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Abstract: To solve the soft sensor modeling (SSMI) problem in a nonlinear chemical process with
dynamic time variation and multi-rate data, this paper proposes a dynamic SSMI method based
on an autoregressive moving average (ARMA) model of weighted process data with discount
(DSSMI-AMWPDD) and optimization methods. For the sustained influence of auxiliary variable data
on the dominant variables, the ARMA model structure is adopted. To reduce the complexity of the
model, the dynamic weighting model is combined with the ARMA model. To address the weights of
auxiliary variable data with different sampling frequencies, a calculation method for AMWPDD is
proposed using assumptions that are suitable for most sequential chemical processes. The proposed
method can obtain a discount factor value (DFV) of auxiliary variable data, realizing the dynamic
fusion of chemical process data. Particle swarm optimization (PSO) is employed to optimize the
soft sensor model parameters. To address the poor convergence problem of PSO, w-dynamic PSO
(wDPSO) is used to improve the PSO convergence via the dynamic fluctuation of the inertia weight.
A continuous stirred tank reactor (CSTR) simulation experiment was performed. The results show
that the proposed DSSMI-AMWPDD method can effectively improve the SSM prediction accuracy
for a nonlinear time-varying chemical process. The AMWPDD proposed in this paper can reflect
the dynamic change of chemical process and improve the accuracy of SSM data prediction. The w
dynamic PSO method proposed in this paper has faster convergence speed and higher convergence
accuracy, thus, these models correlate with the concept of symmetry.

Keywords: chemical process; soft sensor modeling method; discount factor;, ARMA model;
dynamic inertia weight

1. Introduction

In order to reflect the dynamic change of chemical process, this paper attempts to propose
DSSMI-AMWPDD method, which can effectively improve the prediction accuracy of nonlinear
time-varying chemical process SSM. The proposed model and the concept of symmetry have relativity
and complementarity, and the research direction is highly consistent with Symmetry, which is
convenient for scholars in related fields as a reference. In chemical production, major process variables
such as product quality are characterized by a slow sampling rate and time delay [1]. To ensure the
stability of variable data in the main process, it is necessary to estimate the main process variables
through some easily acquired process variables. Therefore, soft sensor modeling (SSMI) is of great
significance. Since most chemical processes do not have clear principles but have strong nonlinear and
dynamic time-varying characteristics, the use of data-driven methods to establish an industrial soft
sensor model (5SM) [2—4] has become the focus of research. In particular, how to establish a suitable
nonlinear dynamic model has evolved into an important research object for researchers.
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Related modeling methods are generally divided into four types: multipoint input modeling [5-7],
dynamic weighting modeling [8,9], feedback network modeling [10,11], and multimodel structure
modeling [12-14]. Among these types of methods, multipoint input modeling boasts the advantages of
simplicity, ease in implementation, and full reflection of the process characteristics. However, to fully
reflect the dynamic characteristics of the process, a large number of high-dimensional input variables
are needed, which increases the number and complexity of the internal parameters, resulting in
ill-conditioned models. Dynamic weighting modeling uses dynamic weighting to form new input
variables, which reduces the model input nodes and lower the model complexity, making the
method simple and easy. However, the dynamic weights and historical data (HD) lengths are
difficult to determine. Feedback network modeling updates the input through the delay link of the
feedback loop and updates the structure or structural parameters, approximate to the object function.
However, the model has poor stability, large deviations, no convergence, and an inability to fully reflect
the dynamic information of the process; in addition, the model is not commonly used as it has a complex
training process. A representative multimodel structure modeling is the Wiener structure, in which
linear dynamic and nonlinear static submodels are built to describe the dynamic characteristics of a
system. It provides a good approximation, but the dual model architecture is complex and difficult
to identify.

