Article

On Some Sufficient Conditions for a Function to Be p-Valent Starlike

Mamoru Nunokawa ${ }^{1}$, Janusz Sokół ${ }^{2, *}$ (D) and Edyta Trybucka ${ }^{2}$ (D)
1 Department of Mathematics, University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, Japan; mamoru_nuno@doctor.nifty.jp
2 College of Natural Sciences, University of Rzeszów, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland; eles@ur.edu.pl
* Correspondence: jsokol@ur.edu.pl

Received: 21 October 2019; Accepted:10 November 2019; Published: 15 November 2019
Abstract: A function f analytic in a domain $D \in \mathbb{C}$ is called p-valent in D, if for every complex number w, the equation $f(z)=w$ has at most p roots in D, so that there exists a complex number w_{0} such that the equation $f(z)=w_{0}$ has exactly p roots in D. The aim of this paper is to establish some sufficient conditions for a function analytic in the unit disc \mathbb{D} to be p-valent starlike in \mathbb{D} or to be at most p-valent in \mathbb{D}. Our results are proved mainly by applying Nunokawa's lemmas.

Keywords: univalent functions; starlike; convex; close-to-conve

MSC: primary 30C45; secondary 30C80

1. Introduction

A function f analytic in a domain $D \in \mathbb{C}$ is called p-valent in D, if for every complex number w, the equation $f(z)=w$ has at most p roots in D, so that there exists a complex number w_{0} such that the equation $f(z)=w_{0}$ has exactly p roots in D. We denote by \mathcal{H} the class of functions f which are holomorphic in the open unit unit $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Denote by $\mathcal{A}_{p}, p \in \mathbb{N}=\{1,2, \ldots\}$, the class of functions $f \in \mathcal{H}$ given by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}, \quad z \in \mathbb{D} . \tag{1}
\end{equation*}
$$

Let $\mathcal{A}=\mathcal{A}_{1}$. The well known Noshiro-Warschawski univalence condition, (see [1,2]) indicates that if f is analytic in a convex domain $D \subset \mathbb{C}$ and

$$
\begin{equation*}
\mathfrak{R e}\left\{e^{i \theta} f^{\prime}(z)\right\}>0, \quad z \in D \tag{2}
\end{equation*}
$$

for some real θ, then f is univalent in D. In [3] Ozaki extended the above result by showing that if f of the form (1) is analytic in a convex domain D and for some real θ we have

$$
\mathfrak{R e}\left\{e^{i \theta} f^{(p)}(z)\right\}>0, \quad z \in D,
$$

then f is at most p-valent in D. In [4] it was proved that if $f \in \mathcal{A}_{p}, p \geq 2$, and

$$
\left|\arg \left\{f^{(p)}(z)\right\}\right|<\frac{3 \pi}{4}, \quad z \in \mathbb{D}
$$

then f is at most p-valent in \mathbb{D}.

If $f \in \mathcal{H}$ satisfies $f(0)=0, f^{\prime}(0)=1$ and

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then f is said to be starlike with respect to the origin in \mathbb{D} and it is denoted by $f \in \mathcal{S}^{*}$. It is known that $\mathcal{S}^{*} \subset \mathcal{S}$, where \mathcal{S} denotes the class of all functions in \mathcal{A} which are univalent in \mathbb{D}. Moreover, let \mathcal{S}_{p}^{*} and \mathcal{C}_{p} be the subclasses of \mathcal{A}_{p} defined as follows

$$
\begin{aligned}
\mathcal{S}_{p}^{*} & =\left\{f \in \mathcal{A}_{p}: \mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in \mathbb{D}\right\} \\
\mathcal{C}_{p} & =\left\{f \in \mathcal{A}_{p}: z f^{\prime}(z) / p \in \mathcal{S}_{p}^{*}\right\}
\end{aligned}
$$

\mathcal{S}_{p}^{*} is called the class of p-valent starlike functions and \mathcal{C}_{p} is called the class of p-valent convex functions. Note that $\mathcal{S}_{1}^{*}=\mathcal{S}^{*}$ and $\mathcal{C}_{1}=\mathcal{C}$, where \mathcal{S}^{*} and \mathcal{C} are usual classes of starlike and convex functions, respectively. A function $f \in \mathcal{A}_{p}$ is said to be an element of the class \mathcal{K}_{p} of p-valent close-to-convex functions if there exists a function $g \in \mathcal{C}_{p}$ for which

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{3}
\end{equation*}
$$

In [5] (Th.1) Umezawa proved the following theorem.
Theorem 1. If $f \in \mathcal{K}_{p}$, then f is at most p-valent in \mathbb{D}.
Because $\mathcal{C}_{p} \subset \mathcal{S}_{p}^{*} \subset \mathcal{K}_{p}$, we have from Theorem 1 that p-valent starlike functions and p-valent convex functions are at most p-valent in \mathbb{D} too.

