Article

An E-Sequence Approach to the $3 x+1$ Problem

Sanmin Wang
Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; wangsanmin@hotmail.com; Tel.: +86-136-5581-2543

Received: 17 October 2019; Accepted: 12 November 2019; Published: 15 November 2019

Abstract

For any odd positive integer x, define $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ by setting $x_{0}=x, x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ such that all x_{n} are odd. The $3 x+1$ problem asserts that there is an $x_{n}=1$ for all x. Usually, $\left(x_{n}\right)_{n \geqslant 0}$ is called the trajectory of x. In this paper, we concentrate on $\left(a_{n}\right)_{n \geqslant 1}$ and call it the E-sequence of x. The idea is that we generalize E-sequences to all infinite sequences $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers and consider all these generalized E-sequences. We then define $\left(a_{n}\right)_{n \geqslant 1}$ to be Ω-convergent to x if it is the E-sequence of x and to be Ω-divergent if it is not the E-sequence of any odd positive integer. We prove a remarkable fact that the Ω-divergence of all non-periodic E-sequences implies the periodicity of $\left(x_{n}\right)_{n \geqslant 0}$ for all x_{0}. The principal results of this paper are to prove the Ω-divergence of several classes of non-periodic E-sequences. Especially, we prove that all non-periodic E-sequences $\left(a_{n}\right)_{n \geqslant 1}$ with $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$ are Ω-divergent by using Wendel's inequality and the Matthews and Watts' formula $x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, where $b_{n}=\sum_{k=1}^{n} a_{k}$. These results present a possible way to prove the periodicity of trajectories of all positive integers in the $3 x+1$ problem, and we call it the E-sequence approach.

Keywords: $\quad 3 x+1$ problem; E-sequence approach; Ω-divergence of non-periodic E-sequences; Wendel's inequality

MSC: 11A99; 11B83

1. Introduction

For any odd positive integer x, define two infinite sequences $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers by setting:

$$
\begin{equation*}
x_{0}=x, \quad x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}} \tag{1}
\end{equation*}
$$

such that x_{n} is odd for all $n \in \mathbb{N}=\{1,2, \ldots\}$. The $3 x+1$ problem asserts that there is $n \in \mathbb{N}$ such that $x_{n}=1$ for all odd positive integers x. For a survey, see [1]. For recent developments, see [2-7].

Usually, $\left(x_{n}\right)_{n \geqslant 0}$ is called the trajectory of x. In this paper, we concentrate on $\left(a_{n}\right)_{n \geqslant 1}$ and call it the E-sequence of x. The idea is that we generalize E-sequences to all infinite sequences $\left(a_{n}\right)_{n \geqslant 1}$ of positive integers. Given any generalized E-sequence $\left(a_{n}\right)_{n \geqslant 1}$, if it is the E-sequence of the odd positive integer x, it is called Ω-convergent to x and denoted by $\Omega-\lim a_{n}=x$; if $\left(a_{n}\right)_{n \geqslant 1}$ is not the E-sequence of any odd positive integer, it is called Ω-divergent and denoted by $\Omega-\lim a_{n}=\infty$. Subsequently, these generalized E-sequences are also called E-sequences for simplicity.

The $3 x+1$ problem in the form (1.1) should be owed to Crandall and Sander et al., see [8,9]. E-sequences are some variants of Everett's parity sequences [10] and Terras' encoding representations [11]. Everett and Terras focused on finite E-sequences resulting from (1.1). What we are concerned with is the Ω-convergence and Ω-divergence of any infinite sequence of positive integers, i.e., the generalized E-sequences.

A possible way to prove the $3 x+1$ problem was devised by Möller as follows (see [12]):
Conjecture 1. (i) $\left(x_{n}\right)_{n \geqslant 0}$ is periodic for all odd positive integers x_{0};
(ii) $(1,1, \cdots)$ is the unique pure periodic trajectory.

Usually, we can convert one claim about trajectories into the one about E-sequences. As for E-sequences, we have the following conjecture.

Conjecture 2. Let $b_{n}=\sum_{i=1}^{n} a_{i}$. Then,
(i) all non-periodic E-sequences are Ω-divergent;
(ii) every E-sequence $\left(a_{n}\right)_{n \geqslant 1}$ satisfying $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$ is Ω-divergent.

Note that Conjecture 2(i) does not hold for some generalizations of the $3 x+1$ problem studied by Möller, Matthews, and Watts in [12,13]; Conjecture 2(ii) implies that there is some n such that $2^{b_{n}}>3^{n}$ in the E-sequence $\left(a_{n}\right)_{n \geqslant 1}$ of every odd positive integer x, which is a conjecture posed by Terras in [11] about his τ-stopping time.

A remarkable fact is that Conjecture 1(i) is a corollary of Conjecture 2(i) by Theorem 3. This means that the Ω-divergence of all non-periodic E-sequences implies the periodicity of $\left(x_{n}\right)_{n \geqslant 1}$ for all positive integers x. Then, Conjecture 2(i) is of significance to the study of the $3 x+1$ problem. The principal results of this paper are to prove that several classes of non-periodic E-sequences are Ω-divergent. In particular, we prove that:
(i) All non-periodic E-sequences $\left(a_{n}\right)_{n \geqslant 1}$ with $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$ are Ω-divergent.
(ii) If $\left(a_{n}\right)_{n \geqslant 0}$ is $12121112 \cdots$, where $a_{n}=2$ if $n \in\left\{2^{1}, 2^{2}, 2^{3}, \cdots\right\}$ and $a_{n}=1$, otherwise, then $\Omega-\lim a_{n}=\infty$;
(iii) Let $\theta \geqslant 1$ be an irrational number, and define $a_{n}=[n \theta]-[(n-1) \theta]$, then $\Omega-\lim a_{n}=\infty$, where [a] denotes the integral part of a for any real a.

Note that we prove the above claim (i) by using Wendel's inequality and the Matthews and Watts' formula $x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$. In addition, it seems that our approach cannot help to prove the conjecture 1(ii) of the unique cycle. For such a topic, see [14].

2. Preliminaries

Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence. In most cases, there is no odd positive integer x such that $\left(a_{n}\right)_{n \geqslant 1}$ is the E-sequence of x, i.e., $\Omega-\lim a_{n}=\infty$. However, there always exists $x \in \mathbb{N}$ such that the first n terms of the E-sequence of x are $\left(a_{1} \ldots a_{n}\right)$. Furthermore, for any $1 \leqslant u \leqslant v \leqslant n$, there always exists $x \in \mathbb{N}$ such that the first $v-u+1$ terms of the E-sequence of x are the designated block $\left(a_{u} \ldots a_{v}\right)$ of $\left(a_{1} \ldots a_{n}\right)$, which is illustrated as $\left(a_{1} \ldots a_{u-1}\right)\left(a_{u} \ldots a_{v}\right)\left(a_{v+1} \ldots a_{n}\right)$.

Definition 1. Define $b_{0}=0, b_{n}=\sum_{i=1}^{n} a_{i}, B_{n}=\sum_{i=0}^{n-1} 3^{n-1-i} 2^{b_{i}}$.
Clearly, $B_{1}=1, B_{n}=3 B_{n-1}+2^{b_{n-1}}, 2+B_{n}, 3+B_{n}$.
Proposition 1. Let $\left(x_{n}\right)_{n \geqslant 1}$ and $\left(a_{n}\right)_{n \geqslant 1}$ be defined as in (1.1). Then $x_{n}=\frac{3^{n} x+B_{n}}{2^{b_{n}}}$.
Proof. The proof is by a procedure similar to that of Theorem 1.1 in [11] and omitted.
Proposition 2. Given any positive integer n, there exist two integers x_{n} and x_{0} such that $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$, $1 \leqslant x_{n}<3^{n}$, and $1 \leqslant x_{0}<2^{b_{n}}$.

Proof. By $\operatorname{gcd}\left(2^{b_{n}}, 3^{n}\right)=1$, there exist two integers x_{n} and x_{0} such that $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ and $1 \leqslant x_{n} \leqslant 3^{n}$. Then, $x_{n}<3^{n}$ by $3+B_{n}$. By $B_{n} \geqslant 1$, we have $x_{0}=\frac{2^{b_{n}} x_{n}-B_{n}}{3^{n}}<\frac{2^{b_{n}} x_{n}}{3^{n}}<2^{b_{n}}$. Thus, $x_{0}<2^{b_{n}}$.

