ). For instance,

if x(t) ∈ C(R) then Y = 0 as t ∈ Λ or Y(±1) = 0. However, if the function x(t) has inherent
step-wise discontinuities at points Λ then quantities Y(±1) , 0 will represent the steps of such
discontinuities. Now assuming x(t) ∈ C(R) and taking the formal time derivative of (4) gives

dx
dt

=
d
dt
[X(τ) + Y(τ)e] =

1
a
[Y′(τ) + X′(τ)e + Y(τ)e′] (7)

where e′(t/a) is a generalized derivative with δ-type singularities at Λ to be eliminated by
imposing condition

Y(±1) = 0 (8)

Therefore, due to condition (8), derivative (7) still preserves the structure of hyperbolic number. If
x(t) ∈ Cn(R) then the procedure (7)–(8) can be reiterated n times by sequentially imposing boundary
conditions on the functions X(τ), Y(τ) and their derivatives at τ = ±1.
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Further, we use the identity (4) as a representation for solutions of differential equations by
considering X(τ) and Y(τ) as a couple of new unknown functions of the temporal argument τ ∈ [−1, 1].
In order to illustrate the corresponding manipulations, let us consider the equation

dx
dt

+ λx = pe(t) (λ, p = const.) (9)

where the input function is periodic step-wise discontinuous rectangle cosine of the period T = 4. Let
us seek continuous periodic solutions of Equation (9) of the same period in the form of representation
(4). Setting a = 1, substituting (4) in (9), and taking into account condition (8) gives

Y′ + λX︸   ︷︷   ︸
continuous

+ (X′ + λY − p)e︸            ︷︷            ︸
step-wise discontinuous

= 0. (10)

It is seen that the left-hand side of Equation (10) is an element of ‘hyperbolic algebra’. Setting
its both components separately to zero and including conditions (8) gives the autonomous boundary
value problem with no discontinuities, which can be treated in a classical way,

X′ + λY = p
Y′ + λX = 0
Y(±1) = 0

(11)

Namely, eliminating X from the second equation gives the second-order linear differential equation
Y′′ − λ2Y = −λp with the general solution Y = C1sinh(λτ) + C2 cosh(λτ) + p/λ. Then satisfying the
boundary conditions, determining X = −Y′/λ, and substituting both X and Y in (4) gives periodic
solution of Equation (9) in the final form

x(t) =
p
λ

{
sinh(λτ)

coshλ
+

[
1−

cosh(λτ)
coshλ

]
e
}

, τ = τ(t), e = e(t) (12)

Although Equation (9) is linear and can be solved by other means, such as Laplace transforms,
Fourier expansions, or matching different solutions between the impulses at pulse times, solution
(12) has the closed form and represents an element of the hyperbolic algebra. These properties can
essentially facilitate further algebraic, differential, and integral manipulations whenever such types of
solutions serve as a basis of different asymptotic procedures [4].

2. Nonlinear Oscillators under Periodic Impulses

Now let us consider an oscillator with a general form of the restoring force characteristic under
the periodic impulsive excitation

..
x + f (x,

.
x, t) = 2F

∞∑
k=−∞

(−1)kδ[t− (2k− 1)a] =
F
a

e′(t/a) (13)

where the upper dot indicates time derivative, the impulses are assumed to be two-directional, and the
restoring force function, f (x,

.
x, t), to be continuous with respect to all the arguments.

We seek a steady state continuous periodic solution of Equation (13) in the form of representation
(4). Assuming that condition (8) holds and taking first derivative of (4) gives

.
x =

1
a
(Y′ + X′e) (14)
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Then, substituting (4) and (14) in (13) and using the algebraic rules, as outlined in the previous
section, one obtains

(X′′ + a2R f ) + (Y′′ + a2I f )e = (aF−X′)e′(t/a) (15)

R f =
1
2

[
f
(
X + Y, X′+Y′

a , aτ
)
+ f

(
X −Y, −X′−Y′

a , 2a− aτ
)]

I f =
1
2

[
f
(
X + Y, X′+Y′

a , aτ
)
− f

(
X −Y,−X′−Y′

a , 2a− aτ
)] (16)

Equation (15) gives two differential equations for the components X and Y with the boundary
condition for X′. Then the resulting boundary value problem takes the form

X′′ + a2R f = 0, Y′′ + a2I f = 0
X′|τ=±1 = aF, Y|τ=±1 = 0

(17)

Equations (17) do not include any singularities but appear to be coupled. However, under certain
symmetry conditions, the number of equations can be reduced by one. For instance, one can consider
the boundary value problem only for X provided that I f ≡ 0 as Y ≡ 0. The latter condition always
holds, for instance in the conservative case, when the restoring force characteristic depends only upon
the coordinate, f = f (x), and thus (17) is reduced to