2. Preliminaries

In this paper we need the following lemmas.
Lemma 1 ([6] (Th.5)). If $f \in \mathcal{A}_{p}$, then for all $z \in \mathbb{D}$, we have

$$
\mathfrak{R e}\left\{\frac{z f^{(p)}(z)}{f^{(p-1)}(z)}\right\}>0 \Rightarrow \quad \forall k \in\{1, \ldots, p\}: \quad \mathfrak{R e}\left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>0
$$

Lemma 2 ([7]). Let p be an analytic function in $|z|<1$, with $p(0)=1$. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
\mathfrak{R e}\{p(z)\}>0 \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
p\left(z_{0}\right)= \pm i a
$$

for some $a>0$, then we have

$$
\begin{equation*}
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi} \tag{4}
\end{equation*}
$$

for some $k \geq\left(a+a^{-1}\right) / 2 \geq 1$.
Corollary 1. Under the assumptions of Lemma 2, we have from (4)

$$
\begin{equation*}
z_{0} p^{\prime}\left(z_{0}\right)=-k a \leq-\frac{1}{2}\left(a+a^{-1}\right) a=-\frac{1}{2}\left(1+\left|p\left(z_{0}\right)\right|^{2}\right) . \tag{5}
\end{equation*}
$$

Lemma 3 ([8] (p. 200)). Assume that $q(z)$ is univalent in $\mathbb{D}, q(\mathbb{D})$ is a convex set and F, G are analytic in \mathbb{D}. If

$$
\begin{equation*}
\frac{F^{\prime}(z)}{G^{\prime}(z)} \prec q(z), \quad z \in \mathbb{D}, \tag{6}
\end{equation*}
$$

where G satisfies $G(0)=F(0)$ and

$$
\mathfrak{R e}\left\{\frac{z G^{\prime}(z)}{G(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then we have

$$
\frac{F(z)}{G(z)} \prec q(z), \quad z \in \mathbb{D} .
$$

Here \prec means the subordination.
Corollary 2. Let $\alpha<1$ be real number. If $f^{(p-1)}(z), g^{(p-1)}(z)$ are analytic in $\mathbb{D}, f^{(p-1)}(0)=g^{(p-1)}(0)$ and

$$
\mathfrak{R e}\left\{\frac{f^{(p)}(z)}{g^{(p)}(z)}\right\}>\alpha, \quad z \in \mathbb{D}
$$

where g satisfies

$$
\mathfrak{R e}\left\{\frac{z g^{(p)}(z)}{g^{(p-1)}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

then we have

$$
\mathfrak{R e}\left\{\frac{f^{(p-1)}(z)}{g^{(p-1)}(z)}\right\}>\alpha, \quad z \in \mathbb{D} .
$$

3. Main Results

Theorem 2. Let $f, g \in \mathcal{A}_{p}$. Assume that

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{g(z)}{z g^{\prime}(z)}\right\}>\beta, \quad z \in \mathbb{D} \tag{7}
\end{equation*}
$$

for some $\beta, 0<\beta<1$. If

$$
\begin{equation*}
\left|\arg \left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}\right| \leq \pi-\tan ^{-1}\left\{\frac{2(1-\beta)|z|+1-|z|^{2}}{\beta\left(1-|z|^{2}\right)}\right\}, \quad z \in \mathbb{D} \tag{8}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{f(z)}{g(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{9}
\end{equation*}
$$

Proof. If we put

$$
q(z)=\frac{f(z)}{g(z)}, \quad q(0)=1
$$

then it follows that

$$
f(z)=q(z) g(z), \quad f^{\prime}(z)=g^{\prime}(z) q(z)+q^{\prime}(z) g(z)
$$

and

$$
\frac{f^{\prime}(z)}{g^{\prime}(z)}=q(z)+q^{\prime}(z) \frac{g(z)}{g^{\prime}(z)}=q(z)+z q^{\prime}(z) \frac{g(z)}{z g^{\prime}(z)}
$$