By $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$, we have $2^{b_{n}} x_{n} \equiv B_{n}\left(\bmod 3^{n}\right)$. Then $2^{b_{n-1}}\left(2^{a_{n}} x_{n}-1\right) \equiv 3 B_{n-1}\left(\bmod 3^{n}\right)$ by $B_{n}=2^{b_{n-1}}+3 B_{n-1}$. Thus, $3 \mid 2^{a_{n}} x_{n}-1$. Define $x_{n-1}=\frac{2^{a_{n}} x_{n}-1}{3}$. Then, $x_{n-1} \in \mathbb{Z}, x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ and $2^{b_{n-1}} x_{n-1} \equiv B_{n-1}\left(\bmod 3^{n-1}\right)$. Sequentially, define x_{n-2}, \ldots, x_{1} such that $x_{n-1}=\frac{3 x_{n-2}+1}{2^{a_{n-1}}}, \ldots, x_{1}=\frac{3 x_{0}+1}{2^{a_{1}}}$. Then, $x_{i} \in \mathbb{Z}$ for all $0 \leqslant i \leqslant n$.

Suppose that $x_{0}<0$. We then sequentially have $x_{1}<0, \ldots, x_{n}<0$, which contradicts $x_{n} \geqslant 1$. Thus, $x_{0} \geqslant 1$.

Note that the validity of Proposition 2 is dependent on the structure of B_{n}. We formulate the middle part of the above proof as the following proposition.

Proposition 3. Assume that $x_{n}, x_{0} \in \mathbb{Z}$ and $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$. Define $x_{1}=\frac{3 x_{0}+1}{2^{a_{1}}}, \ldots, x_{n-1}=\frac{3 x_{n-2}+1}{2^{a_{n-1}}}$. Then, $x_{n}=\frac{3 x_{n-1}+1}{2^{a_{n}}}$ and $x_{i} \in \mathbb{Z}$ for all $0 \leqslant i \leqslant n$.

Definition 2. For any $1 \leqslant u \leqslant v$, define $b_{u}^{u-1}=0, b_{u}^{v}=\sum_{i=u}^{v} a_{i}, B_{u}^{u-2}=0, B_{u}^{u-1}=1, B_{u}^{v}=3^{v-u+1}+3^{v-u} 2^{b_{u}^{u}}+\cdots+$ $3^{1} 2^{b_{u}^{v-1}}+2^{b_{u}^{v}}=\sum_{i=0}^{v-u+1} 3^{v-u+1-i} 2^{b_{u}^{u-1+i}}$.

Then, $b_{u}^{u}=a_{u}, b_{u}^{u+1}=a_{u}+a_{u+1}, B_{u}^{u}=3+2^{a_{u}}, B_{u}^{u+1}=3^{2}+3 \cdot 2^{a_{u}}+2^{a_{u}+a_{u+1}}, B_{u}^{v}=3 B_{u}^{v-1}+2^{b_{u}^{v}}=$ $\sum_{i=u-1}^{v} 3^{v-i} 2^{b_{u}^{i}}$. Clearly, b_{1}^{n} and B_{1}^{n-1} are the same as b_{n} and B_{n}, respectively.

Proposition 4. $B_{n}=3^{n-u+1} B_{1}^{u-2}+3^{n-1-v} 2^{b_{u-1}} B_{u}^{v}+2^{b_{v+1}} B_{v+2}^{n-1}$.
Proof. By $B_{1}^{u-2}=\sum_{i=0}^{u-2} 3^{u-2-i} 2^{b_{i}}$ and $B_{v+2}^{n-1}=\sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{v+2}^{i}}$, we have:

$$
\begin{aligned}
B_{n} & =B_{1}^{n-1}=\sum_{i=0}^{n-1} 3^{n-1-i} 2^{b_{i}}=\sum_{i=0}^{u-2} 3^{n-1-i} 2^{b_{i}}+\sum_{i=u-1}^{v} 3^{n-1-i} 2^{b_{i}}+\sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{i}} \\
& =3^{n-u+1} \sum_{i=0}^{u-2} 3^{u-2-i} 2^{b_{i}}+3^{n-1-v} 2^{b_{u-1}} \sum_{i=u-1}^{v} 3^{v-i} 2^{b_{u}^{i}}+2^{b_{v+1}} \sum_{i=v+1}^{n-1} 3^{n-1-i} 2^{b_{v+2}^{i}} \\
& =3^{n-u+1} B_{1}^{u-2}+3^{n-1-v} 2^{b_{u-1}} B_{u}^{v}+2^{b_{v+1}} B_{v+2}^{n-1} .
\end{aligned}
$$

Definition 3. For any $1 \leqslant u \leqslant v$, define two integers $x_{0}^{u, v}$ and $x_{v-u+1}^{u, v}$ such that $2^{b_{u}^{v}} x_{v-u+1}^{u, v}-3^{v-u+1} x_{0}^{u, v}=B_{u}^{v-1}$, $1 \leqslant x_{0}^{u, v}<2^{b_{u}^{v}}$, and $1 \leqslant x_{v-u+1}^{u, v}<3^{v-u+1}$. Further, define $x_{1}^{u, v}=\frac{3 x_{0}^{u, v}+1}{2^{a_{u}}}, x_{2}^{u, v}=\frac{3 x_{1}^{u, v}+1}{2^{a_{u+1}}}, \ldots, x_{v-u}^{u, v}=$ $\frac{3 x_{v-u-1}^{u, v}+1}{2^{a_{v-1}}}$.

Clearly, $x_{0}^{1, n}$ and $x_{n}^{1, n}$ are the same as x_{0} and x_{n} in Proposition 2, respectively.
Proposition 5. (i) $x_{v-u+1}^{u, v}=\frac{3 x_{v-u}^{u, v}+1}{2^{a_{v}}}$;
(ii) For any $0 \leqslant k \leqslant v-u, x_{k}^{u, v}=\frac{3^{k} x_{0}^{u, v}+B_{u}^{u+k-2}}{2^{b_{u}^{u+k-1}}}$, and

$$
x_{v-u+1}^{u, v}=\frac{3^{v-u+1-k} x_{k}^{u, v}+B_{u+k}^{v-1}}{2^{b_{u+k}^{v}}}
$$

(iii) $x_{0}^{u, v} \leqslant x_{0}^{u, v+1}$;
(iv) $\Omega-\lim a_{n}=x$ if and only if $\lim _{n \rightarrow \infty} x_{0}^{1, n}=x$;
(v) $\Omega-\lim a_{n}=\infty$ if and only if $\lim _{n \rightarrow \infty} x_{0}^{1, n}=\infty$.

Proof. (i) is from Proposition 3(ii), which is from (i) and Proposition 1.
(iii) By Definition 3, $2^{b_{u}^{v}} x_{v-u+1}^{u, v}-3^{v-u+1} x_{0}^{u, v}=B_{u}^{v-1}, 2^{b_{u}^{v+1}} x_{v-u+2}^{u, v+1}-3^{v-u+2} x_{0}^{u, v+1}=B_{u}^{v}$. Then, $3^{v-u+1} x_{0}^{u, v}+B_{u}^{v-1} \equiv 0\left(\bmod 2^{b_{u}^{v}}\right), 3^{v-u+2} x_{0}^{u, v+1}+B_{u}^{v} \equiv 0\left(\bmod 2^{b_{u}^{v+1}}\right)$. Thus, $3^{v-u+1} x_{0}^{u, v+1}+B_{u}^{v-1} \equiv$ $0\left(\bmod 2^{b_{u}^{v}}\right)$ by $B_{u}^{v}=3 B_{u}^{v-1}+2^{b_{u}^{v}}$. Hence, $x_{0}^{u, v} \equiv x_{0}^{u, v+1}\left(\bmod 2^{b_{u}^{v}}\right)$. Therefore, $x_{0}^{u, v} \leqslant x_{0}^{u, v+1}$ by $1 \leqslant x_{0}^{u, v}<$ $2^{b_{u}^{v}}$ and $1 \leqslant x_{0}^{u, v+1}<2^{b_{u}^{v+1}}$.