X′′ + a2 f (X) = 0 (18)

X′
∣∣∣τ=±1 = aF (19)

Let us assume now that the restoring force characteristic has the form

f (x) = tan x + tan3 x. (20)

Figure 3a shows dependence (20) whereas Figure 3b gives its possible physical interpretation,
where the effect of combined springs and amplitude limiters is approximated with the smooth function
(20) within the interval |x|< π/2 . The reason for using function (20) as a fit is that the free conservative
oscillator

..
x + tan x + tan3 x = 0 is known to have the exact analytical solution in terms of elementary

functions [6,7] x = arcsin[sin A sin(t/ cos A)]. Note that, despite of the formal similarity of this function
with the triangle wave τ(t) (1), transition to the non-smooth limit A→ π/2 is impossible due to the
singularity caused by the term 1/ cos A. Typically, the presence of external loads invalidates solutions
obtained for the corresponding free oscillators. However, in the present case of the impulsive load, the
form of solution obviously holds in between any two consecutive pulses. From the physical standpoint,
the impulsive load can practically occur in the situation illustrated by Figure 3b. The moving platform
periodically strikes the perfectly stiff walls creating the impulsive inertia load on the oscillator inside
the moving noninertial frame. A one parameter family of solutions can be represented as

X(τ) = arcsin[sin A sin(aτ/ cos A)] (21)

where A is an arbitrary constant, which is sufficient for satisfying both equations in (19) due to the
oddness of solution (21), X(−τ) ≡ −X(τ).
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F
αα
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Note that solution (21) represents a one parameter set of particular solutions imposing the initial 

conditions on the original variables as (0) 0x =  and (0) 0x > . In (22) and (23), such type of the 
initial conditions associates with even k , whereas the odd numbers k  reveal another subset of the 
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min max2

1arccos = < < =
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F
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Figure 3. (a) Possible smooth fitting curve (20) approximating the restoring force of combined springs
including the amplitude limiters, and (b) moving platform periodically strikes the perfectly stiff walls
creating the impulsive inertia load on the oscillator in the moving noninertial frame; it is assumed that
both spatial and temporal variables are appropriately scaled.

As follows from expression (21), |A|< π/2 and X(τ) ∼ A sin(aτ) as A→ 0 . Therefore A can be
viewed as a parameter characterizing the amplitude of and thus restricted to be positive.

Substituting (21) in (19) and conducting analytical manipulations with trigonometric functions
gives four sets of solutions for the quarter of period. Such solutions can be combined as

a = α

kπ± arccos
α2F√

(1− α2)(1− α2F2)

, (k = 1, 2, 3, . . .) (22)

and

a = αarccos
α2F√

(1− α2)(1− α2F2)
, (k = 0) (23)

where T = 4a is the period of response, and α = cos A.
Note that solution (21) represents a one parameter set of particular solutions imposing the initial

conditions on the original variables as x(0) = 0 and
.
x(0) > 0. In (22) and (23), such type of the

initial conditions associates with even k, whereas the odd numbers k reveal another subset of the
periodic solutions with the negative initial velocities. Both of the subsets are covered by the following
modification of (21)

x = X(τ) = (−1)karcsin[sin A sin(aτ/ cos A)] (24)

It can be shown that solutions (22) and (23) exist in the interval

arccos
1

√
1 + F2

= Amin < A < Amax =
π
2

(25)

Figure 4 illustrates the sequence of branches of solutions (22) and (23) at different numbers k under
the fixed parameter of the strength of pulses, F. The diagram reveals such combinations of the period
and amplitude at which the oscillator has a periodic response with the loading period, T = 4a. The
upper and lower branches of each loop correspond to positive and negative signs in expression (22),
respectively. In particular, relationship (23) corresponds to the number k = 0 and has only the upper
branch. For the selected value of F = 2.0, the minimal amplitude is Amin = 1.10715, corresponding
to the left boundary of the amplitude-period loops in Figure 4. A slight shift to the right from this
boundary leads to bifurcations of solutions as seen from the time histories in Figure 5. The series of
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graphs illustrates only the first three couples of new solutions from the infinite set of solutions. Further
evolution of the temporal shapes due to the amplitude increase is shown in Figure 6. One can observe
quite a significant difference in both periods and temporal shapes of vibrations comparing the left and
right fragments of Figure 6. This is explained by the high sensitivity of solutions near the left boundary
with respect to the amplitude variation as follows from Figure 4. Finally, when the amplitude becomes
close to its maximum Amax = π/2, the restoring force of the oscillator itself generates quite strong
pulses compared to the external loading as seen from the temporal mode shapes in Figure 7. As a
result, the effect of external pulses is effectively vanishing. The oscillator’ response can be viewed
rather as a free vibration whose amplitude and period are dictated by the loading period.
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Figure 4. First seven amplitude-period curves (22) and (23) of the oscillator at (a): 2.0F = , first 
seven branches are shown, and (b): 0.5F = , first 21 branches are shown. 