If there exists a point $z_{0} \in \mathbb{D}$, such that

$$
\mathfrak{R e}\{q(z)\}>0, \quad\left(|z|<\left|z_{0}\right|<1\right)
$$

and

$$
\mathfrak{R e}\left\{q\left(z_{0}\right)\right\}=0,
$$

then by (5), we have

$$
\begin{equation*}
z_{0} q^{\prime}\left(z_{0}\right)=\mathfrak{R e}\left\{z_{0} q^{\prime}\left(z_{0}\right)\right\} \leq-\frac{1}{2}\left(1+\left|q\left(z_{0}\right)\right|^{2}\right)<0 \tag{10}
\end{equation*}
$$

This shows that $z_{0} q^{\prime}\left(z_{0}\right)$ is a negative real number. Furthermore, by (4), we have

$$
\begin{equation*}
\left|\frac{q\left(z_{0}\right)}{z_{0} q^{\prime}\left(z_{0}\right)}\right| \leq 1 \tag{11}
\end{equation*}
$$

Then it follows that

$$
\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}=q\left(z_{0}\right)+z_{0} q^{\prime}\left(z_{0}\right) \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}= \pm i a+z_{0} q^{\prime}\left(z_{0}\right) \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}
$$

where $q\left(z_{0}\right)= \pm a i, a>0$ and (7), (10) give

$$
\begin{aligned}
\mathfrak{R e}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} & =\mathfrak{R e}\left\{z_{0} q^{\prime}\left(z_{0}\right) \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}=z_{0} q^{\prime}\left(z_{0}\right) \mathfrak{R e}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\} \\
& <-\frac{\beta}{2}\left(1+a^{2}\right)<0 .
\end{aligned}
$$

Next, we have

$$
\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}=\mathfrak{I m}\left\{ \pm i a+z_{0} q^{\prime}\left(z_{0}\right) \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}= \pm a+z_{0} q^{\prime}\left(z_{0}\right) \mathfrak{I m}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\} .
$$

We will consider the four cases:
(i) $\arg \left\{q\left(z_{0}\right)\right\}=\pi / 2$ (i.e., $q\left(z_{0}\right)=i a, a>0$) and $\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} \geq 0$,
(ii) $\arg \left\{q\left(z_{0}\right)\right\}=\pi / 2$ (i.e., $q\left(z_{0}\right)=i a, a>0$) and $\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}<0$,
(iii) $\arg \left\{q\left(z_{0}\right)\right\}=-\pi / 2$ (i.e., $q\left(z_{0}\right)=-i a, a>0$) and $\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} \geq 0$,
(iv) $\arg \left\{q\left(z_{0}\right)\right\}=-\pi / 2$ (i.e., $q\left(z_{0}\right)=-i a, a>0$) and $\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}<0$.

Let us put

$$
G(z)=\frac{p g(z)}{z g^{\prime}(z)}, \quad G(0)=1
$$

Then from the hypothesis, we have

$$
\frac{G(z)-\beta}{1-\beta} \prec \frac{1+z}{1-z}, \quad z \in \mathbb{D},
$$

and so we have

$$
G(z) \prec \beta+(1-\beta) \frac{1+z}{1-z}, \quad z \in \mathbb{D},
$$

and so

$$
\begin{equation*}
|\mathfrak{I m}\{G(z)\}|=\left|\mathfrak{I m} \frac{p g(z)}{z g^{\prime}(z)}\right| \leq(1-\beta) \frac{2|z|}{1-|z|^{2}}, \quad z \in \mathbb{D} . \tag{12}
\end{equation*}
$$

In the case (i) we have $\arg \left\{q\left(z_{0}\right)\right\}=\pi / 2, q\left(z_{0}\right)=i a, a>0$ and

$$
\mathfrak{I m}\left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}=\left|q\left(z_{0}\right)\right|+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}\right) \geq 0
$$