By (iii), $\left(x_{0}^{1, n}\right)_{n \geqslant 1}$ is increasing, then (iv) and (v) hold trivially.
Proposition 5(iv) shows that if $\Omega-\lim a_{n}=x$, then $x_{0}^{1, n}=x$ for all sufficiently large n. Proposition 5(v) shows the reasonableness of $\Omega-\lim a_{n}=\infty$.

3. Periodic E-Sequences

Definition 4. (i) $\left(a_{n}\right)_{n \geqslant 1}$ is periodic if there exist two integers

$$
l \geqslant 0, r \geqslant 1 \text { such that } a_{n}=a_{n+r} \text { for all } n>l ;
$$

(ii) $\quad r$ is called the period of $\left(a_{n}\right)_{n \geqslant 1}$;
(iii) $\quad\left(a_{1} \cdots a_{l}\right)$ and $\left(a_{l+1} \cdots a_{l+r} \cdots\right)$ are called the non-periodic part and periodic part of $\left(a_{n}\right)_{n \geqslant 1}$, respectively;
(iv) $\quad\left(a_{n}\right)_{n \geqslant 1}$ is called purely periodic if $l=0$ and eventually periodic if $l>0$;
(v) The E-sequence is denoted by $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$.

Throughout the remainder of this section, define $s=b_{l+1}^{l+r}, B_{r}=B_{l+1}^{l+r-1}$, and let $k \geqslant 0$ be an integer.
Proposition 6. Let $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$ be a periodic E-sequence. Then, $B_{r k+l}=3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{3^{r k}-2^{s k}}{3^{r}-2^{s}}$.
Proof. By Proposition 4, $B_{r k+l}=B_{1}^{r k+l-1}=3^{r k} B_{1}^{l-1}+3^{r k-r} 2^{b_{l}} B_{l+1}^{l+r-1}+$
$3^{r k-2 r} 2^{b_{l+r}} B_{l+r+1}^{l+2 r-1}+\cdots+2^{b_{l+r k-r}} B_{l+1+r(k-1)}^{l+r k-1}$. By $b_{l+r}=b_{l}+s, b_{l+2 r}=b_{l}+2 s, \cdots$, $b_{l+r k-r}=b_{l}+(k-1) s, B_{1}^{l-1}=B_{l}, B_{l+r+1}^{l+2 r-1}=\cdots=B_{l+1+r(k-1)}^{l+r k-1}=B_{r}$, we have:

$$
\begin{aligned}
B_{r k+l} & =3^{r k} B_{l}+3^{r k-r} 2^{b_{l}} B_{r}+3^{r k-2 r} 2^{b_{l}} 2^{s} B_{r}+\cdots+2^{b_{l}} 2^{(k-1) s} B_{r} \\
& =3^{r k} B_{l}+2^{b_{l}} B_{r}\left(3^{r k-r} 2^{0}+3^{r k-2 r} 2^{s}+\cdots+3^{0} 2^{(k-1) s}\right) \\
& =3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{3^{r k}-2^{s k}}{3^{r}-2^{s}} .
\end{aligned}
$$

Proposition 7. Let $a_{1} \cdots a_{l} \overline{a_{l+1} \cdots a_{l+r}}$ be a periodic E-sequence. By Proposition 2, define two integers x_{0} and $x_{r k+l}$ such that $2^{s k+b_{l}} x_{r k+l}-3^{r k+l} x_{0}=B_{r k+l}, 1 \leqslant x_{0}<2^{s k+b_{l}}$ and $1 \leqslant x_{r k+l}<3^{r k+l}$. Then, there is a constant $K \in \mathbb{N}$, depending on a_{1}, \cdots, a_{l+r} such that when $k>K$ and,
(i) if $2^{s}>3^{r}$, there is $u_{r k+l} \in \mathbb{Z}, 0 \leqslant u_{r k+l}<\left(2^{s}-3^{r}\right) 3^{l}$ such that

$$
x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}}, x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}} ;
$$

(ii) if $3^{r}>2^{s}$, there is $u_{r k+l} \in \mathbb{N}, 1 \leqslant u_{r k+l} \leqslant\left(3^{r}-2^{s}\right) 3^{l}$ such that $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}, x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}$.

Proof. (i) $2^{s}>3^{r}$. By $x_{r k+l}=\frac{3^{r k+l} x_{0}+B_{r k+l}}{2^{s k+b_{l}}}$, we have $2^{s k+b_{l}} x_{r k+l} \equiv B_{r k+l}\left(\bmod 3^{r k+l}\right)$. Then, $2^{s k+b_{l}} x_{r k+l} \equiv 3^{r k} B_{l}+2^{b_{l}} B_{r} \frac{2^{s k}-3^{r k}}{2^{s}-3^{r}}\left(\bmod 3^{r k+l}\right)$ by Proposition 6. Thus, $\left(2^{s}-3^{r}\right) 2^{s k+b_{l}} x_{r k+l} \equiv$ $\left(2^{s}-3^{r}\right) 3^{r k} B_{l}+\left(2^{s k}-3^{r k}\right) 2^{b_{l}} B_{r}\left(\bmod \left(2^{s}-3^{r}\right) 3^{r k+l}\right)$. Hence, $2^{s k+b_{l}}\left(\left(2^{s}-3^{r}\right) x_{r k+l}-B_{r}\right) \equiv 3^{r k}\left(\left(2^{s}-\right.\right.$ $\left.\left.3^{r}\right) B_{l}-2^{b_{l}} B_{r}\right)\left(\bmod \left(2^{s}-3^{r}\right) 3^{r k+l}\right)$. Define $u_{r k+l}=\frac{\left(2^{s}-3^{r}\right) x_{r k+l}-B_{r}}{3^{r k}}$. Then, $u_{r k+l} \in \mathbb{Z}$ and $2^{s k+b_{l}} u_{r k+l} \equiv\left(2^{s}-3^{r}\right) B_{l}-2^{b_{l}} B_{r}\left(\bmod \left(2^{s}-3^{r}\right) 3^{l}\right)$. Hence $x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}$ and:

$$
\begin{aligned}
x_{0} & =\frac{2^{s k+b_{l}} x_{r k+l}-B_{r k+l}}{3^{r k+l}} \\
& =\frac{2^{s k+b_{l}} \frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}-3^{r k} B_{l}-2^{b_{l}} B_{r} \frac{2^{s k}-3^{r k}}{2^{s}-3^{r}}}{3^{r k+l}} \\
& =\frac{3^{r k} 2^{s k+b_{l}} u_{r k+l}+2^{s k+b_{l}} B_{r}-3^{r k} B_{l}\left(2^{s}-3^{r}\right)+3^{r k} 2^{b_{l}} B_{r}-2^{s k+b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{r k+l}} \\
& =\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}} .
\end{aligned}
$$

By $x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}<3^{r k+l}$, we have $u_{r k+l}<\frac{3^{r k+l}\left(2^{s}-3^{r}\right)-B_{r}}{3^{r k}}=3^{l}\left(2^{s}-3^{r}\right)-\frac{B_{r}}{3^{r k}}<3^{l}\left(2^{s}-3^{r}\right)$. By $x_{r k+l}=\frac{3^{r k} u_{r k+l}+B_{r}}{2^{s}-3^{r}}>0$, we have $u_{r k+l}>-\frac{B_{r}}{3^{r k}}$. Since $\lim _{k \rightarrow \infty}-\frac{B_{r}}{3^{r k}}=0$ and $u_{r k+l} \in \mathbb{Z}$, there is a constant $K \in \mathbb{N}$, depending on a_{1}, \cdots, a_{l+r} such that $u_{r k+l} \geqslant 0$ when $k>K$.
(ii) $3^{r}>2^{s}$. By $x_{r k+l}=\frac{3^{r k+l} x_{0}+B_{r k+l}}{2^{s k+b_{l}}}$, we have:

$$
2^{s k+b_{l}}\left(\left(3^{r}-2^{s}\right) x_{r k+l}+B_{r}\right) \equiv 3^{r k}\left(\left(3^{r}-2^{s}\right) B_{l}+2^{b_{l}} B_{r}\right)\left(\bmod \left(3^{r}-2^{s}\right) 3^{r k+l}\right)
$$