The use of the above methods leads to inaccurate SSM data prediction, either because the sample
data for modeling do not fully reflect the dynamic characteristics of the process or because it is difficult
to perform the modeling and determine the parameters. To improve the prediction accuracy of SSM data
and simplify the dynamic soft sensor modeling structure, this paper proposes an autoregressive moving
average (ARMA) model of weighted process data with discount (AMWPDD) structure, which has better
flexibility in actual time series data fitting [15] and is simple and easy to implement. Amid assumptions
suitable for most sequential chemical processes, the discount factor (DF) is introduced for the auxiliary
variable HD of a chemical process. Additionally, a DF calculation method and the corresponding
constraints are proposed. Weighting is assigned to the auxiliary variable HD of the chemical process
through the calculated DFV. The auxiliary variable HD of the chemical process is fused to resolve the
problem that the weight for the HD is not easy to determine. The calculation method of the sum of
DFVs being “1” reflects the integrity of the auxiliary variable HD. The problem of determining the
weights of the auxiliary variable HD of different lengths can be solved by the exponential addition of
DFVs according to the length of the auxiliary variable HD. Therefore, the dynamic fusion of the process
data is realized, the sample data quality of the SSM modeling is enhanced, and the SSM prediction
accuracy is improved. As chemical processes often present significant dynamics and delays [11],
the study of DSSMI-AMWPDD is important.

A least squares support vector machine (LSSVM) has been proposed to deal with data
regression tasks, and its success has been demonstrated in some supervised learning cases [16].
However, the LSSVM parameters affect the training performance of the model and they are difficult
to determine, an intelligent optimization algorithm is generally used to realize the nonlinear robust
identification of the LSSVM [17]. Particle swarm optimization (PSO) [18] has attracted much attention
because of its easy implementation and few adjustment parameters [19-23]. However, PSO may
be trapped in local optima, and the convergence performance is very weak in later iterations [24].
To address the above problems, this paper proposes an improved particle swarm method by realizing
the periodic fluctuation of the inertia weight values through the dynamic adjustment of the inertia
weight, improving the search precision and the convergence of the algorithm.

2. Problem Statement

The chemical process is a sequential production. Generally, the continuous sampling of input
variables can be obtained, with only the sparse sampling of the output variables being gained [25].
Only a small number of process parameters are used, while past data with a large amount of dynamic
information are ignored [12], as shown in Figure 1.
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Figure 1. Irregular quality sample in the chemical process.

The problem to be studied and solved in this paper is how to rationally integrate the dynamic
characteristics of a chemical process into SSMI data, convert dynamic process data into static data,
and establish an SSM and optimize the model parameters to achieve the purpose of the SSM prediction
accuracy improvement.

3. DSSMI-AMWPDD

3.1. AMWPDD Sample Data Processing

Adding a large number of historical inputs not only increases the number and complexity of the
parameters of the model but also causes the ill conditioning of the model due to the excessively high
dimensionality of the input variables.

In consideration of the sustained influence of the auxiliary variable data on the dominant variables
in the chemical process and the corresponding difficulty in determining the degree of such influence,
and to reduce the number of input nodes and lower the complexity of the model, the ARMA model
structure is used to establish the input data vector using historical inputs and historical outputs.

The conventional ARMA(p, q) model is as follows [7]:

Xt = @0+ Q1X4-1 + -+ QpXt—p + &t — O1601 — - — Opér—q, pp # 0,0, # 0;
E(gt) = 0/ Vﬂ?’(é‘,{) = O%IE(EI?ES) = OIS *t (1)
E(xser) =0,¥s < t.

in which p and q are the orders of the model, ¢ is the operator of the AR of order p, and 0 is the operator
of MA of order g.
The multipoint input ARMA model used in this paper is shown in Figure 2:

u(tk-T) ﬁ
Nonlinear

: Static —p  y(k)
A Model

yt) P

Figure 2. Multipoint input ARMA model structure.

The generalized function of the multipoint input ARMA model shown in Figure 2 is expressed as:
y(k) = f(X(k), 0) 2

X(k) = [u(tk—l)/"' /u(tk—T)/ y(tk_l)] (3)
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Adding the output of the previous batch as an effective input into the modeled sample data
can reduce the number of historical input nodes, reducing the number of model parameters and the
complexity of the model [26], and lowering the possibility of morbidity in the model.

However, the multipoint input ARMA model shown in Figure 2 still has an incomplete model
structure induced by numerous historical input nodes and the high model complexity.