Therefore, we have

$$
\begin{aligned}
\arg \left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} & =\arg \left[z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{\Re e} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right)+i\left\{\left|q\left(z_{0}\right)\right|+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right)\right\}\right] \\
& =\pi-\tan ^{-1}\left\{\frac{\left|q\left(z_{0}\right)\right|+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right)}{-z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{R e} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right)}\right\} \\
& >\pi-\tan ^{-1}\left\{\frac{\left|q\left(z_{0}\right)\right|+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m}^{\left.\frac{g\left(z_{0}\right)}{z_{0} g^{g^{\prime}}\left(z_{0}\right)}\right)}\right.}{-\beta z_{0} q^{\prime}\left(z_{0}\right)}\right\} \\
& =\pi-\tan ^{-1}\left\{-\frac{\left|q\left(z_{0}\right)\right|}{\beta z z_{0} q^{\prime}\left(z_{0}\right)}-\frac{\mathfrak{I m} \frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}}{\beta}\right\} \\
& \geq \pi-\tan ^{-1}\left\{\left|\frac{q\left(z_{0}\right)}{\beta z_{0} q^{\prime}\left(z_{0}\right)}\right|+\left|\frac{\mathfrak{I m} \frac{g\left(z_{0}\right)}{z_{0 g^{\prime}}\left(z_{0}\right)}}{\beta}\right|\right\} .
\end{aligned}
$$

Then, by (11) and (12), we have

$$
\begin{aligned}
\arg \left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\} & >\pi-\tan ^{-1}\left\{\frac{1}{\beta}+\frac{2(1-\beta)\left|z_{0}\right|}{\left(1-\left|z_{0}\right|^{2}\right) \beta}\right\} \\
& =\pi-\tan ^{-1}\left[\frac{1}{\beta\left(1-\left|z_{0}\right|^{2}\right)}\left\{2(1-\beta)\left|z_{0}\right|+1-\left|z_{0}\right|^{2}\right\}\right] .
\end{aligned}
$$

This contradicts hypothesis (8). In the case (ii) when $\arg \left\{q\left(z_{0}\right)\right\}=\pi / 2, q\left(z_{0}\right)=i a, a>0$, and

$$
\arg \left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}=q\left(z_{0}\right)+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}\right)<0
$$

applying the same method as the above, we have

$$
\arg \left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}<-\pi+\tan ^{-1}\left[\frac{1}{\beta\left(1-\left|z_{0}\right|^{2}\right)}\left\{2(1-\beta)\left|z_{0}\right|+1-\left|z_{0}\right|^{2}\right\}\right] .
$$

This is also a contradiction. In the case (iii) when $\arg \left\{q\left(z_{0}\right)\right\}=-\pi / 2, q\left(z_{0}\right)=-i a, a>0$, and

$$
q\left(z_{0}\right)+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}\right)>0
$$

and in the case (iv) when $\arg \left\{q\left(z_{0}\right)\right\}=-\pi / 2, q\left(z_{0}\right)=-i a, a>0$, and

$$
q\left(z_{0}\right)+z_{0} q^{\prime}\left(z_{0}\right)\left(\mathfrak{I m}\left\{\frac{g\left(z_{0}\right)}{z_{0} g^{\prime}\left(z_{0}\right)}\right\}\right)<0
$$

applying the same method as in the proof of case (i) gives

$$
\left|\arg \left\{\frac{f^{\prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right\}\right|>\pi-\tan ^{-1}\left[\frac{1}{\beta\left(1-\left|z_{0}\right|^{2}\right)}\left\{2(1-\beta)\left|z_{0}\right|+1-\left|z_{0}\right|^{2}\right\}\right] .
$$

This is a contradiction. This completes the proof.
Inequalities (9) and (2) show that the assumptions of Theorem 2 are sufficient for

$$
\int_{0}^{z} \frac{f(\zeta)}{g(\zeta)} \mathrm{d} \zeta
$$

to be univalent in \mathbb{D}.
Theorem 3. Let $F, G \in \mathcal{A}_{p}$. Assume that there exist a positive integer $k, 2 \leq k \leq p$ and a real $\beta, 0<\beta<1$, for which

$$
\left|\arg \left\{\frac{F^{(k)}(z)}{G^{(k)}(z)}\right\}\right|<\pi-\tan ^{-1}\left\{\frac{2(1-\beta)|z|+1-|z|^{2}}{\beta\left(1-|z|^{2}\right)}\right\}, \quad z \in \mathbb{D},
$$

where G satisfies

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{G^{(k-1)}(z)}{z G^{(k)}(z)}\right\}>\beta, \quad z \in \mathbb{D} \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\forall n \in\{1, \ldots, k-1\}: \quad \mathfrak{R e}\left\{\frac{F^{(n)}(z)}{G^{(n)}(z)}\right\}>0, \quad z \in \mathbb{D} . \tag{14}
\end{equation*}
$$

and $F \in \mathcal{K}_{p}, F$ is at most p-valent in \mathbb{D}.
Proof. If we put $f=F^{(k-1)}$ and $g=G^{(k-1)}$ in Theorem 2 we immediately obtain