Define $u_{r k+l}=\frac{\left(3^{r}-2^{s}\right) x_{r k+l}+B_{r}}{3^{r k}}$. Then:

$$
u_{r k+l} \in \mathbb{Z}, 2^{s k+b_{l}} u_{r k+l} \equiv\left(3^{r}-2^{s}\right) B_{l}+2^{b_{l}} B_{r}\left(\bmod \left(3^{r}-2^{s}\right) 3^{l}\right)
$$

Thus, $x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}, x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}$. Since $x_{r k+l}=\frac{3^{r k} u_{r k+l}-B_{r}}{3^{r}-2^{s}}>0$, then $u_{r k+l}>\frac{B_{r}}{3^{r k}}$, and thus, $1 \leqslant u_{r k+l}$.
By $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}<2^{s k+b_{l}}$, we have $u_{r k+l}<\left(3^{r}-2^{s}\right) 3^{l}+\frac{B_{l}\left(3^{r}-2^{s}\right)+2^{b_{l}} B_{r}}{2^{s k+b_{l}}}$.
Since $\lim _{k \rightarrow \infty} \frac{B_{l}\left(3^{r}-2^{s}\right)+2^{b_{l}} B_{r}}{2^{s k+b_{l}}}=0$ and $u_{r k+l} \in \mathbb{Z}$, there is a $K \in \mathbb{N}$ such that $u_{r k+l} \leqslant\left(3^{r}-2^{s}\right) 3^{l}$ when $k>K$.

Theorem 1. If $3^{r}>2^{s}$, then $a_{1} \cdots a_{l} \overline{a_{l+1} a_{l+2} \cdots a_{l+r-1} a_{l+r}}$ is Ω-divergent.

Proof. By Proposition 7(ii), $x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(3^{r}-2^{s}\right)-2^{b_{l}} B_{r}}{\left(3^{r}-2^{s}\right) 3^{l}}$ and $u_{r k+l} \geqslant 1$. Then, $x_{0} \rightarrow+\infty$ as $k \rightarrow \infty$. Thus, the E-sequence is Ω-divergent.

Theorem 2. If $a_{1} \cdots a_{l} \overline{a_{l+1} a_{l+2} \cdots a_{l+r-1} a_{l+r}}$ is Ω-convergent to x, then $\left(x_{n}\right)_{n \geqslant 0}$ is periodic.
Proof. By Theorem 1, $2^{s}>3^{r}$. By Proposition 7(i),

$$
x_{0}=\frac{2^{s k+b_{l}} u_{r k+l}-B_{l}\left(2^{s}-3^{r}\right)+2^{b_{l}} B_{r}}{\left(2^{s}-3^{r}\right) 3^{l}}
$$

and $u_{r k+l} \geqslant 0$ for all $k>K$. Since $x_{0}=x<\infty$ for all sufficiently large k, by Proposition 5(iv), then $u_{r k+l}=0$. Thus, $x_{0}=\frac{2^{b_{l}} B_{r}-B_{l}\left(2^{s}-3^{r}\right)}{\left(2^{s}-3^{r}\right) 3^{l}}$ and $x_{r k+l}=\frac{B_{r}}{2^{s}-3^{r}}$ for all $k \geq 0$. Hence, $\left(x_{n}\right)_{n \geqslant 0}$ is periodic, and its non-periodic part and periodic part are $\left(x_{0} x_{1} \cdots x_{l}\right)$ and $\overline{x_{l+1} \cdots x_{l+r}}$, respectively.

Theorem 3. Assume that all non-periodic E-sequence are Ω-divergent. Then, the trajectory of every odd positive integer is periodic.

Proof. Suppose that x is an odd positive integer, $\left(x_{n}\right)_{n \geqslant 0}$ and $\left(a_{n}\right)_{n \geqslant 1}$ are its trajectory and E-sequence, respectively. Then, $\Omega-\lim a_{n}=x$. Thus, $\left(a_{n}\right)_{n \geqslant 1}$ is periodic by the assumption. Hence, $\left(x_{n}\right)_{n \geqslant 0}$ is periodic by Theorem 2 .

4. Non-Periodic E-Sequences

For any real number $\alpha,\{\alpha\}$ denotes its fractional part. The following lemma is due to Matthews and Watts (see Lemma 2(b) in [13]). We present its proof for the reader's convenience.

Lemma 1. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that $\Omega-\lim a_{n}=x_{0}$ and $\left(x_{n}\right)_{n \geqslant 0}$ is unbounded. Then, $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n} \leqslant \log _{2} 3$.

Proof. From $x_{k}=\frac{3 x_{k-1}+1}{2^{a_{k}}}$, we have $2^{a_{k}}=\frac{3 x_{k-1}+1}{x_{k}}$. Then:

$$
2^{b_{n}}=\prod_{k=1}^{n} 2^{a_{k}}=\prod_{k=1}^{n} \frac{3 x_{k-1}+1}{x_{k}}=\frac{x_{0}}{x_{n}} \prod_{k=1}^{n} \frac{3 x_{k-1}+1}{x_{k-1}}=\frac{3^{n} x_{0}}{x_{n}} \prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right) .
$$

Thus:

$$
x_{n}=\frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right)
$$

which we call the Matthews and Watts' formula (see Lemma 1(b) in [13]).
Since $\left(x_{n}\right)_{n \geqslant 1}$ is unbounded, all x_{n} are distinct. Then:

$$
1 \leqslant x_{n} \leqslant \frac{3^{n} x_{0}}{2^{b_{n}}} \prod_{k=1}^{n}\left(1+\frac{1}{3 k}\right) .
$$

Thus:

$$
0 \leqslant \log \frac{3^{n}}{2^{b_{n}}}+\log x_{0}+\sum_{k=1}^{n} \log \left(1+\frac{1}{3 k}\right) \leqslant \log 3^{n}-\log 2^{b_{n}}+\log x_{0}+\sum_{k=1}^{n} \frac{1}{3 k} .
$$

Hence:

$$
\log 2^{b_{n}} \leqslant \log 3^{n}+\log x_{0}+\frac{1}{3} \sum_{k=1}^{n} \frac{1}{k}
$$

Therefore:

$$
\frac{b_{n}}{n} \leqslant \log _{2} 3+\frac{\log _{2} x_{0}}{n}+\frac{1}{n \log 8} \sum_{k=1}^{n} \frac{1}{k}
$$

Then:

$$
\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n} \leqslant \log _{2} 3
$$

Theorem 4. Let $\left(a_{n}\right)_{n \geqslant 1}$ be a non-periodic E-sequence such that $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>\log _{2} 3$. Then, $\Omega-\lim a_{n}=\infty$.
Proof. Suppose that $\Omega-\lim a_{n}=x_{0}$ for some positive integer x_{0}. It follows from Lemma 1 and $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}>$ $\log _{2} 3$ that $\left(x_{n}\right)_{n \geqslant 0}$ is bounded. Then, $\left(x_{n}\right)_{n \geqslant 0}$ is periodic. Thus, $\left(a_{n}\right)_{n \geqslant 1}$ is periodic, which contradicts the non-periodicity of $\left(a_{n}\right)_{n \geqslant 1}$. Hence, $\Omega-\lim a_{n}=\infty$.

The following lemma is the well known Wendel's inequality (see [15]). Lemma 3 is a consequence of an easy calculation.