To solve these problems, we combine the dynamic weighting model [27] with the ARMA model
to realize the dynamic weighted fusion of the input nodes and hence reflect the dynamic characteristics
of the process, as shown in Figure 3:

u(ty.)

u(ti.y)
u(ty)

Nonlinear y(t)

Static —p
Model

Y(ti.)

Figure 3. Dynamic weighted ARMA model structure.

Its generalized function is expressed as:
y () = f(o(te), y(t—1),0) )

ot) = Y winlti) )

The dynamic weight directly reflects the dynamic characteristics of the process and affects the
accuracy of the overall model. However, it is difficult to obtain accurate values of the dynamic weights.
To solve this problem, this paper proposes an assumed condition suitable for most sequential chemical
processes after a detailed site investigation of the chemical process.

If the value of the input node changes in different time periods, the further away an input point is
from the output time, the less influence the value of the input node has on the change in the value of
the output node.

The above assumption is explained as follows:

T .

Ay(t) =Y Oof (uiltig)),i=1,+ n ©)
# o ;/: O

5. =1 Ihtisl’ 7

! { 1,o0=0 @

where 0, is the degree of influence in the input node value.

Based on the above assumptions, this paper introduces DF A and uses the discount method [28,29]
to dynamically discount-weigh the auxiliary variable values of different sampling time points in the
same batch. By doing this, the impact of recent sample data on the model is enhanced, the role of past
samples is reduced, the fusion of input node values from # to ¢, 7 is achieved, and the problem that
the weight of the dynamic weighted model is difficult to judge is solved.

The structure of the AMWPDD proposed in this paper is shown in Figure 4:
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Figure 4. Discount-weighted ARMA model structure.

Its generalized function is as follows:
y(t) = f(o(te), y(tc = 1), 0) ®)
T
o(te) = ) Ainti-y) ©)

where v(ty) is the process input data obtained by DF weighted fusion.

However, the transition time T of the input variable of the chemical process, that is, the HD length,
is difficult to determine. To ensure the data integrity of the batch input and output variables, this paper
proposes a calculation method of DF A in combination with the above assumption.

DF A numerical constraints:

(1) AM+Ary+..0 . +Ar=1;
(2) A>Ary > ... > AT;

The calculation formula of DF A is:

Ai=n,i=01,2--,T (10)
n

JMIES a

One can obtain the dynamic value of DF A;,i =1, 2, ---, T based on different transition times T by
Equations (10) and (11), realize the dynamic calculation of the DF A value, and obtain more accurate
data fusion weights.

Then, the sample data set S for SSM modeling is:

S— { Z)]'(tk),y(tk - 1)|k =12, ,M;j =1,2,---,N } (12)
y(tlk=1,2,--- , M

where v;(t;) is the j input variables at time f, y(fx) is the output variable at time f, y(tx —1) is the
output variable at time t; — 1, and t(k = 1,2,--- , M) indicates the sampling time at which the system
outputs M sample points.

On the basis of the sample data set S for the SSM, the SSM is established by the SSMI method.

3.2. LSSVM-Based SSMI

The least squares support vector machine (LSSVM) is a machine learning method proposed by
Suykens [30] for solving the function estimation. It has better calculation speed, convergence precision
and generalization performance and is more suitable for the small sample data SSMI of chemical
processes [31].

The LSSVM model [32] is:

y(x) = w'Pp(x) +b (13)
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where ¢(-) is a nonlinear transformation function, w is an adjustable weight vector, and b is an offset.
The objective function of LSSVM [33] is as follows:

minf(w, &) = %wTa) + % Zi:l & (14)

st.yi=w o) +b+&(i=12,--,1) (15)

where x; € R" refers to the input vector, y; € R represents the corresponding output vector, ¢; is
the difference between the system output value and actual value, C > 0 represents a regularization
parameter used to minimize the estimation error and control the function smoothness, ¢(-) refers to a
nonlinear mapping from the input space to the feature space, w is the system weight, b is an offset,
and s.t. indicates a constraint condition.