Analyzing the link between Figures 4 and 5 shows that solutions corresponding to different 
loops of the period-amplitude dependence differ by the number of half cycles between any two 
consecutive pulses applied to the oscillator. These graphs were reproduced by solving the original 
equation numerically with the Mathematica® NDSolve package using the WhenEvent option for 
conditioning the velocity steps 2F±  when passing the impulses under the initial conditions 
imposed by solution (24); see Appendix B for the code. 

  
(a) (b) 

Figure 4. First seven amplitude-period curves (22) and (23) of the oscillator at (a): F = 2.0, first seven
branches are shown, and (b): F = 0.5, first 21 branches are shown.

Analyzing the link between Figures 4 and 5 shows that solutions corresponding to different loops
of the period-amplitude dependence differ by the number of half cycles between any two consecutive
pulses applied to the oscillator. These graphs were reproduced by solving the original equation
numerically with the Mathematica® NDSolve package using the WhenEvent option for conditioning the
velocity steps ±2F when passing the impulses under the initial conditions imposed by solution (24);
see Appendix B for the code.
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conditions. Then Figure 8a–d represents a weakly damped case, in which the energy inflow is 
sufficient for keeping the oscillator amplitudes large enough for a “resonance” interaction between 
the oscillator and the impulsive load. With the increase of dissipation, the initial energies of the 
oscillator dissipate leading to the decrease of its own frequencies. As a result, the high frequency 
impulsive loading becomes effectively quasi dynamic as reflected by the drastic change in Poincaré 
sections; see Figure 8e,f. 
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Figure 5. Time histories of the oscillator’ response near the minimum amplitude parameter A = 1.12: k
= 1 (a,b); k = 2 (c,d); k = 3 (e,f); the left and right columns correspond to the lower and upper branches
of loops shown in Figure 4.

Note that, away from the curves of Figure 4, the response may appear to be quite complicated.
This is confirmed by the Poincaré sections in Figures 8 and 9 below. In particular, Figure 8 shows
the Poincaré sections obtained for the case of short loading periods under a set of randomly chosen
initial conditions. Then Figure 8a–d represents a weakly damped case, in which the energy inflow is
sufficient for keeping the oscillator amplitudes large enough for a “resonance” interaction between the
oscillator and the impulsive load. With the increase of dissipation, the initial energies of the oscillator
dissipate leading to the decrease of its own frequencies. As a result, the high frequency impulsive
loading becomes effectively quasi dynamic as reflected by the drastic change in Poincaré sections; see
Figure 8e,f.
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Figure 7. Case k = 1, larger amplitude parameter A = 1.4708: (a) corresponds to the lower part of the 
loop, and (b) corresponds the upper part of the loop shown in Figure 4 for k = 1. 
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2.0; ζ = 0.05; snapshots are taken once per period at time of negative pulses. 

Finally, Figure 9 illustrates the case of a long-period impulsive loading under a relatively large 
damping, compared to the cases of Figure 8a–d. The difference between this case and the case 
represented by Figure 8e,f is that the distance between pulses is now long enough compared to the 
period of linearized oscillator whose period is the longest possible. As a result, the quasi dynamic 
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Figure 9. Poincaré sections at (a): T = 4.5; F = 2.0; ζ = 0.01, and (b): T = 8.5; F = 2.0; ζ = 0.01; snapshots
are taken once per period at time of negative pulses.

Finally, Figure 9 illustrates the case of a long-period impulsive loading under a relatively large
damping, compared to the cases of Figure 8a–d. The difference between this case and the case
represented by Figure 8e,f is that the distance between pulses is now long enough compared to the
period of linearized oscillator whose period is the longest possible. As a result, the quasi dynamic
branching in the Poincaré maps disappears.