Lemma 2. Let x be a positive real number, and let $s \in(0,1)$. Then, $\frac{\Gamma(x+s)}{\Gamma(x)} \leqslant x^{s}$.
Lemma 3. Let a and b be two integers with $a \geqslant 1$ and $a+b$. Then, $\prod_{k=0}^{n}\left(1+\frac{z}{a k+b}\right)=\frac{\Gamma\left(\frac{b}{a}\right) \Gamma\left(\frac{b+z}{a}+n+1\right)}{\Gamma\left(\frac{b+z}{a}\right) \Gamma\left(\frac{b}{a}+n+1\right)}$.
Lemma 4. $\prod_{1 \leqslant k<3 n, k=1,5(\bmod 6)}\left(1+\frac{1}{3 k}\right)<1.5 n^{\frac{1}{9}}$ for all $n \geqslant 1$.
Proof. Let $2 \mid n$. Then:

$$
\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right)=\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{n}{2}+\frac{2}{9}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{n}{2}+\frac{1}{6}\right)} \leqslant \frac{\Gamma\left(\frac{1}{6}\right)}{\Gamma\left(\frac{2}{9}\right)}\left(\frac{n}{2}+\frac{1}{6}\right)^{\frac{1}{18}}
$$

and:

$$
\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+5)}\right)=\frac{\Gamma\left(\frac{5}{6}\right) \Gamma\left(\frac{n}{2}+\frac{8}{9}\right)}{\Gamma\left(\frac{8}{9}\right) \Gamma\left(\frac{n}{2}+\frac{5}{6}\right)} \leqslant \frac{\Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{5}{6}\right)^{\frac{1}{18}}
$$

by Wendel's inequality. Thus,
$\prod_{1 \leqslant k<3 n,}\left(1+\frac{1}{3 k}\right)=\prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right) \prod_{k=0}^{\frac{n}{2}-1}\left(1+\frac{1}{3(6 k+5)}\right) \leqslant$

$$
\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{5}{6}\right)^{\frac{1}{18}}\left(\frac{n}{2}+\frac{1}{6}\right)^{\frac{1}{18}} \leqslant 1.4196\left(\frac{n^{2}}{3}\right)^{\frac{1}{18}}<1.5 n^{\frac{1}{9}}
$$

Let $2+n$. Then:

$$
\prod_{k=0}^{\frac{n+1}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right)=\frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{n}{2}+\frac{13}{18}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{n}{2}+\frac{2}{3}\right)} \leqslant \frac{\Gamma\left(\frac{1}{6}\right)}{\Gamma\left(\frac{2}{9}\right)}\left(\frac{n}{2}+\frac{2}{3}\right)^{\frac{1}{18}}
$$

and

$$
\prod_{k=0}^{\frac{n+1}{2}-2}\left(1+\frac{1}{3(6 k+5)}\right)=\frac{\Gamma\left(\frac{5}{6}\right) \Gamma\left(\frac{n}{2}+\frac{7}{18}\right)}{\Gamma\left(\frac{8}{9}\right) \Gamma\left(\frac{n}{2}+\frac{1}{3}\right)} \leqslant \frac{\Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{1}{3}\right)^{\frac{1}{18}}
$$

by Wendel's inequality. Thus,

$$
\begin{aligned}
\prod_{1 \leqslant k<3 n, k \equiv 1,5(\bmod 6)}\left(1+\frac{1}{3 k}\right)= & \prod_{k=0}^{\frac{n+1}{2}-1}\left(1+\frac{1}{3(6 k+1)}\right) \prod_{k=0}^{\frac{n+1}{2}-2}\left(1+\frac{1}{3(6 k+5)}\right) \leqslant \\
& \frac{\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)}{\Gamma\left(\frac{2}{9}\right) \Gamma\left(\frac{8}{9}\right)}\left(\frac{n}{2}+\frac{2}{3}\right) \frac{1}{18}\left(\frac{n}{2}+\frac{1}{3}\right)^{\frac{1}{18}<1.5 n^{\frac{1}{9}} .}
\end{aligned}
$$

Theorem 5. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leqslant x_{0}<2^{b_{n}}, 1 \leqslant x_{n}<3^{n}, 3+x_{0}$, and x_{0}, \cdots, x_{n-1} are distinct integers. Then, $x_{0}>\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}$.

Proof. From the Matthews and Watts' formula and Lemma 4, we have:

$$
\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=1}^{n}\left(1+\frac{1}{3 x_{k-1}}\right) \leqslant \prod_{1 \leqslant k<3 n,}\left(1+\frac{1}{3 k}\right)<1.5 n^{\frac{1}{9}}
$$

Then, $\frac{3^{n} x_{0}+B_{n}}{3^{n} x_{0}}<1.5 n^{\frac{1}{9}}$. Thus, $x_{0}>\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}$.
Corollary 1. Let $\theta \geqslant \log _{2} 3$ be an irrational number. Define $a_{n}=[n \theta]-[(n-1) \theta]$. Then, $\Omega-\lim a_{n}=\infty$.
Proof. Let $\theta=\log _{2} 3$. Then, $\frac{B_{n}}{3^{n}}=\sum_{k=1}^{n} \frac{2^{\left[(k-1) \log _{2} 3\right]}}{3^{k}}>\frac{n}{8}$ by $\frac{2^{\left[(k-1) \log _{2} 3\right]}}{3^{k}}>\frac{1}{8}$. Thus, $\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)}>\frac{n}{8\left(1.5 n^{\frac{1}{9}}-1\right)} \rightarrow \infty$, as $n \rightarrow \infty$. Hence, $\Omega-\lim a_{n}=\infty$ by Theorem 5 .

Let $\theta>\log _{2} 3$. Then, $\lim _{n \rightarrow \infty} \frac{b_{n}}{n}=\lim _{n \rightarrow \infty} \frac{[\mathrm{n} \theta]}{n}=\theta>\log _{2} 3$. Since θ is an irrational number, $\left(a_{n}\right)_{n \geqslant 1}$ is non-periodic. Thus, $\Omega-\lim a_{n}=\infty$ by Theorem 4 .

Lemma 5. Let x and n be two positive integers. Then, (i) $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right) \leq 1+\frac{n}{3 x}$; $(i i) \prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right) \geq$ $1+\frac{n}{3 x}$ for $x \geq n$; (iii) $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}$ for $x \geq n \geq 2$.

Proof. (i) The proof is by induction on n. For the base step, let $n=1$, then $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right)=1+\frac{1}{3 x}=$ $1+\frac{n}{3 x}$. For the induction step, assume that $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x+k)}\right) \leq 1+\frac{n}{3 x}$. Then, $\prod_{k=0}^{n}\left(1+\frac{1}{3(x+k)}\right) \leq$ $\left(1+\frac{n}{3 x}\right)\left(1+\frac{1}{3(x+n)}\right)=1+\frac{n}{3 x}+\frac{1}{3(x+n)}+\frac{n}{9 x(x+n)} \leq 1+\frac{n+1}{3 x}$. Thus, the inequality holds for all $n \geq 1$. The proof of (ii) is similar to that of (i) and omitted.
(iii) Let $n=2$. Since $3 x \cdot 3 x-2 \cdot 3 x-3 x+2>3 x \cdot 3 x-3 \cdot 3 x$, then $\frac{3 x-1}{3 x \cdot 3(x-1)}>\frac{1}{3 x-2}$. Thus, $1+\frac{1}{3 x}+\frac{1}{3(x-1)}+\frac{1}{3 x \cdot 3(x-1)}>\frac{3 x-2+2}{3 x-2}=1+\frac{2}{3 x-2}$. Hence, $\left(1+\frac{1}{3 x}\right)\left(1+\frac{1}{3(x-1)}\right)>\frac{3 x}{3 x-2}$. Therefore, $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}$.

Assume that $\prod_{k=0}^{n-1}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}$. Since $(3 x-3 n+1)(3 x-n-1)>(3 x-n)(3 x-3 n)$, then $\frac{3 x(3 x-3 n)+3 x}{(3 x-n)(3 x-3 n)}>\frac{3 x}{3 x-n-1}$. Thus, $\prod_{k=0}^{n}\left(1+\frac{1}{3(x-k)}\right)>\frac{3 x}{3 x-n}\left(1+\frac{1}{3(x-n)}\right)=\frac{3 x}{3 x-n}+$ $\frac{3 x}{(3 x-n)(3 x-3 n)}>\frac{3 x}{3 x-n-1}$.

Lemma 6. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leq x_{0}<2^{b_{n}}, 1 \leq x_{n}<3^{n}, x_{i} \neq x_{j}$ for all $0 \leq i<j \leq n-1$. Then, (i) $\frac{B_{n}}{3^{n}} \leq \frac{n}{3}$ if $x_{k}>x_{0}$ for all $1 \leq k \leq n-1$; (ii) $\frac{B_{n}}{2^{b_{n}}}<\frac{n}{3}$ if $x_{n}<x_{k}$ for all $0 \leq k \leq n-1$; (iii) $\frac{B_{n}}{2^{b_{n}}}>\frac{n}{3}$ if $x_{n}>x_{i}$ for all $0 \leq i \leq n-1$; (iv) $\frac{B_{n}}{3^{n}} \geq \frac{n}{3}$ if $x_{0}>x_{k}$ for all $1 \leq k \leq n$.