The Lagrange polynomial function of the optimization is solved by the Karush-Kuhn-Tucher
(KKT) condition, and the LSSVM model for function estimation can be expressed as:

~

§=f@) =Y @K, +b (16)

Since the radial basis kernel function is a kernel function that has been widely used [34], it is
chosen in this paper:

" llx = 'I? , .
k(x,x") = exp T O > 0 is kernel radius (17)
o

After the kernel function is determined, the error term penalizes the parameter C, and the kernel
function parameter o2 affects the regression performance of the LSSVM method. However, they are
difficult to determine. To ensure the optimal regression performance of the LSSVM, this paper uses
PSO to optimize the error term penalty parameter C and the kernel function parameter o2.

4. Model Parameter Optimization Based on «DPSO

To improve the prediction accuracy of SSM, the optimization objective is set to minimize the sum
of the squared errors between the sample actual output data yy(fx) and sample prediction output y(t).
The optimization objective function is as follows:

minf = = Yyt - yolt)IP (18)

PSO [18] is an intelligent algorithm that simulates the predation behavior of birds and fish groups.

In PSO, each particle has independent position, velocity, and fitness for optimizing the target.
PSO randomly sets a certain number of particles, initializes their positions and speeds, and completes
the optimization process by iteration. The iterative process generally includes two optimal values:
the Personal Best Value (pbest) and the Global Best Value (gbest); pbest represents the optimal fitness of
the particle itself, and gbest refers to the optimal fitness of all particles. The particle updates its position
and velocity by tracking two extreme values (pbest, gbest), and the updated formula is as follows:

Via(t+1) = wx v (t) + 1 X rand() X (pig = xia (£)) + c2 X rand() X (pga = xig(t)) (19)

Xig(t+1) = x4(t) + vyt + 1) (20)

where vy, xj4, and p;; represent the velocity, position, and personal best value, respectively, of particle i
in iteration t; rand() is a random number between [0, 1]; ¢; and ¢, are learning factors, which represent
the weights of the statistical acceleration terms that push each particle to the pbest and gbest locations;
w is the inertia weight; ¢ is the number of iterations.

Since the inertia weight is related to the development and exploration ability of the particle,
it affects the convergence of the algorithm [35,36]. A larger w value is beneficial to jump out of a
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local optimum for global optimization; a smaller w value is beneficial to local optimization and
accelerates the convergence of the algorithm. When the search process follows a nonlinear and highly
complex algorithm, the linearly decreasing inertia weight does not effectively reflect the actual search
process [37]. At the same time, the inertia weight linear decreasing strategy based on the number
of iterations has a weak partial search in the early iteration, and the particle might miss the optimal
value even if it is close to the current value; in late iterations, the global search ability is weak, and it is
easy to fall into the local optimum problem. In this paper, an «DPSO is proposed, which improves

the convergence of the algorithm by dynamically adjusting the inertia weight w value, as shown in
Figure 5:

\ || | |
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09| ‘\‘ ‘\ .l “ |
‘

w value
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®

L |
‘
IR \| | IR
o7f | \‘ | ]
| \ | \‘ |

06 ‘\‘“ ‘\ “1 \“
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. . .
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Figure 5. Dynamic adjustment of inertia weight w in 100 iterations.

The equation for the inertia weight is expressed as:

w = 0.8 — 0.3+ sawtooth(t, j/ k) (21)
As shown in Figure 5, compared with the inertia weight linear decreasing strategy based on the
number of iterations, the inertia weight w values proposed in this paper vary from large to small,
then from small to large, and again from large to small, showing a periodic sawtooth fluctuation. As a
result, the particles are periodically alternating between focusing on the global search and focusing
on the local search. This balances the global search and the local search, avoids being trapped in a
local optimum, improving the convergence of the PSO algorithm. At the same time, according to the
ratio of the current iteration number to the total number of iterations, the ratio of the time prior to
the peak within the cycle to the cycle time is adjusted so that the inertia weight w increases rapidly
and decreases slowly in early numerical iterations, grows and reduces slowly in the middle iterations,
and rises slowly and decreases rapidly in the late iterations.

Through wDPSO, the LSSVM SSMI method penalty parameter C and the kernel function parameter
02 are numerically optimized.

5. Simulation and Analysis

A CSTR is used as study objects to test the predictive performance of the SSMI method proposed
in this paper for nonlinear dynamic time-varying chemical processes. The CSTR data comes from a
computer simulation. In addition, to evaluate the performance of the proposed method, the dynamic
and static data LSSVM SSM, PSO-LSSVM SSM, and «DPSO-LSSVM soft sensor model of the CSTR
object are established.