3. Conclusions

Non-smooth temporal transformations are adapted for linear and nonlinear dynamical systems
under discontinuous and impulsive periodic excitations. In particular, closed form analytical solutions
for the strongly nonlinear exactly solvable oscillator are obtained. The solutions are represented by
a family of period-amplitude dependencies with the corresponding time histories. Nonstationary
responses under the presence of damping are illustrated by Poincaré sections at different magnitudes
and periods of impulses. Practical importance of such a strongly nonlinear oscillator is due to the
fact that the discontinuities of the restoring force characteristic can play the role of amplitude limiters
without typical nonholonomic constraint conditions.
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Appendix A Proof of Identity (4)

Identity (4) was originally justified by the direct verification [3]. Now, following reference [8] and
assuming a = 1, let us show that expression (4) can be produced by the temporal substitution

t = 1 + (τ− 1)e, τ = τ(t), e = e(t) (A1)

This relationship is obtained geometrically by combining the diagrams τ(t) and e(t) of Figure 1 on
the period −1 < t < 3. Note that discontinuity of the function e(t) at the point t = 1 is suppressed by the
continuous factor τ(t)− 1 which takes zero value at the same point t = 1. Analogously, the relationship
e2 = 1 is considered to be true everywhere in the interval −1 < t < 3 in algebraic manipulations with
(A1). For example,

t2 = 1 + (τ− 1)2 + 2(τ− 1)e (A2)

and thus
tn = An(τ) + Bn(τ)e (A3)

where n is any positive integer, An and Bn are polynomials of the degree n or n− 1.
Expression (A3) shows that any analytic function x(t) on the interval −1 < t < 3 can be represented

in the form
x(t) = x[1 + (τ− 1)e] = X(τ) + Y(τ)e (A4)

where X(τ) and Y(τ) are power series of τ.
Now, let us assume that expression (A4) holds even though the function x(t) is not analytic.

In this case, the question is whether or not it is possible to determine the components X(τ) and
Y(τ) without no power series expansions. The answer is positive. Namely, since either e = 1 or
e = −1 on the entire interval −1 < t < 3, except may be for t = 1, then expression (A4) generates two
equations x(τ) = X(τ) + Y(τ) and x(2− τ) = X(τ) −Y(τ). Therefore, the components X(τ) and Y(τ)
are determined through x(τ) and x(2− τ) as

X =
1
2
[x(τ) + x(2− τ)], Y =

1
2
[x(τ) − x(2− τ)] (A5)

Therefore (A4) holds on the interval −1 < t < 3, except may be the point t = 1.
Now, if the function x(t) is continuous at t = 1 then identity (A4) is also true at t = 1 because

x(τ(t)) − x(2− τ(t))→ x(1− 0) − x(1 + 0)→ 0 (A6)

as t→ 1± 0 .
If the function x(t) is periodic of the period T = 4 then identity (51) holds for almost all t ∈ (−∞,∞),

because the right-hand side of the identity depends on the time argument t via the pair of periodic
functions τ(t) and e(t) of the same period T = 4.

If the function x(t) is continuous at t = −1 then identity (A4) is true for all t ∈ (−∞,∞). Let us
consider the point t = −1, where the function e(t) has a step-wise discontinuity. Note that another
boundary, t = 3, is identical due to the periodicity. Taking into account that τ(−1± 0) = −1 + 0 and
the periodicity condition x(t) = x(t− 4) gives

x(τ(−1± 0)) − x(2− τ(−1± 0)) = x(−1 + 0) − x(3− 0) = x(−1 + 0) − x(−1− 0) (A7)

Therefore, discontinuity of the function e(t) at the point t = −1 is suppressed by zero factor

x(τ(t)) − x(2− τ(t))→ x(−1 + 0) − x(−1− 0)→ 0 (A8)

as t→ −1± 0 provided that the function x(t) is continuous at the point t = −1.
So it is proved that identity (A4,A5) holds for all t ∈ (−∞,∞) if the function x(t) is continuous.
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If x(t) is not continuous then identity (A4) should be interpreted in the corresponding class
of functions x(t). For example, if the function x(t) is step-wise discontinuous at the time instances
Λ =

{
t : τ(t) = ±1

}
then the limits (A6) and (A8) become non-zero to represent the corresponding

step-wise discontinuities of the function x(t). In this case, the discontinuities of the function e(t) are
not suppressed but describe the real behavior of the original function x(t) at the time instances Λ.

Finally, if the period is T = 4a then relationship (A1) must be modified as

t
a
= 1 +

[
τ
( t

a

)
− 1

]
e
( t

a

)
. (A9)

Appendix B Mathematica® Code Validating Solution (22)–(24)

sol = NDSolve




y′′ [t] + ζy′[t] + Tan[y[t]] + Tan3[y[t]] == 0, y(0) == y0, y′(0) == v0,
WhenEvent[Mod[(t− T/4), T] == 0, y′[t]→ y′[t] − 2F],
WhenEvent[Mod[(t− 3T/4) , T] == 0, y′[t]→ y′[t] + 2F]

,

{
y(t), t

}
, {t, 0, 4T}, MaxSteps→∞

 (A10)

The initial conditions {y0, v0} are imposed by solution (24) in order to provide periodicity. Note
that the above fragment depicts the logic of solvers without strictly following the symbolic conventions
of Mathematica® package.
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