Proof. (i) From $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, we have:

$$
1+\frac{B_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \leq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{0}+k\right)}\right) .
$$

Then, $1+\frac{B_{n}}{3^{n} x_{0}} \leq 1+\frac{n}{3 x_{0}}$ by Lemma 5(i). Thus, $\frac{B_{n}}{3^{n}} \leq \frac{n}{3}$.
(ii) From $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)$, we have:

$$
\frac{2^{b_{n}} x_{n}-B_{n}}{2^{b_{n}} x_{n}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right)^{-1} \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}+k\right)}\right)^{-1} .
$$

Then, $1-\frac{B_{n}}{2^{b_{n}} x_{n}} \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}+k\right)}\right)^{-1} \geq\left(1+\frac{n}{3 x_{n}}\right)^{-1}$ by Lemma 5(i). Thus:

$$
\frac{B_{n}}{2^{b_{n} x_{n}}} \leq 1-\left(1+\frac{n}{3 x_{n}}\right)^{-1}=\frac{n}{3 x_{n}+n} .
$$

Hence, $\frac{B_{n}}{2^{b_{n}}} \leq \frac{n x_{n}}{3 x_{n}+n}<\frac{n}{3}$.
(iii) Let $n=1$. Then, $x_{1}=\frac{3 x+1}{2^{a_{1}}}>x$. Thus, $\left(3-2^{a_{1}}\right) x+1>0$. Hence, $a_{1}=1$. Therefore, $\frac{B_{n}}{2^{b_{n}}}=\frac{B_{1}}{2^{b_{1}}}=\frac{1}{2}>\frac{1}{3}=\frac{n}{3}$.

Let $x_{n} \geq n \geq 2$. By Lemma 5(iii), we have $\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{n}-k\right)}\right)>\frac{3 x_{n}}{3 x_{n}-n}$. Then, $\frac{2^{b_{n}} x_{n}}{2^{b_{n}} x_{n}-B_{n}}>\frac{3 x_{n}}{3 x_{n}-n}$. Thus, $\frac{2^{b_{n}} x_{n}-B_{n}}{2^{b_{n}} x_{n}}<\frac{3 x_{n}-n}{3 x_{n}}$. Hence, $\frac{B_{n}}{2^{b_{n}}}>\frac{n}{3}$.
(iv) By Lemma 5(ii), we have:

$$
1+\frac{B_{n}}{3^{n} x_{0}}=\frac{2^{b_{n}} x_{n}}{3^{n} x_{0}}=\prod_{k=0}^{n-1}\left(1+\frac{1}{3 x_{k}}\right) \geq \prod_{k=0}^{n-1}\left(1+\frac{1}{3\left(x_{0}-k\right)}\right) \geq 1+\frac{n}{3 x_{0}} .
$$

Then, $\frac{B_{n}}{3^{n}} \geq \frac{n}{3}$.
A direct consequence of Lemma 6 is the following theorem, which may imply something unknown.
Theorem 6. Let $2^{b_{n}} x_{n}-3^{n} x_{0}=B_{n}$ such that $1 \leq x_{0}<2^{b_{n}}, 1 \leq x_{n}<3^{n}, x_{i} \neq x_{j}$ for all $0 \leq i<j \leq n-1$. Then:
(i) $\frac{B_{n}}{3^{n}}>\frac{n}{3}$ implies $x_{k} \leq x_{0}$ for some $1 \leq k \leq n-1$;
(ii) $\frac{B_{n}}{3^{n}}<\frac{n}{3}$ implies $x_{0} \leq x_{k}$ for some $1 \leq k \leq n$;
(iii) $\frac{B_{n}}{2^{b_{n}}} \leq \frac{n}{3}$ implies $x_{n} \leq x_{i}$ for some $0 \leq i \leq n-1$;
(iv) $\frac{B_{n}}{2^{b_{n}}} \geq \frac{n}{3}$ implies $x_{n} \geq x_{k}$ for some $0 \leq k \leq n-1$.

Theorem 7. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that (i) $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$; (ii) there is a constant $c>\log _{2} 3$ such that there are infinitely many distinct pairs (k, l) of positive integers such that $l>k c, a_{k+1}=\cdots=a_{l}=1$. Then, $\Omega-\lim a_{n}=\infty$.

Proof. It follows from (i) that $B_{n}<3^{n} n$ for all $n \in \mathbb{N}$ by induction on n. $B_{k+1}^{l-1}=3^{l-k}-2^{l-k}$ by Proposition 6. Let $x_{l}^{1, l}=\frac{3^{l} x_{0}^{1, l}+B_{1}^{l-1}}{2^{b_{l}}}, 1 \leqslant x_{0}^{1, l}<2^{b_{l}}, 1 \leqslant x_{l}^{1, l}<3^{l}$. Then, $x_{k}^{1, l}=\frac{3^{k} x_{0}^{1, l}+B_{1}^{k-1}}{2^{b_{k}}}, x_{l}^{1, l}=\frac{3^{l-k} x_{k}^{1, l}+B_{k+1}^{l-1}}{2^{b_{k+1}^{l}}}$ by Proposition 5(ii). By $B_{k+1}^{l-1}=3^{l-k}-2^{l-k}, 2^{b_{k+1}^{l}}=2^{l-k}$, we have $2^{l-k}\left(x_{l}^{1, l}+1\right)=3^{l-k}\left(x_{k}^{1, l}+1\right)$. Thus, $x_{k}^{1, l}=$ $2^{l-k} w-1$ for some $1 \leqslant w$. Hence, $x_{k}^{1, l}=\frac{3^{k} x_{0}^{1, l}+B_{1}^{k-1}}{2^{b_{k}}}=2^{l-k} w-1$. Therefore, $x_{0}^{1, l}=\frac{2^{l-k} 2^{b_{k}} w-2^{b_{k}}-B_{1}^{k-1}}{3^{k}} \geqslant$ $\frac{2^{l}}{3^{k}} 2^{b_{k}-k}-1-k \geqslant\left(\frac{2^{c}}{3}\right)^{k} 2^{b_{k}-k}-1-k$. If there are only finitely many distinct k in all pairs $(k, l), x_{0}^{1, l} \geqslant$ $\frac{2^{l}}{3^{k}} 2^{b_{k}-k}-1-k \rightarrow \infty$, as $l \rightarrow \infty$; otherwise, $x_{0}^{1, l} \geqslant\left(\frac{2^{c}}{3}\right)^{k} 2^{b_{k}-k}-1-k \rightarrow \infty$, as $k \rightarrow \infty$. Then, $\Omega-\lim a_{n}=$ ∞.

Corollary 2. Let $\left(a_{n}\right)_{n \geqslant 1}$ be the E-sequence $12121112 \cdots$, where $a_{n}=2$ if $n \in\left\{2^{1}, 2^{2}, 2^{3}, \cdots\right\}$ and $a_{n}=1$ otherwise. Then, $\Omega-\lim a_{n}=\infty$.

Proof. Take $c=\frac{7}{4}>\log _{2} 3, k=2^{m}$, and $l=2^{m+1}-1$. Then, $a_{k+1}=\cdots=a_{l}=1, l>k c$ for all $m \geqslant 3$. Thus, $\Omega-\lim a_{n}=\infty$ by Theorem 7 .

Theorem 8. Let $\left(a_{n}\right)_{n \geqslant 1}$ be an E-sequence such that (i) $3^{n}>2^{b_{n}}$ for all $n \in \mathbb{N}$; (ii) there is a constant $c>\log _{2} 3$ such that there are infinitely many distinct pairs (r, l) of positive integers such that $l>r, b_{l+r}>l c, a_{l+k}=a_{k}$ for all $1 \leqslant k \leqslant r$, i.e., $\left(a_{1} \cdots a_{r}\right) a_{r+1} \cdots a_{l}\left(a_{l+1} \cdots a_{l+r}\right)$ is contained in $\left(a_{n}\right)_{n \geqslant 1}$. Then, $\Omega-\lim a_{n}=\infty$.