Given the commonality and universality of evaluation indices, including the mean absolute error
(MAE), root mean square error (RMSE), and running time (RT), in regression analyses, this paper uses
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the RMSE in Equation (23) and the RT to evaluate the training performance of the SSM and the MAE in
Equation (22) and the RMSE in Equation (23) to evaluate the prediction accuracy of the SSM:

MAE = %ZL

awse - T,

where N is the total number of samples, 7; is the predicted output value, and y; is the actual value.

gi - il (22)

-yl (23)

5.1. CSTR Simulation Experiment and Result Analysis

The continuous stirred tank reactor is the most important piece of equipment in many chemical and
biochemical industries and has second-order nonlinear dynamic characteristics [38]. Therefore, it canbe
used to test the ability of the SSMI method to solve nonlinear and time-varying problems. The principle
of the CSTR [39] is shown in Figure 6, with a description of each variable and the values of the
steady-state operating points shown in Table 1 [40].

/ Reactor \
Fc,Tci
I)<I H > —
f i Vo T Ca F.,T.,
H \J
FC <-- FT
& Fi) Tr: CA
Catalyzer
\gTr A—»B /
v
TC “ffeeeccecececcccecan TT

Figure 6. The principle of the CSTR.

Table 1. Description and steady-state values of parameters of the CSTR.

Parameter Description Steady-State Value

F; Feed flow rate 100 L/min
Ca; Reactant concentration in the feed 1 mol/L

T; Feed temperature 350 K

|4 Reactor volume 100 L

ko Reaction speed 7.2 % 10! min~!
Cp Reactant specific heat capacity 1 cal/g/k

hA Thermal conductivity 7 % 10° cal/min/K
T, Cooling water inlet temperature 350 K

Cpe Cooling water specific heat capacity 1 cal/g/k

The concentration C4 of the raw material A in the reactor is considered to be the dominant variable
of the SSM. The feed flow rate F;, the cooling water flow rate F,, and the reactor internal temperature
T, are treated as auxiliary variables of the SSM.
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In the CSTR simulation process, the sampling periods of the auxiliary and dominant variables are
set to 1 h and 12 h, respectively. The simulation time is set to 265 h, and a certain white Gaussian noise
is added to each auxiliary variable. A total of 265 groups of usable data are obtained, 23 of which are
labeled and the rest are dynamically unlabeled. The former 168 groups of data are used as the training
sample set, and the latter 96 groups of data are used as the test sample set. A total of 22 groups of
dynamic fusion data and static data with the same output are used as the SSMI samples. To simulate
the reduction and recovery of the catalyst activity in the reactor, the catalyst activity kg is set for the data
simulation based on the variation pattern in Figure 7, and the simulated data set is then normalized.

10
74200 | —
| |
72K | |
\ .
7L | | N
. N
b
638 \ ]
AN
2z N | |
266 AN | |
° AN
L 6a N [ |
2 \ | |
[ N |
T 62 N
[$] N |
6 [N
| N
5.8 ag———Train period——|~Test peri d1\
| (I
56+ AN
| | .
54 . . L L N
0 50 100 150 200 250 300 350 400

Time/hour

Figure 7. Variation pattern of catalyst activity k.
The following model structure based on static data modeling is used:
9s(t) = focstr(uj(t)), j=1,2,3 (24)

With expert knowledge and the dynamic characteristics of the CSTR, the following model structure
is adopted for dynamic fusion data-based modeling:

. _ vj(t) .
Ja(ty) = deSTR( y(t]k—l) ) ji=1,23 (25)
uj(tr-11)
i(fx) = fDis 26
vt = fo uj(te-1) 20
uj(ty)

where y(t;) represents the concentration in the reactor Cy4 at time fx, uj(t;_1)(1<j<3,0<T <11)
represents the sampled value of the j auxiliary variable at time f;. 1, v i(tx) is the discounted fusion
value of uj(t;_1)(1 < j<3,0<T <11) and (t) represents the concentration in the reactor predicted
by the SSM.