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{F^{(k-1)}(z)}{G^{(k-1)}(z)}\right\}>0, \quad z \in \mathbb{D} \tag{15}
\end{equation*}
$$

Then, by Lemma 1, we obtain (14). For $n=1$ the condition (14) is of the form

$$
\mathfrak{R e}\left\{\frac{F^{\prime}(z)}{G^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D},
$$

where G satisfies (13). Therefore, by Lemma 1 we have also

$$
\mathfrak{R e}\left\{\frac{z G^{\prime}(z)}{G(z)}\right\}>0, \quad z \in \mathbb{D}
$$

which by (3) implies $F \in \mathcal{K}_{p}$. By Theorem $1, F$ is at most p-valent in \mathbb{D}.
Theorem 4. Assume that $f \in \mathcal{A}_{p}, 2 \leq p$, and that there exists a positive integer $k, 2 \leq k \leq p$ for which

$$
\mathfrak{R e}\left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}>-1, \quad z \in \mathbb{D}
$$

then we have

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

or f is p-valent starlike in \mathbb{D}.
Proof. Let us put

$$
\begin{equation*}
q_{1}(z)=\frac{1}{p-k+2} \frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}, \quad q_{1}(0)=1 . \tag{16}
\end{equation*}
$$

By (16) we have

$$
\frac{z q_{1}^{\prime}(z)}{q_{1}(z)}=1+\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}-\frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}
$$

and so

$$
1+\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}=\frac{z q_{1}^{\prime}(z)}{q_{1}(z)}+(p-k+2) q_{1}(z)
$$

By the hypothesis, we have

$$
\begin{equation*}
1+\mathfrak{R e}\left\{\frac{z f^{(k)}(z)}{f^{(k-1)}(z)}\right\}=\mathfrak{R e}\left\{\frac{z q_{1}^{\prime}(z)}{q_{1}(z)}+(p-k+2) q_{1}(z)\right\}>0, \quad z \in \mathbb{D} . \tag{17}
\end{equation*}
$$

If there exists a point $z_{1} \in \mathbb{D}$, such that

$$
\mathfrak{R e}\left\{q_{1}(z)\right\}>0, \quad\left(|z|<\left|z_{1}\right|<1\right)
$$

and

$$
\mathfrak{R e}\left\{q_{1}\left(z_{1}\right)\right\}=0,
$$

then by Lemma 2, we have

$$
\mathfrak{R e}\left\{\frac{z_{1} q_{1}^{\prime}\left(z_{1}\right)}{q_{1}\left(z_{1}\right)}\right\}=0, \quad \frac{z_{1} q_{1}^{\prime}\left(z_{1}\right)}{q_{1}\left(z_{1}\right)}=i k_{1}
$$

for some real $k_{1},\left|k_{1}\right| \geq 1$. This gives

$$
1+\mathfrak{R e}\left\{\frac{z f^{(k)}\left(z_{1}\right)}{f^{(k-1)}\left(z_{1}\right)}\right\}=\mathfrak{R e}\left\{\frac{z_{1} q_{1}^{\prime}\left(z_{1}\right)}{q_{1}\left(z_{1}\right)}+(p-k+2) q_{1}\left(z_{1}\right)\right\}=0 .
$$

It is contrary to inequality (17) and therefore, we have

$$
\begin{equation*}
\mathfrak{R e}\left\{\frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}\right\}>\mathfrak{R e}\left\{\frac{1}{p-k+2} \frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}\right\}=\mathfrak{R e}\left\{q_{1}(z)\right\}>0, \quad z \in \mathbb{D} . \tag{18}
\end{equation*}
$$