Proof. Let $x_{l+r}^{1, l+r}=\frac{3^{l+r} x_{0}^{1, l+r}+B_{1}^{l+r-1}}{2^{b_{1}^{l+r}}}, 1 \leqslant x_{0}^{1, l+r}<2^{b_{1}^{l+r}}, 1 \leqslant x_{l+r}^{1, l+r}<3^{l+r}$. Then, $x_{l}^{1, l+r}=\frac{3^{l} x_{0}^{1, l+r}+B_{1}^{l-1}}{2^{b_{1}^{l}}}$, $x_{l+r}^{1, l+r}=\frac{3^{r} x_{l}^{1, l+r}+B_{l+1}^{l+r-1}}{2^{b_{l+1}^{l+r}}}=\frac{3^{r} x_{l}^{1, l+r}+B_{1}^{r-1}}{2^{b_{1}^{r}}}$ by Proposition 5(ii). By $3^{l}>2^{b_{1}^{l}}$, we have $x_{l}^{1, l+r}>x_{0}^{1, l+r}$.

Let $x_{r}^{1, r}=\frac{3^{r} x_{0}^{1, r}+B_{1}^{r-1}}{2^{b_{1}^{r}}}, 1 \leqslant x_{0}^{1, r}<2^{b_{1}^{r}}, 1 \leqslant x_{r}^{1, r}<3^{r}$. Then, $x_{0}^{1, r} \equiv x_{l}^{1, l+r}\left(\bmod 2^{b_{1}^{r}}\right)$. By Proposition 5(iii), we have $x_{0}^{1, l+r} \geqslant x_{0}^{1, r}$. Let $x_{l}^{1, l+r}=2^{b_{1}^{r}} u+x_{0}^{1, r}$. Then, $u \geqslant 1$ by $x_{l}^{1, l+r}>x_{0}^{1, l+r} \geqslant x_{0}^{1, r}$. Thus:

$$
x_{0}^{1, l+r}=\frac{2^{b_{1}^{l}} 2^{b_{1}^{r}} u+2^{b_{1}^{l}} x_{0}^{1, r}-B_{1}^{l-1}}{3^{l}} \geqslant \frac{2^{b_{1}^{l+r}}}{3^{l}}-l \geqslant\left(\frac{2^{c}}{3}\right)^{l}-l \rightarrow \infty \text {, as } l \rightarrow \infty .
$$

Hence, $\Omega-\lim a_{n}=\infty$.
Theorem 9. Let $1 \leqslant \theta<\log _{2} 3$, and define $a_{n}=[n \theta]-[(n-1) \theta]$. Then, $\Omega-\lim a_{n}=\infty$.
Proof. If θ is a rational number, then $\left(a_{n}\right)_{n \geqslant 1}$ is purely periodic, and the result follows from Theorem 1 . Let θ be an irrational number in the following. By the Hurwitz theorem, there are infinite convergents $\frac{s}{r}$ of θ such that $\left|\theta-\frac{s}{r}\right|<\frac{1}{\sqrt{5} r^{2}}$. There are two cases to be considered.

Case 1. There are infinite convergents $\frac{s}{r}$ of θ such that $0<\theta-\frac{s}{r}<\frac{1}{\sqrt{5} r^{2}}$. We prove that $[\theta n]=\left[\frac{s}{r} n\right]$ for all $1 \leqslant n \leqslant[\sqrt{5} r]$. By $1 \leqslant n \leqslant[\sqrt{5} r]$, we have $0<\theta n-\frac{s}{r} n<\frac{n}{\sqrt{5} r^{2}}<\frac{\sqrt{5} r}{\sqrt{5} r^{2}}=\frac{1}{r}$. Then, $0 \leqslant\left\{\frac{s}{r} n\right\}<$ $\theta n-\left[\frac{s}{r} n\right]<\frac{1}{r}+\left\{\frac{s}{r} n\right\} \leqslant 1$. Thus, $0<\theta n-\left[\frac{s}{r}-n\right]<1$. Hence, $[\theta n]=\left[\frac{s}{r}-n\right]$. Then, we have the following periodic table for $\left(a_{n}\right)_{1 \leqslant n \leqslant[\sqrt{5} r]}$.

a_{1}	a_{2}	\cdots	$a_{[\sqrt{5} r-2 r]}$	\cdots	a_{r}
a_{r+1}	a_{2+r}	\cdots	$a_{[\sqrt{5} r-r]}$	\cdots	$a_{2 r}$
$a_{2 r+1}$	$a_{2+2 r}$	\cdots	$\left.a_{[\sqrt{5} r}\right]$		

By Proposition 7(ii), $x_{0}^{1,2 r}=\frac{2^{2[r \theta]} u_{2 r}-B_{r}}{3^{r}-2^{[r \theta]}}$ for some $u_{2 r} \geqslant 1$.
By $B_{r}=\sum_{i=0}^{r-1} 3^{r-1-i} 2^{b_{i}}=3^{r-1} \sum_{i=0}^{r-1} \frac{2^{b_{i}}}{3^{i}} \leqslant 3^{r-1} \sum_{i=0}^{r-1} \frac{2^{[i \theta]}}{3^{i}} \leqslant 3^{r-1} \sum_{i=0}^{r-1} \frac{2^{i \theta}}{3^{i}}=\frac{3^{r} 1-\left(\frac{2^{\theta}}{3}\right)^{r}}{3} \frac{3^{r}-2^{r \theta}}{1-\frac{2^{\theta}}{3}}=\frac{3^{r}}{3-2^{\theta}} \leqslant \frac{2^{\theta}}{3-}$, we have:

$$
x_{0}^{1,2 r} \geqslant \frac{2^{2[r \theta]}-B_{r}}{3^{r}-2^{[r \theta]}} \geqslant \frac{4^{r \theta-1}-\frac{3^{r}}{3-2^{\theta}}}{3^{r}-2^{r \theta-1}}=\frac{\frac{1}{4}\left(\frac{4^{\theta}}{3}\right)^{r}-\frac{1}{3-2^{\theta}}}{1-\frac{1}{2}\left(\frac{2^{\theta}}{3}\right)^{r}} .
$$

Thus, $x_{0}^{1,2 r} \rightarrow \infty$, as $r \rightarrow \infty$. Hence, $\Omega-\lim a_{n}=\infty$.
Case 2. There are infinite convergents $\frac{s}{r}$ of θ such that $0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$.
Firstly, we prove $[\theta n]=\left[\frac{s}{r} n\right]$ for all $1 \leqslant n \leqslant[\sqrt{5} r], n \notin\{r, 2 r\}$. By $0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$, we have $\frac{s}{r}-\frac{1}{\sqrt{5} r^{2}}<\theta<\frac{s}{r}$. Then, $\frac{s}{r} n-\left[\frac{s}{r} n\right]-\frac{n}{\sqrt{5} r^{2}}<\theta n-\left[\frac{s}{r} n\right]<\frac{s}{r} n-\left[\frac{s}{r}-n\right]<1$. By $1 \leqslant n \leqslant[\sqrt{5} r], n \notin\{r, 2 r\}$, we have $0<\frac{1}{r}-\frac{n}{\sqrt{5} r^{2}} \leqslant \frac{s}{r} n-\left[\frac{s}{r} n\right]-\frac{n}{\sqrt{5} r^{2}}$. Then, $0<\theta n-\left[\frac{s}{r}-n\right]<1$. Thus, $[\theta n]=\left[\frac{s}{r} n\right]$.

Secondly, we prove $[r \theta]=s-1,[2 r \theta]=2 s-1$. By $1 \leqslant n, 0<\frac{s}{r}-\theta<\frac{1}{\sqrt{5} r^{2}}$, we have $-\frac{n}{\sqrt{5} r^{2}}+\frac{s}{r} n<$ $n \theta<\frac{s}{r} n$. By $n<\sqrt{5} r$, we have $-1<-\frac{1}{r}<-\frac{n}{\sqrt{5} r^{2}}$. Then, $-1+\frac{s}{r} n<-\frac{n}{\sqrt{5} r^{2}}+\frac{s}{r} n<n \theta<\frac{s}{r} n$. By taking $n=r, 2 r$, we have $[r \theta]=s-1,[2 r \theta]=2 s-1$.