The parameters for the method comparison are set as follows:

LSSVM: C = 80, % =20

PSO-LSSVM: number of iterations: 100; number of particles: 20; C € [20,130] o2 € [20,130].

wDPSO-LSSVM: number of iterations: 100; number of particles: 20; C € [20,130] o2 € [20,130].

5.1.1. SSMI Based on Static Data

The SSMs of the above three methods are based on static data, wherein, for the PSO-LSSVM
method, C = 101.79 and 62 = 20.53, and for the wDPSO-LSSVM method, 118.13 and ¢2 = 21.67,

as shown in Figure 8.
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Figure 8. Modeling data training for the different SSMI methods. (a) The training curve based on
LSSVM; (b) The training curve based on PSO-LSSVM,; (c) The training curve based on wDPSO-LSSVM.

With white Gaussian noise added to the auxiliary variables, it can be seen from Figure 8a—c
that the three SSMI methods all have large offsets. Combining the RMSE values of the model
training performance shown in Table 2, it can be seen that the models trained by PSO-LSSVM and
wDPSO-LSSVM are closer to the actual data. Compared with that of the LSSVM method, the RMSE
index increases by 1.35% and 1.57%, respectively, and the RT index falls by factors of 30.16 and
25.73, respectively.

Compared to those of the PSO-LSSVM method, the RMSE and RT indices of the wDPSO-LSSVM
method rises by 0.23% and 14.24%, respectively.

The training performances of the different SSMI methods are shown in Table 2.
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Table 2. Comparison of CSTR performances of the different SSMs.

Soft Sensor RMSE Running Time(s)
LSSVM 0.0446 0.851
PSO-LSSVM 0.0440 26.520
wDPSO -LSSVM  0.0439 22.744

110f16

The performances of the different SSMI methods using test data set are compared, as shown in
Figure 9.

Actual Value
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i
L

. . . . | .
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Figure9. Prediction of test data by the different SSMImethods. (a) The prediction curve based on LSSVM;
(b) The prediction curve based on PSO-LSSVM; (c) The prediction curve based on wDPSO-LSSVM.

It can be seen from Figure 9 that the prediction values by the LSSVM, PSO-LSSVM,
and wDPSO-LSSVM methods based on static data all show large offsets, and the prediction performance
evaluation indices MAE and RMSE of each SSM are also poor. However, compared with those of the
LSSVM method, the MAE values of the PSO-LSSVM and wDPSO-LSSVM methods grow by 1.59% and
3.17%, respectively, and their RMSE values rise by 1.64% and 3.52%, respectively.
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Compared to those of the PSO-LSSVM method, the MAE and RMSE values of the wDPSO-LSSVM
method increase by 1.6% and 1.9%, respectively, indicating a higher prediction accuracy.
The prediction performances of the different SSMI methods are shown in Table 3.

Table 3. Comparison of CSTR performances of the different SSMs.

Soft Sensor MAE RMSE

LSSVM 0.0820  0.0853
PSO-LSSVM 0.0807  0.0839
wDPSO -LSSVM 0.0794  0.0823

5.1.2. SSMI Based on Dynamic Fusion Data

The SSMs of the above three methods are established based on dynamic fusion data,
wherein the PSO-LSSVM method, C = 107.59 and ¢? = 21.96, and the wDPSO-LSSVM method,
C = 128.643 and ¢% = 24.16, are shown in Figure 10.
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Figure 10. Modeling data training for the different SSMI methods. (a) The training curve based on
LSSVM; (b) The training curve based on PSO-LSSVM,; (c) The training curve based on wDPSO-LSSVM.
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As shown in Figure 10, the different SSMI methods have different training effects on the dynamic
fusion data. Combined with the RMSE values of the models built by the different soft sensor methods,
as listed in Table 4, it found that, compared with those of the LSSVM method, the RMSE indices of the
PSO-LSSVM and wDPSO-LSSVM methods rise by 3.81% and 4.11%, respectively, and their RT indices
decrease by factors of 35.49 and 26.92, respectively.

Compared with those of the PSO-LSSVM method, the RMSE and RT indices of the wDPSO-LSSVM
method reduce by 0.31% and 6.8%, respectively.