Next, let us put

$$
q_{2}(z)=\frac{1}{p-k+3} \frac{z f^{(k-2)}(z)}{f^{(k-3)}(z)}, \quad q_{2}(0)=1
$$

then it follows that

$$
\frac{z q_{2}^{\prime}(z)}{q_{2}(z)}=1+\frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}-\frac{z f^{(k-2)}(z)}{f^{(k-3)}(z)}
$$

and so

$$
\begin{equation*}
1+\frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}=\frac{z q_{2}^{\prime}(z)}{q_{2}(z)}+(p-k+3) q_{2}(z) \tag{19}
\end{equation*}
$$

By (18) and (19), we have

$$
\begin{equation*}
1+\mathfrak{R e}\left\{\frac{z f^{(k-1)}(z)}{f^{(k-2)}(z)}\right\}=\mathfrak{R e}\left\{\frac{z q_{2}^{\prime}(z)}{q_{2}(z)}+(p-k+3) q_{2}(z)\right\}>0, \quad z \in \mathbb{D} \tag{20}
\end{equation*}
$$

If there exists a point $z_{2} \in \mathbb{D}$, such that

$$
\mathfrak{R e}\left\{q_{2}(z)\right\}>0, \quad\left(|z|<\left|z_{2}\right|<1\right)
$$

and

$$
\mathfrak{R e}\left\{q_{2}\left(z_{2}\right)\right\}=0,
$$

then by Lemma 2, we have

$$
\mathfrak{R e}\left\{\frac{z_{2} q_{2}^{\prime}\left(z_{2}\right)}{q_{2}\left(z_{2}\right)}\right\}=0, \quad \frac{z_{2} q_{2}^{\prime}\left(z_{2}\right)}{q_{2}\left(z_{2}\right)}=i k_{2}
$$

for some real $k_{2},\left|k_{2}\right| \geq 1$. Then, we have

$$
1+\mathfrak{R e}\left\{\frac{z_{2} f^{(k-1)}\left(z_{2}\right)}{f^{(k-2)}\left(z_{2}\right)}\right\}=\mathfrak{R e}\left\{\frac{z_{2} q_{2}^{\prime}\left(z_{2}\right)}{q_{2}\left(z_{2}\right)}+(p-k+3) q_{2}\left(z_{2}\right)\right\}=0
$$

It is contrary to (20) and therefore, we have

$$
\mathfrak{R e}\left\{\frac{z f^{(k-2)}(z)}{f^{(k-3)}(z)}\right\}=\mathfrak{R e}\left\{(p-k+3) q_{2}(z)\right\}>0, \quad z \in \mathbb{D}
$$

Applying the same method many times in succession we are able to obtain

$$
\mathfrak{R e}\left\{\frac{z f^{(k-3)}(z)}{f^{(k-4)}(z)}\right\}>0, \mathfrak{R e}\left\{\frac{z f^{(k-4)}(z)}{f^{(k-5)}(z)}\right\}>0 \ldots, \mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, \quad z \in \mathbb{D}
$$

This shows that f is p-valent starlike in \mathbb{D}.
For some related conditions for starlikeness we refer to our papers [9,10].
Author Contributions: All authors have equal contributions.
Funding: This research received no external funding.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Noshiro, K. On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. Jap. 1934, 2, 129-135. [CrossRef]
2. Warschawski, S. On the higher derivatives at the boundary in conformal mapping. Trans. Am. Math. Soc. 1935, 38, 310-340. [CrossRef]
3. Ozaki, S. On the theory of multivalent functions. Sci. Rep. Tokyo Bunrika Daigaku Sect. A 1935, 2, 167-188.
4. Nunokawa, M. A note on multivalent functions. Tsukuba J. Math. 1989, 13, 453-455. [CrossRef]
5. Umezawa, T. Multivalently close-to-convex functions. Proc. Am. Math. Soc. 1957, 8, 869-874. [CrossRef]
6. Nunokawa, M. On the theory of multivalent functions. Tsukuba J. Math. 1987, 11, 273-286. [CrossRef]
7. Nunokawa, M. On Properties of Non-Carathéodory Functions. Proc. Jpn. Acad. Ser. A 1992, 68, 152-153. [CrossRef]
8. Miller, S.S.; Mocanu, P.T. Differential Subordinations, Theory and Applications, Series of Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225.
9. Sokół, J. On a condition for alpha-starlikeness. J. Math. Anal. Appl. 2009, 352, 696-701. [CrossRef]
10. Nunokawa, M.; Sokół, J. On some sufficient condition for starlikeness. J. Ineq. Appl. 2012, 2012, 282.
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