Let $2 \leqslant j \leqslant r-1$, then $r+2 \leqslant r+j \leqslant 2 r-1$ and $r+1 \leqslant r+j-1 \leqslant 2 r-2$. Thus, $a_{r+j}=[\theta(r+j)]-[\theta(r+$ $j-1)]=\left[\frac{s}{r}(r+j)\right]-\left[\frac{s}{r}(r+j-1)\right]=\left[s+\frac{s}{r} j\right]-\left[s+\frac{s}{r}(j-1)\right]=\left[\frac{s}{r} j\right]-\left[\frac{s}{r}(j-1)\right]=a_{j}$.

Let $2 \leqslant j \leqslant[\sqrt{5} r]-2 r$. Then, $2 r+2 \leqslant 2 r+j \leqslant[\sqrt{5} r]$ and $2 r+1 \leqslant 2 r+j-1 \leqslant[\sqrt{5} r]-1$. Thus, $a_{2 r+j}=$ $[\theta(2 r+j)]-[\theta(2 r+j-1)]=\left[\frac{s}{r}(2 r+j)\right]-\left[\frac{s}{r}(2 r+j-1)\right]=\left[\frac{s}{r} j\right]-\left[\frac{s}{r}(j-1)\right]=a_{j}$.

By easy calculation, we have $a_{r}=a_{2 r}=1, a_{r+1}=a_{2 r+1}=2$.
Then, we have the following periodic table for $\left(a_{n}\right)_{1 \leqslant n \leqslant[\sqrt{5} r}$.

a_{1}	a_{2}	a_{3}	\cdots	$\left.a_{[\sqrt{5} r}\right]-2 r$	\cdots	a_{r}	a_{r+1}
	a_{2+r}	a_{3+r}	\cdots	$a_{[\sqrt{5} r]-r}$	\cdots	$a_{2 r}$	$a_{2 r+1}$
	$a_{2+2 r}$	$a_{3+2 r}$	\cdots	$\left.a_{[\sqrt{5} r}\right]$			

Since $\theta<\log _{2} 3$, we then take all convergents $\frac{s}{r}$ of θ such that $\frac{s}{r}<\log _{2} 3$, and thus, $2^{s}<3^{r}$. By $a_{1}=1$, $b_{2}^{r+1}=[r \theta]+1=s$ and Proposition 7(ii), we have:

$$
x_{0}^{1,2 r+1}=\frac{2^{2 s+1} u_{2 r+1}-\left(3^{r}-2^{s}\right)-2 B_{2}^{r}}{3\left(3^{r}-2^{s}\right)}
$$

for some $u_{2 r+1} \geqslant 1$. By $B_{2}^{r}=\sum_{i=0}^{r-1} 3^{r-1-i} 2^{b_{2}^{i+1}}=3^{r-1} \sum_{i=0}^{r-1} \frac{2^{[i \theta+\theta]-1}}{3^{i}} \leqslant 3^{r-1} 2^{\theta-1} \sum_{i=0}^{r-1} \frac{2^{i \theta}}{3^{i}}=2^{\theta-1} \frac{3^{r}}{3} \frac{1-\left(\frac{2^{\theta}}{3}\right)^{r}}{1-\frac{2^{\theta}}{3}}=$ $2^{\theta-1} \frac{3^{r}-2^{r \theta}}{3-2^{\theta}} \leqslant C 3^{r}$, where $C=\frac{2^{\theta-1}}{3-2^{\theta}}$, we have:

$$
x_{0}^{1,2 r+1} \geqslant \frac{24^{[r \theta]+1}-C 3^{r}}{3}-\frac{1}{3} \geqslant \frac{24^{r \theta}-C 3^{r}}{3^{r}-2^{s}}-\frac{1}{3^{r}-2^{s}} \geqslant \frac{24^{r \theta}-C 3^{r}}{3}-\frac{1}{3}=\frac{2}{3}\left(\frac{4^{\theta}}{3}\right)^{r}-\frac{2}{3} C-\frac{1}{3} .
$$

Thus, $\lim _{r \rightarrow \infty} x_{0}^{1,2 r+1}=\infty$. Hence, $\Omega-\lim a_{n}=\infty$.

5. Concluding Remarks and Open Problems

The results on non-periodic E-sequences in Section 4 were based on the theory of periodic E-sequences in Section 3 and the Matthews and Watts' formula. Currently, we have no other way to tackle non-periodic E-sequences. We can obtain various generalizations and analogues of Theorems 4-8. However, we need good problems to make some progress.

One seemingly simple problem that we are not able to prove is whether $\left(a_{n}\right)_{n \geqslant 1}$ is divergent, where $a_{n}=2$ if $n \in\left\{2^{2}, 3^{2}, 4^{2}, \ldots\right\}$ and $a_{n}=1$ otherwise, i.e., $\left(a_{n}\right)_{n \geqslant 1}$ is $111211112 \ldots$.

Another interesting problem is whether $\left(a_{n}\right)_{n \geqslant 1}$ with infinitely many n satisfying $b_{n}>n \log _{2} 3$ is Ω-divergent. By virtue of Theorem 4, we only need to consider the case of $\varlimsup_{n \rightarrow \infty} \frac{b_{n}}{n}=\log _{2} 3$. Theorem 5
answers the problem if $\frac{B_{n}}{3^{n}\left(1.5 n^{\frac{1}{9}}-1\right)} \rightarrow \infty$, as $n \rightarrow \infty$. Currently, we do not know how to tackle the other cases of the problem.

Conjecture 2(ii) is also important in some sense.
Funding: This work is supported by the National Foundation of Natural Sciences of China (Grant Nos. 61379018, 61662044, 11571013, and 11671358).
Acknowledgments: I am greatly indebted to Junde Miao for his constant encouragement while I was working on the problem.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Lagarias, J.C. The $3 x+1$ problem and its generalizations. Am. Math. Mon. 1985, 92, 3-23. [CrossRef]
2. Kadic, S.; Tomovic, S. Computer-Based Validation of $3 n+1$ Hypothesis for Numbers $3^{n}-1$. Teh. Vjesn. 2019, 26, 289-293. [CrossRef]
3. Thomas, A. A non-uniform distribution property of most orbits, in case the $3 x+1$ conjecture is true. Acta Arith. 2017, 178, 125-134. [CrossRef]
4. Colussi, L. The convergence classes of Collatz function. Theor. Comput. Sci. 2011, 412, 5409-5419. [CrossRef]
5. Tao, T. Almost all orbits of the Collatz map attain almost bounded values. arXiv 2019, arXiv:1909.03562.
6. Kari, J. Universal pattern generation by cellular automata. Theor. Comput. Sci. 2012, 429, 180-184. [CrossRef]
7. Javaheri, M. A Collatz-type conjecture on the set of rational numbers. J. Number Theory 2012, 132, 2582-2594. [CrossRef]
8. Crandall, R.E. On the $3 x+1$ Problem. Math. Com. 1978, 32, 1281-1292. [CrossRef]
9. Sander, J.W. On the $(3 N+1)$-conjecture. Acta Arith. 1990, 55, 241-248. [CrossRef]
10. Everett, C.J. Iteration of the number-theoretic function $\mathrm{f}(2 \mathrm{n})=\mathrm{n}, \mathrm{f}(2 \mathrm{n}+1)=3 \mathrm{n}+2$. Adv. Math. 1977, 25, 42-45. [CrossRef]
11. Terras, R. A stopping time problem on the positive integers. Acta Arith. 1976, 30, 241-252. [CrossRef]
12. Möller, H. Über Hasses Verallgemeinerung des Syracuse -Algorithmus (Kakutanis Problem). Acta Arith. 1978, 34, 219-226. [CrossRef]
13. Matthews, K.R.; Watts, A.M. A generalization of Hasse's generalization of the Syracuse algorithm. Acta Arith. 1984, 43, 167-175. [CrossRef]
14. Simons, J.L. On the (non-)existence of m-cycles for generalized Syracuse sequences. Acta Arith. 2008, 131, 217-254. [CrossRef]
15. Wendel, J.G. Note on the Gamma Function. Am. Math. Mon. 1948, 55, 563-564. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