The training performances of the different SSMI methods are shown in Table 4:

Table 4. Comparison of CSTR performances of the different SSMs.

Soft Sensor RMSE Running Time(s)
LSSVM 0.0341 0.793
PSO-LSSVM 0.0328 28.94
wDPSO -LSSVM  0.0327 22.143

The performances of the different SSMI methods using the test data set are compared, as shown
in Figure 11.

Actual Value | |
Predicted value

Output value
o o o

L L L L L L . J
1 2 3 4 5 6 7 8
Test samples
(a)LSSVM

Actual value
Predicted value

o o o
o o
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S
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. . . . . .
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(b)PSO-LSSVM

Actualvalue | |
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o o o
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(c)oDPSO-LSSVM

Figure 11. Prediction of test data by the different SSMI methods. (a) The prediction curve based
on LSSVM; (b) The prediction curve based on PSO-LSSVM; (c¢) The prediction curve based on
wDPSO-LSSVM.
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A comparison of the prediction curves of the LSSVM, PSO-LSSVM, and wDPSO-LSSVM methods
in Figure 11 shows that the prediction curves of the PSO-LSSVM and wDPSO-LSSVM methods are
closer to the actual values. As seen in Table 5, compared with the those of the LSSM method, the MAE
values of the PSO-LSSVM and wDPSO-LSSVM methods grow by 1.51% and 3.4%, respectively, and their
RMSE values rise by 4.83% and 7.47%, respectively. Compared with those of the PSO-LSSVM method,
the MAE and RMSE values of the wDPSO-LSSVM method increase by 1.92% and 2.77%, respectively.

The prediction performances of the different SSMI methods are shown in Table 5.

Table 5. Comparison of CSTR performances of the different SSMs.

Soft Sensor MAE RMSE

LSSVM 0.0529  0.0683
PSO-LSSVM 0.0521  0.0650
wDPSO-LSSVM  0.0511  0.0632

5.1.3. Comparison and Analysis

A comparison of Figures 8 and 10, as well as Figures 9 and 11, combined with the data analysis in
Sections 5.1.1 and 5.1.2, shows that, compared with that based on static data, the RMSE values of the
model training results using the three methods based on dynamic fusion data rise by 23.54%, 25.46%,
and 25.51%, respectively. Compared with those based on static data, the MAE values of the three
methods based on dynamic fusion data grow by 35.49%, 35.44%, and 35.64%, respectively, and the
RMSE values increase by 19.93%, 22.53%, and 23.21%, respectively. The models established via
dynamic fusion data and the corresponding data prediction accuracy are better than those using static
data. The main reason is that the chemical process is a continuous time series production process,
and changes in the values of the auxiliary variables affect the values of the subsequent dominant
variables. Modeling based only on the current static data is unable to reflect the process variation
of the auxiliary variables, resulting in the poor training of the model and low precision of the data
prediction. In view of the influence of the inertia weight coefficient w on the convergence performance
of the PSO method, the wDPSO-LSSVM method achieves better prediction performance than the
PSO-LSSVM method.

5.2. Simulation Experiment and Result Analysis

In Section 5.1, the simulation data of CSTR is used to experimentally verify the proposed
DSSMI-AMWPDD method based on wDPSO. A comparison of the modeling using dynamic fusion data
and static data, as well as the experimental results of data prediction, proves that the SSM established
by dynamic fusion data is superior to that those using static data in terms of the prediction model
accuracy and data prediction precision. Additionally, this paper adopts the PSO-LSSVM method
and the wDPSO-LSSVM method to perform 10 trainings on CSTR data and selects the one with the
best training effect as the experimental result, and the results show that the wDPSO-LSSVM method
achieves better prediction performance, shorter training time, and stronger convergence.

6. Conclusions

In this work, based on chemical processes as the research setting, the simulation modeling of CSTR
simulation data shows that the AMWPDD proposed in this paper can reflect the dynamic changes of the
chemical process and improve the accuracy of the SSM data prediction. Furthermore, the simulation
results show that, compared with the standard PSO method, the wDPSO method can better
balance the local and global development capabilities, with faster convergence speed and higher
convergence accuracy.
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